2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/lib/idr.c
Matthew Wilcox (Oracle) 5a74ac4c4a idr: Fix idr_get_next_ul race with idr_remove
Commit 5c089fd0c7 ("idr: Fix idr_get_next race with idr_remove")
neglected to fix idr_get_next_ul().  As far as I can tell, nobody's
actually using this interface under the RCU read lock, but fix it now
before anybody decides to use it.

Fixes: 5c089fd0c7 ("idr: Fix idr_get_next race with idr_remove")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2019-11-01 22:26:34 -04:00

595 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/xarray.h>
/**
* idr_alloc_u32() - Allocate an ID.
* @idr: IDR handle.
* @ptr: Pointer to be associated with the new ID.
* @nextid: Pointer to an ID.
* @max: The maximum ID to allocate (inclusive).
* @gfp: Memory allocation flags.
*
* Allocates an unused ID in the range specified by @nextid and @max.
* Note that @max is inclusive whereas the @end parameter to idr_alloc()
* is exclusive. The new ID is assigned to @nextid before the pointer
* is inserted into the IDR, so if @nextid points into the object pointed
* to by @ptr, a concurrent lookup will not find an uninitialised ID.
*
* The caller should provide their own locking to ensure that two
* concurrent modifications to the IDR are not possible. Read-only
* accesses to the IDR may be done under the RCU read lock or may
* exclude simultaneous writers.
*
* Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
* or -ENOSPC if no free IDs could be found. If an error occurred,
* @nextid is unchanged.
*/
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
unsigned long max, gfp_t gfp)
{
struct radix_tree_iter iter;
void __rcu **slot;
unsigned int base = idr->idr_base;
unsigned int id = *nextid;
if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
idr->idr_rt.xa_flags |= IDR_RT_MARKER;
id = (id < base) ? 0 : id - base;
radix_tree_iter_init(&iter, id);
slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
if (IS_ERR(slot))
return PTR_ERR(slot);
*nextid = iter.index + base;
/* there is a memory barrier inside radix_tree_iter_replace() */
radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
return 0;
}
EXPORT_SYMBOL_GPL(idr_alloc_u32);
/**
* idr_alloc() - Allocate an ID.
* @idr: IDR handle.
* @ptr: Pointer to be associated with the new ID.
* @start: The minimum ID (inclusive).
* @end: The maximum ID (exclusive).
* @gfp: Memory allocation flags.
*
* Allocates an unused ID in the range specified by @start and @end. If
* @end is <= 0, it is treated as one larger than %INT_MAX. This allows
* callers to use @start + N as @end as long as N is within integer range.
*
* The caller should provide their own locking to ensure that two
* concurrent modifications to the IDR are not possible. Read-only
* accesses to the IDR may be done under the RCU read lock or may
* exclude simultaneous writers.
*
* Return: The newly allocated ID, -ENOMEM if memory allocation failed,
* or -ENOSPC if no free IDs could be found.
*/
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
u32 id = start;
int ret;
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
if (ret)
return ret;
return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);
/**
* idr_alloc_cyclic() - Allocate an ID cyclically.
* @idr: IDR handle.
* @ptr: Pointer to be associated with the new ID.
* @start: The minimum ID (inclusive).
* @end: The maximum ID (exclusive).
* @gfp: Memory allocation flags.
*
* Allocates an unused ID in the range specified by @nextid and @end. If
* @end is <= 0, it is treated as one larger than %INT_MAX. This allows
* callers to use @start + N as @end as long as N is within integer range.
* The search for an unused ID will start at the last ID allocated and will
* wrap around to @start if no free IDs are found before reaching @end.
*
* The caller should provide their own locking to ensure that two
* concurrent modifications to the IDR are not possible. Read-only
* accesses to the IDR may be done under the RCU read lock or may
* exclude simultaneous writers.
*
* Return: The newly allocated ID, -ENOMEM if memory allocation failed,
* or -ENOSPC if no free IDs could be found.
*/
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
u32 id = idr->idr_next;
int err, max = end > 0 ? end - 1 : INT_MAX;
if ((int)id < start)
id = start;
err = idr_alloc_u32(idr, ptr, &id, max, gfp);
if ((err == -ENOSPC) && (id > start)) {
id = start;
err = idr_alloc_u32(idr, ptr, &id, max, gfp);
}
if (err)
return err;
idr->idr_next = id + 1;
return id;
}
EXPORT_SYMBOL(idr_alloc_cyclic);
/**
* idr_remove() - Remove an ID from the IDR.
* @idr: IDR handle.
* @id: Pointer ID.
*
* Removes this ID from the IDR. If the ID was not previously in the IDR,
* this function returns %NULL.
*
* Since this function modifies the IDR, the caller should provide their
* own locking to ensure that concurrent modification of the same IDR is
* not possible.
*
* Return: The pointer formerly associated with this ID.
*/
void *idr_remove(struct idr *idr, unsigned long id)
{
return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
}
EXPORT_SYMBOL_GPL(idr_remove);
/**
* idr_find() - Return pointer for given ID.
* @idr: IDR handle.
* @id: Pointer ID.
*
* Looks up the pointer associated with this ID. A %NULL pointer may
* indicate that @id is not allocated or that the %NULL pointer was
* associated with this ID.
*
* This function can be called under rcu_read_lock(), given that the leaf
* pointers lifetimes are correctly managed.
*
* Return: The pointer associated with this ID.
*/
void *idr_find(const struct idr *idr, unsigned long id)
{
return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
}
EXPORT_SYMBOL_GPL(idr_find);
/**
* idr_for_each() - Iterate through all stored pointers.
* @idr: IDR handle.
* @fn: Function to be called for each pointer.
* @data: Data passed to callback function.
*
* The callback function will be called for each entry in @idr, passing
* the ID, the entry and @data.
*
* If @fn returns anything other than %0, the iteration stops and that
* value is returned from this function.
*
* idr_for_each() can be called concurrently with idr_alloc() and
* idr_remove() if protected by RCU. Newly added entries may not be
* seen and deleted entries may be seen, but adding and removing entries
* will not cause other entries to be skipped, nor spurious ones to be seen.
*/
int idr_for_each(const struct idr *idr,
int (*fn)(int id, void *p, void *data), void *data)
{
struct radix_tree_iter iter;
void __rcu **slot;
int base = idr->idr_base;
radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
int ret;
unsigned long id = iter.index + base;
if (WARN_ON_ONCE(id > INT_MAX))
break;
ret = fn(id, rcu_dereference_raw(*slot), data);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(idr_for_each);
/**
* idr_get_next_ul() - Find next populated entry.
* @idr: IDR handle.
* @nextid: Pointer to an ID.
*
* Returns the next populated entry in the tree with an ID greater than
* or equal to the value pointed to by @nextid. On exit, @nextid is updated
* to the ID of the found value. To use in a loop, the value pointed to by
* nextid must be incremented by the user.
*/
void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
{
struct radix_tree_iter iter;
void __rcu **slot;
void *entry = NULL;
unsigned long base = idr->idr_base;
unsigned long id = *nextid;
id = (id < base) ? 0 : id - base;
radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
entry = rcu_dereference_raw(*slot);
if (!entry)
continue;
if (!xa_is_internal(entry))
break;
if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
break;
slot = radix_tree_iter_retry(&iter);
}
if (!slot)
return NULL;
*nextid = iter.index + base;
return entry;
}
EXPORT_SYMBOL(idr_get_next_ul);
/**
* idr_get_next() - Find next populated entry.
* @idr: IDR handle.
* @nextid: Pointer to an ID.
*
* Returns the next populated entry in the tree with an ID greater than
* or equal to the value pointed to by @nextid. On exit, @nextid is updated
* to the ID of the found value. To use in a loop, the value pointed to by
* nextid must be incremented by the user.
*/
void *idr_get_next(struct idr *idr, int *nextid)
{
unsigned long id = *nextid;
void *entry = idr_get_next_ul(idr, &id);
if (WARN_ON_ONCE(id > INT_MAX))
return NULL;
*nextid = id;
return entry;
}
EXPORT_SYMBOL(idr_get_next);
/**
* idr_replace() - replace pointer for given ID.
* @idr: IDR handle.
* @ptr: New pointer to associate with the ID.
* @id: ID to change.
*
* Replace the pointer registered with an ID and return the old value.
* This function can be called under the RCU read lock concurrently with
* idr_alloc() and idr_remove() (as long as the ID being removed is not
* the one being replaced!).
*
* Returns: the old value on success. %-ENOENT indicates that @id was not
* found. %-EINVAL indicates that @ptr was not valid.
*/
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
{
struct radix_tree_node *node;
void __rcu **slot = NULL;
void *entry;
id -= idr->idr_base;
entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
return ERR_PTR(-ENOENT);
__radix_tree_replace(&idr->idr_rt, node, slot, ptr);
return entry;
}
EXPORT_SYMBOL(idr_replace);
/**
* DOC: IDA description
*
* The IDA is an ID allocator which does not provide the ability to
* associate an ID with a pointer. As such, it only needs to store one
* bit per ID, and so is more space efficient than an IDR. To use an IDA,
* define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
* then initialise it using ida_init()). To allocate a new ID, call
* ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
* To free an ID, call ida_free().
*
* ida_destroy() can be used to dispose of an IDA without needing to
* free the individual IDs in it. You can use ida_is_empty() to find
* out whether the IDA has any IDs currently allocated.
*
* The IDA handles its own locking. It is safe to call any of the IDA
* functions without synchronisation in your code.
*
* IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
* limitation, it should be quite straightforward to raise the maximum.
*/
/*
* Developer's notes:
*
* The IDA uses the functionality provided by the XArray to store bitmaps in
* each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
* have been set.
*
* I considered telling the XArray that each slot is an order-10 node
* and indexing by bit number, but the XArray can't allow a single multi-index
* entry in the head, which would significantly increase memory consumption
* for the IDA. So instead we divide the index by the number of bits in the
* leaf bitmap before doing a radix tree lookup.
*
* As an optimisation, if there are only a few low bits set in any given
* leaf, instead of allocating a 128-byte bitmap, we store the bits
* as a value entry. Value entries never have the XA_FREE_MARK cleared
* because we can always convert them into a bitmap entry.
*
* It would be possible to optimise further; once we've run out of a
* single 128-byte bitmap, we currently switch to a 576-byte node, put
* the 128-byte bitmap in the first entry and then start allocating extra
* 128-byte entries. We could instead use the 512 bytes of the node's
* data as a bitmap before moving to that scheme. I do not believe this
* is a worthwhile optimisation; Rasmus Villemoes surveyed the current
* users of the IDA and almost none of them use more than 1024 entries.
* Those that do use more than the 8192 IDs that the 512 bytes would
* provide.
*
* The IDA always uses a lock to alloc/free. If we add a 'test_bit'
* equivalent, it will still need locking. Going to RCU lookup would require
* using RCU to free bitmaps, and that's not trivial without embedding an
* RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
* bitmap, which is excessive.
*/
/**
* ida_alloc_range() - Allocate an unused ID.
* @ida: IDA handle.
* @min: Lowest ID to allocate.
* @max: Highest ID to allocate.
* @gfp: Memory allocation flags.
*
* Allocate an ID between @min and @max, inclusive. The allocated ID will
* not exceed %INT_MAX, even if @max is larger.
*
* Context: Any context.
* Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
* or %-ENOSPC if there are no free IDs.
*/
int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
gfp_t gfp)
{
XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
unsigned bit = min % IDA_BITMAP_BITS;
unsigned long flags;
struct ida_bitmap *bitmap, *alloc = NULL;
if ((int)min < 0)
return -ENOSPC;
if ((int)max < 0)
max = INT_MAX;
retry:
xas_lock_irqsave(&xas, flags);
next:
bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
if (xas.xa_index > min / IDA_BITMAP_BITS)
bit = 0;
if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
goto nospc;
if (xa_is_value(bitmap)) {
unsigned long tmp = xa_to_value(bitmap);
if (bit < BITS_PER_XA_VALUE) {
bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
goto nospc;
if (bit < BITS_PER_XA_VALUE) {
tmp |= 1UL << bit;
xas_store(&xas, xa_mk_value(tmp));
goto out;
}
}
bitmap = alloc;
if (!bitmap)
bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
if (!bitmap)
goto alloc;
bitmap->bitmap[0] = tmp;
xas_store(&xas, bitmap);
if (xas_error(&xas)) {
bitmap->bitmap[0] = 0;
goto out;
}
}
if (bitmap) {
bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
goto nospc;
if (bit == IDA_BITMAP_BITS)
goto next;
__set_bit(bit, bitmap->bitmap);
if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
xas_clear_mark(&xas, XA_FREE_MARK);
} else {
if (bit < BITS_PER_XA_VALUE) {
bitmap = xa_mk_value(1UL << bit);
} else {
bitmap = alloc;
if (!bitmap)
bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
if (!bitmap)
goto alloc;
__set_bit(bit, bitmap->bitmap);
}
xas_store(&xas, bitmap);
}
out:
xas_unlock_irqrestore(&xas, flags);
if (xas_nomem(&xas, gfp)) {
xas.xa_index = min / IDA_BITMAP_BITS;
bit = min % IDA_BITMAP_BITS;
goto retry;
}
if (bitmap != alloc)
kfree(alloc);
if (xas_error(&xas))
return xas_error(&xas);
return xas.xa_index * IDA_BITMAP_BITS + bit;
alloc:
xas_unlock_irqrestore(&xas, flags);
alloc = kzalloc(sizeof(*bitmap), gfp);
if (!alloc)
return -ENOMEM;
xas_set(&xas, min / IDA_BITMAP_BITS);
bit = min % IDA_BITMAP_BITS;
goto retry;
nospc:
xas_unlock_irqrestore(&xas, flags);
return -ENOSPC;
}
EXPORT_SYMBOL(ida_alloc_range);
/**
* ida_free() - Release an allocated ID.
* @ida: IDA handle.
* @id: Previously allocated ID.
*
* Context: Any context.
*/
void ida_free(struct ida *ida, unsigned int id)
{
XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
unsigned bit = id % IDA_BITMAP_BITS;
struct ida_bitmap *bitmap;
unsigned long flags;
BUG_ON((int)id < 0);
xas_lock_irqsave(&xas, flags);
bitmap = xas_load(&xas);
if (xa_is_value(bitmap)) {
unsigned long v = xa_to_value(bitmap);
if (bit >= BITS_PER_XA_VALUE)
goto err;
if (!(v & (1UL << bit)))
goto err;
v &= ~(1UL << bit);
if (!v)
goto delete;
xas_store(&xas, xa_mk_value(v));
} else {
if (!test_bit(bit, bitmap->bitmap))
goto err;
__clear_bit(bit, bitmap->bitmap);
xas_set_mark(&xas, XA_FREE_MARK);
if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
kfree(bitmap);
delete:
xas_store(&xas, NULL);
}
}
xas_unlock_irqrestore(&xas, flags);
return;
err:
xas_unlock_irqrestore(&xas, flags);
WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
}
EXPORT_SYMBOL(ida_free);
/**
* ida_destroy() - Free all IDs.
* @ida: IDA handle.
*
* Calling this function frees all IDs and releases all resources used
* by an IDA. When this call returns, the IDA is empty and can be reused
* or freed. If the IDA is already empty, there is no need to call this
* function.
*
* Context: Any context.
*/
void ida_destroy(struct ida *ida)
{
XA_STATE(xas, &ida->xa, 0);
struct ida_bitmap *bitmap;
unsigned long flags;
xas_lock_irqsave(&xas, flags);
xas_for_each(&xas, bitmap, ULONG_MAX) {
if (!xa_is_value(bitmap))
kfree(bitmap);
xas_store(&xas, NULL);
}
xas_unlock_irqrestore(&xas, flags);
}
EXPORT_SYMBOL(ida_destroy);
#ifndef __KERNEL__
extern void xa_dump_index(unsigned long index, unsigned int shift);
#define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
static void ida_dump_entry(void *entry, unsigned long index)
{
unsigned long i;
if (!entry)
return;
if (xa_is_node(entry)) {
struct xa_node *node = xa_to_node(entry);
unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
XA_CHUNK_SHIFT;
xa_dump_index(index * IDA_BITMAP_BITS, shift);
xa_dump_node(node);
for (i = 0; i < XA_CHUNK_SIZE; i++)
ida_dump_entry(node->slots[i],
index | (i << node->shift));
} else if (xa_is_value(entry)) {
xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
} else {
struct ida_bitmap *bitmap = entry;
xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
pr_cont("bitmap: %p data", bitmap);
for (i = 0; i < IDA_BITMAP_LONGS; i++)
pr_cont(" %lx", bitmap->bitmap[i]);
pr_cont("\n");
}
}
static void ida_dump(struct ida *ida)
{
struct xarray *xa = &ida->xa;
pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
xa->xa_flags >> ROOT_TAG_SHIFT);
ida_dump_entry(xa->xa_head, 0);
}
#endif