2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/drivers/isdn/hisax/isac.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

682 lines
18 KiB
C

/* $Id: isac.c,v 1.31.2.3 2004/01/13 14:31:25 keil Exp $
*
* ISAC specific routines
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
*/
#include "hisax.h"
#include "isac.h"
#include "arcofi.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/init.h>
#define DBUSY_TIMER_VALUE 80
#define ARCOFI_USE 1
static char *ISACVer[] __devinitdata =
{"2086/2186 V1.1", "2085 B1", "2085 B2",
"2085 V2.3"};
void
ISACVersion(struct IsdnCardState *cs, char *s)
{
int val;
val = cs->readisac(cs, ISAC_RBCH);
printk(KERN_INFO "%s ISAC version (%x): %s\n", s, val, ISACVer[(val >> 5) & 3]);
}
static void
ph_command(struct IsdnCardState *cs, unsigned int command)
{
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_command %x", command);
cs->writeisac(cs, ISAC_CIX0, (command << 2) | 3);
}
static void
isac_new_ph(struct IsdnCardState *cs)
{
switch (cs->dc.isac.ph_state) {
case (ISAC_IND_RS):
case (ISAC_IND_EI):
ph_command(cs, ISAC_CMD_DUI);
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (ISAC_IND_DID):
l1_msg(cs, HW_DEACTIVATE | CONFIRM, NULL);
break;
case (ISAC_IND_DR):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (ISAC_IND_PU):
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (ISAC_IND_RSY):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (ISAC_IND_ARD):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (ISAC_IND_AI8):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
case (ISAC_IND_AI10):
l1_msg(cs, HW_INFO4_P10 | INDICATION, NULL);
break;
default:
break;
}
}
static void
isac_bh(struct IsdnCardState *cs)
{
struct PStack *stptr;
if (!cs)
return;
if (test_and_clear_bit(D_CLEARBUSY, &cs->event)) {
if (cs->debug)
debugl1(cs, "D-Channel Busy cleared");
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | CONFIRM, NULL);
stptr = stptr->next;
}
}
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event))
isac_new_ph(cs);
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
#if ARCOFI_USE
if (!test_bit(HW_ARCOFI, &cs->HW_Flags))
return;
if (test_and_clear_bit(D_RX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_RX_END, NULL);
if (test_and_clear_bit(D_TX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_TX_END, NULL);
#endif
}
static void
isac_empty_fifo(struct IsdnCardState *cs, int count)
{
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "isac_empty_fifo");
if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "isac_empty_fifo overrun %d",
cs->rcvidx + count);
cs->writeisac(cs, ISAC_CMDR, 0x80);
cs->rcvidx = 0;
return;
}
ptr = cs->rcvbuf + cs->rcvidx;
cs->rcvidx += count;
cs->readisacfifo(cs, ptr, count);
cs->writeisac(cs, ISAC_CMDR, 0x80);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "isac_empty_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
static void
isac_fill_fifo(struct IsdnCardState *cs)
{
int count, more;
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "isac_fill_fifo");
if (!cs->tx_skb)
return;
count = cs->tx_skb->len;
if (count <= 0)
return;
more = 0;
if (count > 32) {
more = !0;
count = 32;
}
ptr = cs->tx_skb->data;
skb_pull(cs->tx_skb, count);
cs->tx_cnt += count;
cs->writeisacfifo(cs, ptr, count);
cs->writeisac(cs, ISAC_CMDR, more ? 0x8 : 0xa);
if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
debugl1(cs, "isac_fill_fifo dbusytimer running");
del_timer(&cs->dbusytimer);
}
init_timer(&cs->dbusytimer);
cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
add_timer(&cs->dbusytimer);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "isac_fill_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
void
isac_interrupt(struct IsdnCardState *cs, u_char val)
{
u_char exval, v1;
struct sk_buff *skb;
unsigned int count;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ISAC interrupt %x", val);
if (val & 0x80) { /* RME */
exval = cs->readisac(cs, ISAC_RSTA);
if ((exval & 0x70) != 0x20) {
if (exval & 0x40) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC RDO");
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
}
if (!(exval & 0x20)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC CRC error");
#ifdef ERROR_STATISTIC
cs->err_crc++;
#endif
}
cs->writeisac(cs, ISAC_CMDR, 0x80);
} else {
count = cs->readisac(cs, ISAC_RBCL) & 0x1f;
if (count == 0)
count = 32;
isac_empty_fifo(cs, count);
if ((count = cs->rcvidx) > 0) {
cs->rcvidx = 0;
if (!(skb = alloc_skb(count, GFP_ATOMIC)))
printk(KERN_WARNING "HiSax: D receive out of memory\n");
else {
memcpy(skb_put(skb, count), cs->rcvbuf, count);
skb_queue_tail(&cs->rq, skb);
}
}
}
cs->rcvidx = 0;
schedule_event(cs, D_RCVBUFREADY);
}
if (val & 0x40) { /* RPF */
isac_empty_fifo(cs, 32);
}
if (val & 0x20) { /* RSC */
/* never */
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC RSC interrupt");
}
if (val & 0x10) { /* XPR */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
isac_fill_fifo(cs);
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
isac_fill_fifo(cs);
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (val & 0x04) { /* CISQ */
exval = cs->readisac(cs, ISAC_CIR0);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ISAC CIR0 %02X", exval );
if (exval & 2) {
cs->dc.isac.ph_state = (exval >> 2) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state change %x", cs->dc.isac.ph_state);
schedule_event(cs, D_L1STATECHANGE);
}
if (exval & 1) {
exval = cs->readisac(cs, ISAC_CIR1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ISAC CIR1 %02X", exval );
}
}
if (val & 0x02) { /* SIN */
/* never */
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC SIN interrupt");
}
if (val & 0x01) { /* EXI */
exval = cs->readisac(cs, ISAC_EXIR);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC EXIR %02x", exval);
if (exval & 0x80) { /* XMR */
debugl1(cs, "ISAC XMR");
printk(KERN_WARNING "HiSax: ISAC XMR\n");
}
if (exval & 0x40) { /* XDU */
debugl1(cs, "ISAC XDU");
printk(KERN_WARNING "HiSax: ISAC XDU\n");
#ifdef ERROR_STATISTIC
cs->err_tx++;
#endif
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) { /* Restart frame */
skb_push(cs->tx_skb, cs->tx_cnt);
cs->tx_cnt = 0;
isac_fill_fifo(cs);
} else {
printk(KERN_WARNING "HiSax: ISAC XDU no skb\n");
debugl1(cs, "ISAC XDU no skb");
}
}
if (exval & 0x04) { /* MOS */
v1 = cs->readisac(cs, ISAC_MOSR);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ISAC MOSR %02x", v1);
#if ARCOFI_USE
if (v1 & 0x08) {
if (!cs->dc.isac.mon_rx) {
if (!(cs->dc.isac.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC MON RX out of memory!");
cs->dc.isac.mocr &= 0xf0;
cs->dc.isac.mocr |= 0x0a;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
goto afterMONR0;
} else
cs->dc.isac.mon_rxp = 0;
}
if (cs->dc.isac.mon_rxp >= MAX_MON_FRAME) {
cs->dc.isac.mocr &= 0xf0;
cs->dc.isac.mocr |= 0x0a;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mon_rxp = 0;
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC MON RX overflow!");
goto afterMONR0;
}
cs->dc.isac.mon_rx[cs->dc.isac.mon_rxp++] = cs->readisac(cs, ISAC_MOR0);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ISAC MOR0 %02x", cs->dc.isac.mon_rx[cs->dc.isac.mon_rxp -1]);
if (cs->dc.isac.mon_rxp == 1) {
cs->dc.isac.mocr |= 0x04;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
}
}
afterMONR0:
if (v1 & 0x80) {
if (!cs->dc.isac.mon_rx) {
if (!(cs->dc.isac.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC MON RX out of memory!");
cs->dc.isac.mocr &= 0x0f;
cs->dc.isac.mocr |= 0xa0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
goto afterMONR1;
} else
cs->dc.isac.mon_rxp = 0;
}
if (cs->dc.isac.mon_rxp >= MAX_MON_FRAME) {
cs->dc.isac.mocr &= 0x0f;
cs->dc.isac.mocr |= 0xa0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mon_rxp = 0;
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC MON RX overflow!");
goto afterMONR1;
}
cs->dc.isac.mon_rx[cs->dc.isac.mon_rxp++] = cs->readisac(cs, ISAC_MOR1);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ISAC MOR1 %02x", cs->dc.isac.mon_rx[cs->dc.isac.mon_rxp -1]);
cs->dc.isac.mocr |= 0x40;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
}
afterMONR1:
if (v1 & 0x04) {
cs->dc.isac.mocr &= 0xf0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mocr |= 0x0a;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
schedule_event(cs, D_RX_MON0);
}
if (v1 & 0x40) {
cs->dc.isac.mocr &= 0x0f;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mocr |= 0xa0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
schedule_event(cs, D_RX_MON1);
}
if (v1 & 0x02) {
if ((!cs->dc.isac.mon_tx) || (cs->dc.isac.mon_txc &&
(cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc) &&
!(v1 & 0x08))) {
cs->dc.isac.mocr &= 0xf0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mocr |= 0x0a;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
if (cs->dc.isac.mon_txc &&
(cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc))
schedule_event(cs, D_TX_MON0);
goto AfterMOX0;
}
if (cs->dc.isac.mon_txc && (cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc)) {
schedule_event(cs, D_TX_MON0);
goto AfterMOX0;
}
cs->writeisac(cs, ISAC_MOX0,
cs->dc.isac.mon_tx[cs->dc.isac.mon_txp++]);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ISAC %02x -> MOX0", cs->dc.isac.mon_tx[cs->dc.isac.mon_txp -1]);
}
AfterMOX0:
if (v1 & 0x20) {
if ((!cs->dc.isac.mon_tx) || (cs->dc.isac.mon_txc &&
(cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc) &&
!(v1 & 0x80))) {
cs->dc.isac.mocr &= 0x0f;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
cs->dc.isac.mocr |= 0xa0;
cs->writeisac(cs, ISAC_MOCR, cs->dc.isac.mocr);
if (cs->dc.isac.mon_txc &&
(cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc))
schedule_event(cs, D_TX_MON1);
goto AfterMOX1;
}
if (cs->dc.isac.mon_txc && (cs->dc.isac.mon_txp >= cs->dc.isac.mon_txc)) {
schedule_event(cs, D_TX_MON1);
goto AfterMOX1;
}
cs->writeisac(cs, ISAC_MOX1,
cs->dc.isac.mon_tx[cs->dc.isac.mon_txp++]);
if (cs->debug & L1_DEB_MONITOR)
debugl1(cs, "ISAC %02x -> MOX1", cs->dc.isac.mon_tx[cs->dc.isac.mon_txp -1]);
}
AfterMOX1:;
#endif
}
}
}
static void
ISAC_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
int val;
switch (pr) {
case (PH_DATA |REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
isac_fill_fifo(cs);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL |INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
} else {
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
isac_fill_fifo(cs);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
if ((cs->dc.isac.ph_state == ISAC_IND_EI) ||
(cs->dc.isac.ph_state == ISAC_IND_DR) ||
(cs->dc.isac.ph_state == ISAC_IND_RS))
ph_command(cs, ISAC_CMD_TIM);
else
ph_command(cs, ISAC_CMD_RS);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, ISAC_CMD_TIM);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, ISAC_CMD_AR8);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
val = 0;
if (1 & (long) arg)
val |= 0x0c;
if (2 & (long) arg)
val |= 0x3;
if (test_bit(HW_IOM1, &cs->HW_Flags)) {
/* IOM 1 Mode */
if (!val) {
cs->writeisac(cs, ISAC_SPCR, 0xa);
cs->writeisac(cs, ISAC_ADF1, 0x2);
} else {
cs->writeisac(cs, ISAC_SPCR, val);
cs->writeisac(cs, ISAC_ADF1, 0xa);
}
} else {
/* IOM 2 Mode */
cs->writeisac(cs, ISAC_SPCR, val);
if (val)
cs->writeisac(cs, ISAC_ADF1, 0x8);
else
cs->writeisac(cs, ISAC_ADF1, 0x0);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | RESPONSE):
skb_queue_purge(&cs->rq);
skb_queue_purge(&cs->sq);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "isac_l1hw unknown %04x", pr);
break;
}
}
static void
setstack_isac(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = ISAC_l1hw;
}
static void
DC_Close_isac(struct IsdnCardState *cs)
{
kfree(cs->dc.isac.mon_rx);
cs->dc.isac.mon_rx = NULL;
kfree(cs->dc.isac.mon_tx);
cs->dc.isac.mon_tx = NULL;
}
static void
dbusy_timer_handler(struct IsdnCardState *cs)
{
struct PStack *stptr;
int rbch, star;
if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
rbch = cs->readisac(cs, ISAC_RBCH);
star = cs->readisac(cs, ISAC_STAR);
if (cs->debug)
debugl1(cs, "D-Channel Busy RBCH %02x STAR %02x",
rbch, star);
if (rbch & ISAC_RBCH_XAC) { /* D-Channel Busy */
test_and_set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | INDICATION, NULL);
stptr = stptr->next;
}
} else {
/* discard frame; reset transceiver */
test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
} else {
printk(KERN_WARNING "HiSax: ISAC D-Channel Busy no skb\n");
debugl1(cs, "D-Channel Busy no skb");
}
cs->writeisac(cs, ISAC_CMDR, 0x01); /* Transmitter reset */
cs->irq_func(cs->irq, cs);
}
}
}
void __devinit
initisac(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_isac;
cs->DC_Close = DC_Close_isac;
cs->dc.isac.mon_tx = NULL;
cs->dc.isac.mon_rx = NULL;
cs->writeisac(cs, ISAC_MASK, 0xff);
cs->dc.isac.mocr = 0xaa;
if (test_bit(HW_IOM1, &cs->HW_Flags)) {
/* IOM 1 Mode */
cs->writeisac(cs, ISAC_ADF2, 0x0);
cs->writeisac(cs, ISAC_SPCR, 0xa);
cs->writeisac(cs, ISAC_ADF1, 0x2);
cs->writeisac(cs, ISAC_STCR, 0x70);
cs->writeisac(cs, ISAC_MODE, 0xc9);
} else {
/* IOM 2 Mode */
if (!cs->dc.isac.adf2)
cs->dc.isac.adf2 = 0x80;
cs->writeisac(cs, ISAC_ADF2, cs->dc.isac.adf2);
cs->writeisac(cs, ISAC_SQXR, 0x2f);
cs->writeisac(cs, ISAC_SPCR, 0x00);
cs->writeisac(cs, ISAC_STCR, 0x70);
cs->writeisac(cs, ISAC_MODE, 0xc9);
cs->writeisac(cs, ISAC_TIMR, 0x00);
cs->writeisac(cs, ISAC_ADF1, 0x00);
}
ph_command(cs, ISAC_CMD_RS);
cs->writeisac(cs, ISAC_MASK, 0x0);
}
void __devinit
clear_pending_isac_ints(struct IsdnCardState *cs)
{
int val, eval;
val = cs->readisac(cs, ISAC_STAR);
debugl1(cs, "ISAC STAR %x", val);
val = cs->readisac(cs, ISAC_MODE);
debugl1(cs, "ISAC MODE %x", val);
val = cs->readisac(cs, ISAC_ADF2);
debugl1(cs, "ISAC ADF2 %x", val);
val = cs->readisac(cs, ISAC_ISTA);
debugl1(cs, "ISAC ISTA %x", val);
if (val & 0x01) {
eval = cs->readisac(cs, ISAC_EXIR);
debugl1(cs, "ISAC EXIR %x", eval);
}
val = cs->readisac(cs, ISAC_CIR0);
debugl1(cs, "ISAC CIR0 %x", val);
cs->dc.isac.ph_state = (val >> 2) & 0xf;
schedule_event(cs, D_L1STATECHANGE);
/* Disable all IRQ */
cs->writeisac(cs, ISAC_MASK, 0xFF);
}
void __devinit
setup_isac(struct IsdnCardState *cs)
{
INIT_WORK(&cs->tqueue, (void *)(void *) isac_bh, cs);
cs->dbusytimer.function = (void *) dbusy_timer_handler;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
}