2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 15:45:14 +08:00
linux-next/drivers/dma/shdma.c
Dan Williams 56adf7e812 shdma: fix initialization error handling
1/ Error handling code following a kzalloc should free the allocated data.
2/ Report an error when no platform data is detected

Both problems fixed by moving the platform data check before the allocation,
and allows a goto to be killed.

Reported-by: Julia Lawall <julia@diku.dk>
Acked-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-11-22 12:10:10 -07:00

785 lines
18 KiB
C

/*
* Renesas SuperH DMA Engine support
*
* base is drivers/dma/flsdma.c
*
* Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
* Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* - DMA of SuperH does not have Hardware DMA chain mode.
* - MAX DMA size is 16MB.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/platform_device.h>
#include <cpu/dma.h>
#include <asm/dma-sh.h>
#include "shdma.h"
/* DMA descriptor control */
#define DESC_LAST (-1)
#define DESC_COMP (1)
#define DESC_NCOMP (0)
#define NR_DESCS_PER_CHANNEL 32
/*
* Define the default configuration for dual address memory-memory transfer.
* The 0x400 value represents auto-request, external->external.
*
* And this driver set 4byte burst mode.
* If you want to change mode, you need to change RS_DEFAULT of value.
* (ex 1byte burst mode -> (RS_DUAL & ~TS_32)
*/
#define RS_DEFAULT (RS_DUAL)
#define SH_DMAC_CHAN_BASE(id) (dma_base_addr[id])
static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
{
ctrl_outl(data, (SH_DMAC_CHAN_BASE(sh_dc->id) + reg));
}
static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
{
return ctrl_inl((SH_DMAC_CHAN_BASE(sh_dc->id) + reg));
}
static void dmae_init(struct sh_dmae_chan *sh_chan)
{
u32 chcr = RS_DEFAULT; /* default is DUAL mode */
sh_dmae_writel(sh_chan, chcr, CHCR);
}
/*
* Reset DMA controller
*
* SH7780 has two DMAOR register
*/
static void sh_dmae_ctl_stop(int id)
{
unsigned short dmaor = dmaor_read_reg(id);
dmaor &= ~(DMAOR_NMIF | DMAOR_AE);
dmaor_write_reg(id, dmaor);
}
static int sh_dmae_rst(int id)
{
unsigned short dmaor;
sh_dmae_ctl_stop(id);
dmaor = (dmaor_read_reg(id)|DMAOR_INIT);
dmaor_write_reg(id, dmaor);
if ((dmaor_read_reg(id) & (DMAOR_AE | DMAOR_NMIF))) {
pr_warning(KERN_ERR "dma-sh: Can't initialize DMAOR.\n");
return -EINVAL;
}
return 0;
}
static int dmae_is_idle(struct sh_dmae_chan *sh_chan)
{
u32 chcr = sh_dmae_readl(sh_chan, CHCR);
if (chcr & CHCR_DE) {
if (!(chcr & CHCR_TE))
return -EBUSY; /* working */
}
return 0; /* waiting */
}
static inline unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan)
{
u32 chcr = sh_dmae_readl(sh_chan, CHCR);
return ts_shift[(chcr & CHCR_TS_MASK) >> CHCR_TS_SHIFT];
}
static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs hw)
{
sh_dmae_writel(sh_chan, hw.sar, SAR);
sh_dmae_writel(sh_chan, hw.dar, DAR);
sh_dmae_writel(sh_chan,
(hw.tcr >> calc_xmit_shift(sh_chan)), TCR);
}
static void dmae_start(struct sh_dmae_chan *sh_chan)
{
u32 chcr = sh_dmae_readl(sh_chan, CHCR);
chcr |= (CHCR_DE|CHCR_IE);
sh_dmae_writel(sh_chan, chcr, CHCR);
}
static void dmae_halt(struct sh_dmae_chan *sh_chan)
{
u32 chcr = sh_dmae_readl(sh_chan, CHCR);
chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
sh_dmae_writel(sh_chan, chcr, CHCR);
}
static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
{
int ret = dmae_is_idle(sh_chan);
/* When DMA was working, can not set data to CHCR */
if (ret)
return ret;
sh_dmae_writel(sh_chan, val, CHCR);
return 0;
}
#define DMARS1_ADDR 0x04
#define DMARS2_ADDR 0x08
#define DMARS_SHIFT 8
#define DMARS_CHAN_MSK 0x01
static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
{
u32 addr;
int shift = 0;
int ret = dmae_is_idle(sh_chan);
if (ret)
return ret;
if (sh_chan->id & DMARS_CHAN_MSK)
shift = DMARS_SHIFT;
switch (sh_chan->id) {
/* DMARS0 */
case 0:
case 1:
addr = SH_DMARS_BASE;
break;
/* DMARS1 */
case 2:
case 3:
addr = (SH_DMARS_BASE + DMARS1_ADDR);
break;
/* DMARS2 */
case 4:
case 5:
addr = (SH_DMARS_BASE + DMARS2_ADDR);
break;
default:
return -EINVAL;
}
ctrl_outw((val << shift) |
(ctrl_inw(addr) & (shift ? 0xFF00 : 0x00FF)),
addr);
return 0;
}
static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct sh_desc *desc = tx_to_sh_desc(tx);
struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&sh_chan->desc_lock);
cookie = sh_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
/* If desc only in the case of 1 */
if (desc->async_tx.cookie != -EBUSY)
desc->async_tx.cookie = cookie;
sh_chan->common.cookie = desc->async_tx.cookie;
list_splice_init(&desc->tx_list, sh_chan->ld_queue.prev);
spin_unlock_bh(&sh_chan->desc_lock);
return cookie;
}
static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
{
struct sh_desc *desc, *_desc, *ret = NULL;
spin_lock_bh(&sh_chan->desc_lock);
list_for_each_entry_safe(desc, _desc, &sh_chan->ld_free, node) {
if (async_tx_test_ack(&desc->async_tx)) {
list_del(&desc->node);
ret = desc;
break;
}
}
spin_unlock_bh(&sh_chan->desc_lock);
return ret;
}
static void sh_dmae_put_desc(struct sh_dmae_chan *sh_chan, struct sh_desc *desc)
{
if (desc) {
spin_lock_bh(&sh_chan->desc_lock);
list_splice_init(&desc->tx_list, &sh_chan->ld_free);
list_add(&desc->node, &sh_chan->ld_free);
spin_unlock_bh(&sh_chan->desc_lock);
}
}
static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
{
struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
struct sh_desc *desc;
spin_lock_bh(&sh_chan->desc_lock);
while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
spin_unlock_bh(&sh_chan->desc_lock);
desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
if (!desc) {
spin_lock_bh(&sh_chan->desc_lock);
break;
}
dma_async_tx_descriptor_init(&desc->async_tx,
&sh_chan->common);
desc->async_tx.tx_submit = sh_dmae_tx_submit;
desc->async_tx.flags = DMA_CTRL_ACK;
INIT_LIST_HEAD(&desc->tx_list);
sh_dmae_put_desc(sh_chan, desc);
spin_lock_bh(&sh_chan->desc_lock);
sh_chan->descs_allocated++;
}
spin_unlock_bh(&sh_chan->desc_lock);
return sh_chan->descs_allocated;
}
/*
* sh_dma_free_chan_resources - Free all resources of the channel.
*/
static void sh_dmae_free_chan_resources(struct dma_chan *chan)
{
struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
struct sh_desc *desc, *_desc;
LIST_HEAD(list);
BUG_ON(!list_empty(&sh_chan->ld_queue));
spin_lock_bh(&sh_chan->desc_lock);
list_splice_init(&sh_chan->ld_free, &list);
sh_chan->descs_allocated = 0;
spin_unlock_bh(&sh_chan->desc_lock);
list_for_each_entry_safe(desc, _desc, &list, node)
kfree(desc);
}
static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
size_t len, unsigned long flags)
{
struct sh_dmae_chan *sh_chan;
struct sh_desc *first = NULL, *prev = NULL, *new;
size_t copy_size;
if (!chan)
return NULL;
if (!len)
return NULL;
sh_chan = to_sh_chan(chan);
do {
/* Allocate the link descriptor from DMA pool */
new = sh_dmae_get_desc(sh_chan);
if (!new) {
dev_err(sh_chan->dev,
"No free memory for link descriptor\n");
goto err_get_desc;
}
copy_size = min(len, (size_t)SH_DMA_TCR_MAX);
new->hw.sar = dma_src;
new->hw.dar = dma_dest;
new->hw.tcr = copy_size;
if (!first)
first = new;
new->mark = DESC_NCOMP;
async_tx_ack(&new->async_tx);
prev = new;
len -= copy_size;
dma_src += copy_size;
dma_dest += copy_size;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
} while (len);
new->async_tx.flags = flags; /* client is in control of this ack */
new->async_tx.cookie = -EBUSY; /* Last desc */
return &first->async_tx;
err_get_desc:
sh_dmae_put_desc(sh_chan, first);
return NULL;
}
/*
* sh_chan_ld_cleanup - Clean up link descriptors
*
* This function clean up the ld_queue of DMA channel.
*/
static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan)
{
struct sh_desc *desc, *_desc;
spin_lock_bh(&sh_chan->desc_lock);
list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
dma_async_tx_callback callback;
void *callback_param;
/* non send data */
if (desc->mark == DESC_NCOMP)
break;
/* send data sesc */
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
/* Remove from ld_queue list */
list_splice_init(&desc->tx_list, &sh_chan->ld_free);
dev_dbg(sh_chan->dev, "link descriptor %p will be recycle.\n",
desc);
list_move(&desc->node, &sh_chan->ld_free);
/* Run the link descriptor callback function */
if (callback) {
spin_unlock_bh(&sh_chan->desc_lock);
dev_dbg(sh_chan->dev, "link descriptor %p callback\n",
desc);
callback(callback_param);
spin_lock_bh(&sh_chan->desc_lock);
}
}
spin_unlock_bh(&sh_chan->desc_lock);
}
static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
{
struct list_head *ld_node;
struct sh_dmae_regs hw;
/* DMA work check */
if (dmae_is_idle(sh_chan))
return;
/* Find the first un-transfer desciptor */
for (ld_node = sh_chan->ld_queue.next;
(ld_node != &sh_chan->ld_queue)
&& (to_sh_desc(ld_node)->mark == DESC_COMP);
ld_node = ld_node->next)
cpu_relax();
if (ld_node != &sh_chan->ld_queue) {
/* Get the ld start address from ld_queue */
hw = to_sh_desc(ld_node)->hw;
dmae_set_reg(sh_chan, hw);
dmae_start(sh_chan);
}
}
static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
{
struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
sh_chan_xfer_ld_queue(sh_chan);
}
static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
sh_dmae_chan_ld_cleanup(sh_chan);
last_used = chan->cookie;
last_complete = sh_chan->completed_cookie;
if (last_complete == -EBUSY)
last_complete = last_used;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static irqreturn_t sh_dmae_interrupt(int irq, void *data)
{
irqreturn_t ret = IRQ_NONE;
struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
u32 chcr = sh_dmae_readl(sh_chan, CHCR);
if (chcr & CHCR_TE) {
/* DMA stop */
dmae_halt(sh_chan);
ret = IRQ_HANDLED;
tasklet_schedule(&sh_chan->tasklet);
}
return ret;
}
#if defined(CONFIG_CPU_SH4)
static irqreturn_t sh_dmae_err(int irq, void *data)
{
int err = 0;
struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
/* IRQ Multi */
if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
int cnt = 0;
switch (irq) {
#if defined(DMTE6_IRQ) && defined(DMAE1_IRQ)
case DMTE6_IRQ:
cnt++;
#endif
case DMTE0_IRQ:
if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) {
disable_irq(irq);
return IRQ_HANDLED;
}
default:
return IRQ_NONE;
}
} else {
/* reset dma controller */
err = sh_dmae_rst(0);
if (err)
return err;
if (shdev->pdata.mode & SHDMA_DMAOR1) {
err = sh_dmae_rst(1);
if (err)
return err;
}
disable_irq(irq);
return IRQ_HANDLED;
}
}
#endif
static void dmae_do_tasklet(unsigned long data)
{
struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
struct sh_desc *desc, *_desc, *cur_desc = NULL;
u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
list_for_each_entry_safe(desc, _desc,
&sh_chan->ld_queue, node) {
if ((desc->hw.sar + desc->hw.tcr) == sar_buf) {
cur_desc = desc;
break;
}
}
if (cur_desc) {
switch (cur_desc->async_tx.cookie) {
case 0: /* other desc data */
break;
case -EBUSY: /* last desc */
sh_chan->completed_cookie =
cur_desc->async_tx.cookie;
break;
default: /* first desc ( 0 < )*/
sh_chan->completed_cookie =
cur_desc->async_tx.cookie - 1;
break;
}
cur_desc->mark = DESC_COMP;
}
/* Next desc */
sh_chan_xfer_ld_queue(sh_chan);
sh_dmae_chan_ld_cleanup(sh_chan);
}
static unsigned int get_dmae_irq(unsigned int id)
{
unsigned int irq = 0;
if (id < ARRAY_SIZE(dmte_irq_map))
irq = dmte_irq_map[id];
return irq;
}
static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id)
{
int err;
unsigned int irq = get_dmae_irq(id);
unsigned long irqflags = IRQF_DISABLED;
struct sh_dmae_chan *new_sh_chan;
/* alloc channel */
new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
if (!new_sh_chan) {
dev_err(shdev->common.dev, "No free memory for allocating "
"dma channels!\n");
return -ENOMEM;
}
new_sh_chan->dev = shdev->common.dev;
new_sh_chan->id = id;
/* Init DMA tasklet */
tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
(unsigned long)new_sh_chan);
/* Init the channel */
dmae_init(new_sh_chan);
spin_lock_init(&new_sh_chan->desc_lock);
/* Init descripter manage list */
INIT_LIST_HEAD(&new_sh_chan->ld_queue);
INIT_LIST_HEAD(&new_sh_chan->ld_free);
/* copy struct dma_device */
new_sh_chan->common.device = &shdev->common;
/* Add the channel to DMA device channel list */
list_add_tail(&new_sh_chan->common.device_node,
&shdev->common.channels);
shdev->common.chancnt++;
if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
irqflags = IRQF_SHARED;
#if defined(DMTE6_IRQ)
if (irq >= DMTE6_IRQ)
irq = DMTE6_IRQ;
else
#endif
irq = DMTE0_IRQ;
}
snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
"sh-dmae%d", new_sh_chan->id);
/* set up channel irq */
err = request_irq(irq, &sh_dmae_interrupt,
irqflags, new_sh_chan->dev_id, new_sh_chan);
if (err) {
dev_err(shdev->common.dev, "DMA channel %d request_irq error "
"with return %d\n", id, err);
goto err_no_irq;
}
/* CHCR register control function */
new_sh_chan->set_chcr = dmae_set_chcr;
/* DMARS register control function */
new_sh_chan->set_dmars = dmae_set_dmars;
shdev->chan[id] = new_sh_chan;
return 0;
err_no_irq:
/* remove from dmaengine device node */
list_del(&new_sh_chan->common.device_node);
kfree(new_sh_chan);
return err;
}
static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
{
int i;
for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
if (shdev->chan[i]) {
struct sh_dmae_chan *shchan = shdev->chan[i];
if (!(shdev->pdata.mode & SHDMA_MIX_IRQ))
free_irq(dmte_irq_map[i], shchan);
list_del(&shchan->common.device_node);
kfree(shchan);
shdev->chan[i] = NULL;
}
}
shdev->common.chancnt = 0;
}
static int __init sh_dmae_probe(struct platform_device *pdev)
{
int err = 0, cnt, ecnt;
unsigned long irqflags = IRQF_DISABLED;
#if defined(CONFIG_CPU_SH4)
int eirq[] = { DMAE0_IRQ,
#if defined(DMAE1_IRQ)
DMAE1_IRQ
#endif
};
#endif
struct sh_dmae_device *shdev;
/* get platform data */
if (!pdev->dev.platform_data)
return -ENODEV;
shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
if (!shdev) {
dev_err(&pdev->dev, "No enough memory\n");
return -ENOMEM;
}
/* platform data */
memcpy(&shdev->pdata, pdev->dev.platform_data,
sizeof(struct sh_dmae_pdata));
/* reset dma controller */
err = sh_dmae_rst(0);
if (err)
goto rst_err;
/* SH7780/85/23 has DMAOR1 */
if (shdev->pdata.mode & SHDMA_DMAOR1) {
err = sh_dmae_rst(1);
if (err)
goto rst_err;
}
INIT_LIST_HEAD(&shdev->common.channels);
dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
shdev->common.device_alloc_chan_resources
= sh_dmae_alloc_chan_resources;
shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
shdev->common.device_is_tx_complete = sh_dmae_is_complete;
shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
shdev->common.dev = &pdev->dev;
#if defined(CONFIG_CPU_SH4)
/* Non Mix IRQ mode SH7722/SH7730 etc... */
if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
irqflags = IRQF_SHARED;
eirq[0] = DMTE0_IRQ;
#if defined(DMTE6_IRQ) && defined(DMAE1_IRQ)
eirq[1] = DMTE6_IRQ;
#endif
}
for (ecnt = 0 ; ecnt < ARRAY_SIZE(eirq); ecnt++) {
err = request_irq(eirq[ecnt], sh_dmae_err,
irqflags, "DMAC Address Error", shdev);
if (err) {
dev_err(&pdev->dev, "DMA device request_irq"
"error (irq %d) with return %d\n",
eirq[ecnt], err);
goto eirq_err;
}
}
#endif /* CONFIG_CPU_SH4 */
/* Create DMA Channel */
for (cnt = 0 ; cnt < MAX_DMA_CHANNELS ; cnt++) {
err = sh_dmae_chan_probe(shdev, cnt);
if (err)
goto chan_probe_err;
}
platform_set_drvdata(pdev, shdev);
dma_async_device_register(&shdev->common);
return err;
chan_probe_err:
sh_dmae_chan_remove(shdev);
eirq_err:
for (ecnt-- ; ecnt >= 0; ecnt--)
free_irq(eirq[ecnt], shdev);
rst_err:
kfree(shdev);
return err;
}
static int __exit sh_dmae_remove(struct platform_device *pdev)
{
struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
dma_async_device_unregister(&shdev->common);
if (shdev->pdata.mode & SHDMA_MIX_IRQ) {
free_irq(DMTE0_IRQ, shdev);
#if defined(DMTE6_IRQ)
free_irq(DMTE6_IRQ, shdev);
#endif
}
/* channel data remove */
sh_dmae_chan_remove(shdev);
if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) {
free_irq(DMAE0_IRQ, shdev);
#if defined(DMAE1_IRQ)
free_irq(DMAE1_IRQ, shdev);
#endif
}
kfree(shdev);
return 0;
}
static void sh_dmae_shutdown(struct platform_device *pdev)
{
struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
sh_dmae_ctl_stop(0);
if (shdev->pdata.mode & SHDMA_DMAOR1)
sh_dmae_ctl_stop(1);
}
static struct platform_driver sh_dmae_driver = {
.remove = __exit_p(sh_dmae_remove),
.shutdown = sh_dmae_shutdown,
.driver = {
.name = "sh-dma-engine",
},
};
static int __init sh_dmae_init(void)
{
return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
}
module_init(sh_dmae_init);
static void __exit sh_dmae_exit(void)
{
platform_driver_unregister(&sh_dmae_driver);
}
module_exit(sh_dmae_exit);
MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
MODULE_LICENSE("GPL");