mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 11:43:54 +08:00
1fcbe027b5
This functionality was stubbed out until recently. Now we support our normal backtracing API on TILE-Gx as well as on TILE64/TILEPro. This change includes a tweak to the instruction encoding caused by adding addxli for compat mode. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
683 lines
17 KiB
C
683 lines
17 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/backtrace.h>
|
|
|
|
#include <arch/chip.h>
|
|
|
|
#include <asm/opcode-tile.h>
|
|
|
|
|
|
#define TREG_SP 54
|
|
#define TREG_LR 55
|
|
|
|
|
|
#if TILE_CHIP >= 10
|
|
#define tile_bundle_bits tilegx_bundle_bits
|
|
#define TILE_MAX_INSTRUCTIONS_PER_BUNDLE TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE
|
|
#define TILE_BUNDLE_ALIGNMENT_IN_BYTES TILEGX_BUNDLE_ALIGNMENT_IN_BYTES
|
|
#define tile_decoded_instruction tilegx_decoded_instruction
|
|
#define tile_mnemonic tilegx_mnemonic
|
|
#define parse_insn_tile parse_insn_tilegx
|
|
#define TILE_OPC_IRET TILEGX_OPC_IRET
|
|
#define TILE_OPC_ADDI TILEGX_OPC_ADDI
|
|
#define TILE_OPC_ADDLI TILEGX_OPC_ADDLI
|
|
#define TILE_OPC_INFO TILEGX_OPC_INFO
|
|
#define TILE_OPC_INFOL TILEGX_OPC_INFOL
|
|
#define TILE_OPC_JRP TILEGX_OPC_JRP
|
|
#define TILE_OPC_MOVE TILEGX_OPC_MOVE
|
|
#define OPCODE_STORE TILEGX_OPC_ST
|
|
typedef long long bt_int_reg_t;
|
|
#else
|
|
#define OPCODE_STORE TILE_OPC_SW
|
|
typedef int bt_int_reg_t;
|
|
#endif
|
|
|
|
/** A decoded bundle used for backtracer analysis. */
|
|
struct BacktraceBundle {
|
|
tile_bundle_bits bits;
|
|
int num_insns;
|
|
struct tile_decoded_instruction
|
|
insns[TILE_MAX_INSTRUCTIONS_PER_BUNDLE];
|
|
};
|
|
|
|
|
|
/* This implementation only makes sense for native tools. */
|
|
/** Default function to read memory. */
|
|
static bool bt_read_memory(void *result, VirtualAddress addr,
|
|
unsigned int size, void *extra)
|
|
{
|
|
/* FIXME: this should do some horrible signal stuff to catch
|
|
* SEGV cleanly and fail.
|
|
*
|
|
* Or else the caller should do the setjmp for efficiency.
|
|
*/
|
|
|
|
memcpy(result, (const void *)addr, size);
|
|
return true;
|
|
}
|
|
|
|
|
|
/** Locates an instruction inside the given bundle that
|
|
* has the specified mnemonic, and whose first 'num_operands_to_match'
|
|
* operands exactly match those in 'operand_values'.
|
|
*/
|
|
static const struct tile_decoded_instruction *find_matching_insn(
|
|
const struct BacktraceBundle *bundle,
|
|
tile_mnemonic mnemonic,
|
|
const int *operand_values,
|
|
int num_operands_to_match)
|
|
{
|
|
int i, j;
|
|
bool match;
|
|
|
|
for (i = 0; i < bundle->num_insns; i++) {
|
|
const struct tile_decoded_instruction *insn =
|
|
&bundle->insns[i];
|
|
|
|
if (insn->opcode->mnemonic != mnemonic)
|
|
continue;
|
|
|
|
match = true;
|
|
for (j = 0; j < num_operands_to_match; j++) {
|
|
if (operand_values[j] != insn->operand_values[j]) {
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (match)
|
|
return insn;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/** Does this bundle contain an 'iret' instruction? */
|
|
static inline bool bt_has_iret(const struct BacktraceBundle *bundle)
|
|
{
|
|
return find_matching_insn(bundle, TILE_OPC_IRET, NULL, 0) != NULL;
|
|
}
|
|
|
|
/** Does this bundle contain an 'addi sp, sp, OFFSET' or
|
|
* 'addli sp, sp, OFFSET' instruction, and if so, what is OFFSET?
|
|
*/
|
|
static bool bt_has_addi_sp(const struct BacktraceBundle *bundle, int *adjust)
|
|
{
|
|
static const int vals[2] = { TREG_SP, TREG_SP };
|
|
|
|
const struct tile_decoded_instruction *insn =
|
|
find_matching_insn(bundle, TILE_OPC_ADDI, vals, 2);
|
|
if (insn == NULL)
|
|
insn = find_matching_insn(bundle, TILE_OPC_ADDLI, vals, 2);
|
|
#if TILE_CHIP >= 10
|
|
if (insn == NULL)
|
|
insn = find_matching_insn(bundle, TILEGX_OPC_ADDXLI, vals, 2);
|
|
if (insn == NULL)
|
|
insn = find_matching_insn(bundle, TILEGX_OPC_ADDXI, vals, 2);
|
|
#endif
|
|
if (insn == NULL)
|
|
return false;
|
|
|
|
*adjust = insn->operand_values[2];
|
|
return true;
|
|
}
|
|
|
|
/** Does this bundle contain any 'info OP' or 'infol OP'
|
|
* instruction, and if so, what are their OP? Note that OP is interpreted
|
|
* as an unsigned value by this code since that's what the caller wants.
|
|
* Returns the number of info ops found.
|
|
*/
|
|
static int bt_get_info_ops(const struct BacktraceBundle *bundle,
|
|
int operands[MAX_INFO_OPS_PER_BUNDLE])
|
|
{
|
|
int num_ops = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < bundle->num_insns; i++) {
|
|
const struct tile_decoded_instruction *insn =
|
|
&bundle->insns[i];
|
|
|
|
if (insn->opcode->mnemonic == TILE_OPC_INFO ||
|
|
insn->opcode->mnemonic == TILE_OPC_INFOL) {
|
|
operands[num_ops++] = insn->operand_values[0];
|
|
}
|
|
}
|
|
|
|
return num_ops;
|
|
}
|
|
|
|
/** Does this bundle contain a jrp instruction, and if so, to which
|
|
* register is it jumping?
|
|
*/
|
|
static bool bt_has_jrp(const struct BacktraceBundle *bundle, int *target_reg)
|
|
{
|
|
const struct tile_decoded_instruction *insn =
|
|
find_matching_insn(bundle, TILE_OPC_JRP, NULL, 0);
|
|
if (insn == NULL)
|
|
return false;
|
|
|
|
*target_reg = insn->operand_values[0];
|
|
return true;
|
|
}
|
|
|
|
/** Does this bundle modify the specified register in any way? */
|
|
static bool bt_modifies_reg(const struct BacktraceBundle *bundle, int reg)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < bundle->num_insns; i++) {
|
|
const struct tile_decoded_instruction *insn =
|
|
&bundle->insns[i];
|
|
|
|
if (insn->opcode->implicitly_written_register == reg)
|
|
return true;
|
|
|
|
for (j = 0; j < insn->opcode->num_operands; j++)
|
|
if (insn->operands[j]->is_dest_reg &&
|
|
insn->operand_values[j] == reg)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/** Does this bundle modify sp? */
|
|
static inline bool bt_modifies_sp(const struct BacktraceBundle *bundle)
|
|
{
|
|
return bt_modifies_reg(bundle, TREG_SP);
|
|
}
|
|
|
|
/** Does this bundle modify lr? */
|
|
static inline bool bt_modifies_lr(const struct BacktraceBundle *bundle)
|
|
{
|
|
return bt_modifies_reg(bundle, TREG_LR);
|
|
}
|
|
|
|
/** Does this bundle contain the instruction 'move fp, sp'? */
|
|
static inline bool bt_has_move_r52_sp(const struct BacktraceBundle *bundle)
|
|
{
|
|
static const int vals[2] = { 52, TREG_SP };
|
|
return find_matching_insn(bundle, TILE_OPC_MOVE, vals, 2) != NULL;
|
|
}
|
|
|
|
/** Does this bundle contain a store of lr to sp? */
|
|
static inline bool bt_has_sw_sp_lr(const struct BacktraceBundle *bundle)
|
|
{
|
|
static const int vals[2] = { TREG_SP, TREG_LR };
|
|
return find_matching_insn(bundle, OPCODE_STORE, vals, 2) != NULL;
|
|
}
|
|
|
|
#if TILE_CHIP >= 10
|
|
/** Track moveli values placed into registers. */
|
|
static inline void bt_update_moveli(const struct BacktraceBundle *bundle,
|
|
int moveli_args[])
|
|
{
|
|
int i;
|
|
for (i = 0; i < bundle->num_insns; i++) {
|
|
const struct tile_decoded_instruction *insn =
|
|
&bundle->insns[i];
|
|
|
|
if (insn->opcode->mnemonic == TILEGX_OPC_MOVELI) {
|
|
int reg = insn->operand_values[0];
|
|
moveli_args[reg] = insn->operand_values[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Does this bundle contain an 'add sp, sp, reg' instruction
|
|
* from a register that we saw a moveli into, and if so, what
|
|
* is the value in the register?
|
|
*/
|
|
static bool bt_has_add_sp(const struct BacktraceBundle *bundle, int *adjust,
|
|
int moveli_args[])
|
|
{
|
|
static const int vals[2] = { TREG_SP, TREG_SP };
|
|
|
|
const struct tile_decoded_instruction *insn =
|
|
find_matching_insn(bundle, TILEGX_OPC_ADDX, vals, 2);
|
|
if (insn) {
|
|
int reg = insn->operand_values[2];
|
|
if (moveli_args[reg]) {
|
|
*adjust = moveli_args[reg];
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/** Locates the caller's PC and SP for a program starting at the
|
|
* given address.
|
|
*/
|
|
static void find_caller_pc_and_caller_sp(CallerLocation *location,
|
|
const VirtualAddress start_pc,
|
|
BacktraceMemoryReader read_memory_func,
|
|
void *read_memory_func_extra)
|
|
{
|
|
/* Have we explicitly decided what the sp is,
|
|
* rather than just the default?
|
|
*/
|
|
bool sp_determined = false;
|
|
|
|
/* Has any bundle seen so far modified lr? */
|
|
bool lr_modified = false;
|
|
|
|
/* Have we seen a move from sp to fp? */
|
|
bool sp_moved_to_r52 = false;
|
|
|
|
/* Have we seen a terminating bundle? */
|
|
bool seen_terminating_bundle = false;
|
|
|
|
/* Cut down on round-trip reading overhead by reading several
|
|
* bundles at a time.
|
|
*/
|
|
tile_bundle_bits prefetched_bundles[32];
|
|
int num_bundles_prefetched = 0;
|
|
int next_bundle = 0;
|
|
VirtualAddress pc;
|
|
|
|
#if TILE_CHIP >= 10
|
|
/* Naively try to track moveli values to support addx for -m32. */
|
|
int moveli_args[TILEGX_NUM_REGISTERS] = { 0 };
|
|
#endif
|
|
|
|
/* Default to assuming that the caller's sp is the current sp.
|
|
* This is necessary to handle the case where we start backtracing
|
|
* right at the end of the epilog.
|
|
*/
|
|
location->sp_location = SP_LOC_OFFSET;
|
|
location->sp_offset = 0;
|
|
|
|
/* Default to having no idea where the caller PC is. */
|
|
location->pc_location = PC_LOC_UNKNOWN;
|
|
|
|
/* Don't even try if the PC is not aligned. */
|
|
if (start_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0)
|
|
return;
|
|
|
|
for (pc = start_pc;; pc += sizeof(tile_bundle_bits)) {
|
|
|
|
struct BacktraceBundle bundle;
|
|
int num_info_ops, info_operands[MAX_INFO_OPS_PER_BUNDLE];
|
|
int one_ago, jrp_reg;
|
|
bool has_jrp;
|
|
|
|
if (next_bundle >= num_bundles_prefetched) {
|
|
/* Prefetch some bytes, but don't cross a page
|
|
* boundary since that might cause a read failure we
|
|
* don't care about if we only need the first few
|
|
* bytes. Note: we don't care what the actual page
|
|
* size is; using the minimum possible page size will
|
|
* prevent any problems.
|
|
*/
|
|
unsigned int bytes_to_prefetch = 4096 - (pc & 4095);
|
|
if (bytes_to_prefetch > sizeof prefetched_bundles)
|
|
bytes_to_prefetch = sizeof prefetched_bundles;
|
|
|
|
if (!read_memory_func(prefetched_bundles, pc,
|
|
bytes_to_prefetch,
|
|
read_memory_func_extra)) {
|
|
if (pc == start_pc) {
|
|
/* The program probably called a bad
|
|
* address, such as a NULL pointer.
|
|
* So treat this as if we are at the
|
|
* start of the function prolog so the
|
|
* backtrace will show how we got here.
|
|
*/
|
|
location->pc_location = PC_LOC_IN_LR;
|
|
return;
|
|
}
|
|
|
|
/* Unreadable address. Give up. */
|
|
break;
|
|
}
|
|
|
|
next_bundle = 0;
|
|
num_bundles_prefetched =
|
|
bytes_to_prefetch / sizeof(tile_bundle_bits);
|
|
}
|
|
|
|
/* Decode the next bundle. */
|
|
bundle.bits = prefetched_bundles[next_bundle++];
|
|
bundle.num_insns =
|
|
parse_insn_tile(bundle.bits, pc, bundle.insns);
|
|
num_info_ops = bt_get_info_ops(&bundle, info_operands);
|
|
|
|
/* First look at any one_ago info ops if they are interesting,
|
|
* since they should shadow any non-one-ago info ops.
|
|
*/
|
|
for (one_ago = (pc != start_pc) ? 1 : 0;
|
|
one_ago >= 0; one_ago--) {
|
|
int i;
|
|
for (i = 0; i < num_info_ops; i++) {
|
|
int info_operand = info_operands[i];
|
|
if (info_operand < CALLER_UNKNOWN_BASE) {
|
|
/* Weird; reserved value, ignore it. */
|
|
continue;
|
|
}
|
|
|
|
/* Skip info ops which are not in the
|
|
* "one_ago" mode we want right now.
|
|
*/
|
|
if (((info_operand & ONE_BUNDLE_AGO_FLAG) != 0)
|
|
!= (one_ago != 0))
|
|
continue;
|
|
|
|
/* Clear the flag to make later checking
|
|
* easier. */
|
|
info_operand &= ~ONE_BUNDLE_AGO_FLAG;
|
|
|
|
/* Default to looking at PC_IN_LR_FLAG. */
|
|
if (info_operand & PC_IN_LR_FLAG)
|
|
location->pc_location =
|
|
PC_LOC_IN_LR;
|
|
else
|
|
location->pc_location =
|
|
PC_LOC_ON_STACK;
|
|
|
|
switch (info_operand) {
|
|
case CALLER_UNKNOWN_BASE:
|
|
location->pc_location = PC_LOC_UNKNOWN;
|
|
location->sp_location = SP_LOC_UNKNOWN;
|
|
return;
|
|
|
|
case CALLER_SP_IN_R52_BASE:
|
|
case CALLER_SP_IN_R52_BASE | PC_IN_LR_FLAG:
|
|
location->sp_location = SP_LOC_IN_R52;
|
|
return;
|
|
|
|
default:
|
|
{
|
|
const unsigned int val = info_operand
|
|
- CALLER_SP_OFFSET_BASE;
|
|
const unsigned int sp_offset =
|
|
(val >> NUM_INFO_OP_FLAGS) * 8;
|
|
if (sp_offset < 32768) {
|
|
/* This is a properly encoded
|
|
* SP offset. */
|
|
location->sp_location =
|
|
SP_LOC_OFFSET;
|
|
location->sp_offset =
|
|
sp_offset;
|
|
return;
|
|
} else {
|
|
/* This looked like an SP
|
|
* offset, but it's outside
|
|
* the legal range, so this
|
|
* must be an unrecognized
|
|
* info operand. Ignore it.
|
|
*/
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (seen_terminating_bundle) {
|
|
/* We saw a terminating bundle during the previous
|
|
* iteration, so we were only looking for an info op.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
if (bundle.bits == 0) {
|
|
/* Wacky terminating bundle. Stop looping, and hope
|
|
* we've already seen enough to find the caller.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to determine caller's SP.
|
|
*/
|
|
|
|
if (!sp_determined) {
|
|
int adjust;
|
|
if (bt_has_addi_sp(&bundle, &adjust)
|
|
#if TILE_CHIP >= 10
|
|
|| bt_has_add_sp(&bundle, &adjust, moveli_args)
|
|
#endif
|
|
) {
|
|
location->sp_location = SP_LOC_OFFSET;
|
|
|
|
if (adjust <= 0) {
|
|
/* We are in prolog about to adjust
|
|
* SP. */
|
|
location->sp_offset = 0;
|
|
} else {
|
|
/* We are in epilog restoring SP. */
|
|
location->sp_offset = adjust;
|
|
}
|
|
|
|
sp_determined = true;
|
|
} else {
|
|
if (bt_has_move_r52_sp(&bundle)) {
|
|
/* Maybe in prolog, creating an
|
|
* alloca-style frame. But maybe in
|
|
* the middle of a fixed-size frame
|
|
* clobbering r52 with SP.
|
|
*/
|
|
sp_moved_to_r52 = true;
|
|
}
|
|
|
|
if (bt_modifies_sp(&bundle)) {
|
|
if (sp_moved_to_r52) {
|
|
/* We saw SP get saved into
|
|
* r52 earlier (or now), which
|
|
* must have been in the
|
|
* prolog, so we now know that
|
|
* SP is still holding the
|
|
* caller's sp value.
|
|
*/
|
|
location->sp_location =
|
|
SP_LOC_OFFSET;
|
|
location->sp_offset = 0;
|
|
} else {
|
|
/* Someone must have saved
|
|
* aside the caller's SP value
|
|
* into r52, so r52 holds the
|
|
* current value.
|
|
*/
|
|
location->sp_location =
|
|
SP_LOC_IN_R52;
|
|
}
|
|
sp_determined = true;
|
|
}
|
|
}
|
|
|
|
#if TILE_CHIP >= 10
|
|
/* Track moveli arguments for -m32 mode. */
|
|
bt_update_moveli(&bundle, moveli_args);
|
|
#endif
|
|
}
|
|
|
|
if (bt_has_iret(&bundle)) {
|
|
/* This is a terminating bundle. */
|
|
seen_terminating_bundle = true;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Try to determine caller's PC.
|
|
*/
|
|
|
|
jrp_reg = -1;
|
|
has_jrp = bt_has_jrp(&bundle, &jrp_reg);
|
|
if (has_jrp)
|
|
seen_terminating_bundle = true;
|
|
|
|
if (location->pc_location == PC_LOC_UNKNOWN) {
|
|
if (has_jrp) {
|
|
if (jrp_reg == TREG_LR && !lr_modified) {
|
|
/* Looks like a leaf function, or else
|
|
* lr is already restored. */
|
|
location->pc_location =
|
|
PC_LOC_IN_LR;
|
|
} else {
|
|
location->pc_location =
|
|
PC_LOC_ON_STACK;
|
|
}
|
|
} else if (bt_has_sw_sp_lr(&bundle)) {
|
|
/* In prolog, spilling initial lr to stack. */
|
|
location->pc_location = PC_LOC_IN_LR;
|
|
} else if (bt_modifies_lr(&bundle)) {
|
|
lr_modified = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void backtrace_init(BacktraceIterator *state,
|
|
BacktraceMemoryReader read_memory_func,
|
|
void *read_memory_func_extra,
|
|
VirtualAddress pc, VirtualAddress lr,
|
|
VirtualAddress sp, VirtualAddress r52)
|
|
{
|
|
CallerLocation location;
|
|
VirtualAddress fp, initial_frame_caller_pc;
|
|
|
|
if (read_memory_func == NULL) {
|
|
read_memory_func = bt_read_memory;
|
|
}
|
|
|
|
/* Find out where we are in the initial frame. */
|
|
find_caller_pc_and_caller_sp(&location, pc,
|
|
read_memory_func, read_memory_func_extra);
|
|
|
|
switch (location.sp_location) {
|
|
case SP_LOC_UNKNOWN:
|
|
/* Give up. */
|
|
fp = -1;
|
|
break;
|
|
|
|
case SP_LOC_IN_R52:
|
|
fp = r52;
|
|
break;
|
|
|
|
case SP_LOC_OFFSET:
|
|
fp = sp + location.sp_offset;
|
|
break;
|
|
|
|
default:
|
|
/* Give up. */
|
|
fp = -1;
|
|
break;
|
|
}
|
|
|
|
/* If the frame pointer is not aligned to the basic word size
|
|
* something terrible happened and we should mark it as invalid.
|
|
*/
|
|
if (fp % sizeof(bt_int_reg_t) != 0)
|
|
fp = -1;
|
|
|
|
/* -1 means "don't know initial_frame_caller_pc". */
|
|
initial_frame_caller_pc = -1;
|
|
|
|
switch (location.pc_location) {
|
|
case PC_LOC_UNKNOWN:
|
|
/* Give up. */
|
|
fp = -1;
|
|
break;
|
|
|
|
case PC_LOC_IN_LR:
|
|
if (lr == 0 || lr % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) {
|
|
/* Give up. */
|
|
fp = -1;
|
|
} else {
|
|
initial_frame_caller_pc = lr;
|
|
}
|
|
break;
|
|
|
|
case PC_LOC_ON_STACK:
|
|
/* Leave initial_frame_caller_pc as -1,
|
|
* meaning check the stack.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
/* Give up. */
|
|
fp = -1;
|
|
break;
|
|
}
|
|
|
|
state->pc = pc;
|
|
state->sp = sp;
|
|
state->fp = fp;
|
|
state->initial_frame_caller_pc = initial_frame_caller_pc;
|
|
state->read_memory_func = read_memory_func;
|
|
state->read_memory_func_extra = read_memory_func_extra;
|
|
}
|
|
|
|
/* Handle the case where the register holds more bits than the VA. */
|
|
static bool valid_addr_reg(bt_int_reg_t reg)
|
|
{
|
|
return ((VirtualAddress)reg == reg);
|
|
}
|
|
|
|
bool backtrace_next(BacktraceIterator *state)
|
|
{
|
|
VirtualAddress next_fp, next_pc;
|
|
bt_int_reg_t next_frame[2];
|
|
|
|
if (state->fp == -1) {
|
|
/* No parent frame. */
|
|
return false;
|
|
}
|
|
|
|
/* Try to read the frame linkage data chaining to the next function. */
|
|
if (!state->read_memory_func(&next_frame, state->fp, sizeof next_frame,
|
|
state->read_memory_func_extra)) {
|
|
return false;
|
|
}
|
|
|
|
next_fp = next_frame[1];
|
|
if (!valid_addr_reg(next_frame[1]) ||
|
|
next_fp % sizeof(bt_int_reg_t) != 0) {
|
|
/* Caller's frame pointer is suspect, so give up. */
|
|
return false;
|
|
}
|
|
|
|
if (state->initial_frame_caller_pc != -1) {
|
|
/* We must be in the initial stack frame and already know the
|
|
* caller PC.
|
|
*/
|
|
next_pc = state->initial_frame_caller_pc;
|
|
|
|
/* Force reading stack next time, in case we were in the
|
|
* initial frame. We don't do this above just to paranoidly
|
|
* avoid changing the struct at all when we return false.
|
|
*/
|
|
state->initial_frame_caller_pc = -1;
|
|
} else {
|
|
/* Get the caller PC from the frame linkage area. */
|
|
next_pc = next_frame[0];
|
|
if (!valid_addr_reg(next_frame[0]) || next_pc == 0 ||
|
|
next_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) {
|
|
/* The PC is suspect, so give up. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Update state to become the caller's stack frame. */
|
|
state->pc = next_pc;
|
|
state->sp = state->fp;
|
|
state->fp = next_fp;
|
|
|
|
return true;
|
|
}
|