mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 22:54:11 +08:00
4712fff9be
These are all powerpc specific drivers. res.start in fsl_elbc_nand.c needs to be cast since it may be either 32 or 64 bit. Thanks to Scott Wood for noticing. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Arnd Bergmann <arnd@arndb.de> call_edac bits in particular Acked-by: Olof Johansson <olof@lixom.net> pasemi_nand peices Acked-by: Scott Wood <scottwood@freescale.com> fsl_elbc fixes Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
1105 lines
30 KiB
C
1105 lines
30 KiB
C
/* Freescale Enhanced Local Bus Controller NAND driver
|
|
*
|
|
* Copyright (c) 2006-2007 Freescale Semiconductor
|
|
*
|
|
* Authors: Nick Spence <nick.spence@freescale.com>,
|
|
* Scott Wood <scottwood@freescale.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/fsl_lbc.h>
|
|
|
|
#define MAX_BANKS 8
|
|
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
|
|
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
|
|
|
|
struct fsl_elbc_ctrl;
|
|
|
|
/* mtd information per set */
|
|
|
|
struct fsl_elbc_mtd {
|
|
struct mtd_info mtd;
|
|
struct nand_chip chip;
|
|
struct fsl_elbc_ctrl *ctrl;
|
|
|
|
struct device *dev;
|
|
int bank; /* Chip select bank number */
|
|
u8 __iomem *vbase; /* Chip select base virtual address */
|
|
int page_size; /* NAND page size (0=512, 1=2048) */
|
|
unsigned int fmr; /* FCM Flash Mode Register value */
|
|
};
|
|
|
|
/* overview of the fsl elbc controller */
|
|
|
|
struct fsl_elbc_ctrl {
|
|
struct nand_hw_control controller;
|
|
struct fsl_elbc_mtd *chips[MAX_BANKS];
|
|
|
|
/* device info */
|
|
struct device *dev;
|
|
struct fsl_lbc_regs __iomem *regs;
|
|
int irq;
|
|
wait_queue_head_t irq_wait;
|
|
unsigned int irq_status; /* status read from LTESR by irq handler */
|
|
u8 __iomem *addr; /* Address of assigned FCM buffer */
|
|
unsigned int page; /* Last page written to / read from */
|
|
unsigned int read_bytes; /* Number of bytes read during command */
|
|
unsigned int column; /* Saved column from SEQIN */
|
|
unsigned int index; /* Pointer to next byte to 'read' */
|
|
unsigned int status; /* status read from LTESR after last op */
|
|
unsigned int mdr; /* UPM/FCM Data Register value */
|
|
unsigned int use_mdr; /* Non zero if the MDR is to be set */
|
|
unsigned int oob; /* Non zero if operating on OOB data */
|
|
char *oob_poi; /* Place to write ECC after read back */
|
|
};
|
|
|
|
/* These map to the positions used by the FCM hardware ECC generator */
|
|
|
|
/* Small Page FLASH with FMR[ECCM] = 0 */
|
|
static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
|
|
.eccbytes = 3,
|
|
.eccpos = {6, 7, 8},
|
|
.oobfree = { {0, 5}, {9, 7} },
|
|
};
|
|
|
|
/* Small Page FLASH with FMR[ECCM] = 1 */
|
|
static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
|
|
.eccbytes = 3,
|
|
.eccpos = {8, 9, 10},
|
|
.oobfree = { {0, 5}, {6, 2}, {11, 5} },
|
|
};
|
|
|
|
/* Large Page FLASH with FMR[ECCM] = 0 */
|
|
static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
|
|
.eccbytes = 12,
|
|
.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
|
|
.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
|
|
};
|
|
|
|
/* Large Page FLASH with FMR[ECCM] = 1 */
|
|
static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
|
|
.eccbytes = 12,
|
|
.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
|
|
.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
|
|
};
|
|
|
|
/*
|
|
* fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
|
|
* 1, so we have to adjust bad block pattern. This pattern should be used for
|
|
* x8 chips only. So far hardware does not support x16 chips anyway.
|
|
*/
|
|
static u8 scan_ff_pattern[] = { 0xff, };
|
|
|
|
static struct nand_bbt_descr largepage_memorybased = {
|
|
.options = 0,
|
|
.offs = 0,
|
|
.len = 1,
|
|
.pattern = scan_ff_pattern,
|
|
};
|
|
|
|
/*
|
|
* ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
|
|
* interfere with ECC positions, that's why we implement our own descriptors.
|
|
* OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
|
|
*/
|
|
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 11,
|
|
.len = 4,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 11,
|
|
.len = 4,
|
|
.veroffs = 15,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
/*=================================*/
|
|
|
|
/*
|
|
* Set up the FCM hardware block and page address fields, and the fcm
|
|
* structure addr field to point to the correct FCM buffer in memory
|
|
*/
|
|
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
int buf_num;
|
|
|
|
ctrl->page = page_addr;
|
|
|
|
out_be32(&lbc->fbar,
|
|
page_addr >> (chip->phys_erase_shift - chip->page_shift));
|
|
|
|
if (priv->page_size) {
|
|
out_be32(&lbc->fpar,
|
|
((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
|
|
(oob ? FPAR_LP_MS : 0) | column);
|
|
buf_num = (page_addr & 1) << 2;
|
|
} else {
|
|
out_be32(&lbc->fpar,
|
|
((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
|
|
(oob ? FPAR_SP_MS : 0) | column);
|
|
buf_num = page_addr & 7;
|
|
}
|
|
|
|
ctrl->addr = priv->vbase + buf_num * 1024;
|
|
ctrl->index = column;
|
|
|
|
/* for OOB data point to the second half of the buffer */
|
|
if (oob)
|
|
ctrl->index += priv->page_size ? 2048 : 512;
|
|
|
|
dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
|
|
"index %x, pes %d ps %d\n",
|
|
buf_num, ctrl->addr, priv->vbase, ctrl->index,
|
|
chip->phys_erase_shift, chip->page_shift);
|
|
}
|
|
|
|
/*
|
|
* execute FCM command and wait for it to complete
|
|
*/
|
|
static int fsl_elbc_run_command(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
/* Setup the FMR[OP] to execute without write protection */
|
|
out_be32(&lbc->fmr, priv->fmr | 3);
|
|
if (ctrl->use_mdr)
|
|
out_be32(&lbc->mdr, ctrl->mdr);
|
|
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
|
|
in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_run_command: fbar=%08x fpar=%08x "
|
|
"fbcr=%08x bank=%d\n",
|
|
in_be32(&lbc->fbar), in_be32(&lbc->fpar),
|
|
in_be32(&lbc->fbcr), priv->bank);
|
|
|
|
ctrl->irq_status = 0;
|
|
/* execute special operation */
|
|
out_be32(&lbc->lsor, priv->bank);
|
|
|
|
/* wait for FCM complete flag or timeout */
|
|
wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
|
|
FCM_TIMEOUT_MSECS * HZ/1000);
|
|
ctrl->status = ctrl->irq_status;
|
|
|
|
/* store mdr value in case it was needed */
|
|
if (ctrl->use_mdr)
|
|
ctrl->mdr = in_be32(&lbc->mdr);
|
|
|
|
ctrl->use_mdr = 0;
|
|
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
|
|
ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
|
|
|
|
/* returns 0 on success otherwise non-zero) */
|
|
return ctrl->status == LTESR_CC ? 0 : -EIO;
|
|
}
|
|
|
|
static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
|
|
{
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
if (priv->page_size) {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP3_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP4_SHIFT));
|
|
|
|
out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
|
|
(NAND_CMD_READSTART << FCR_CMD1_SHIFT));
|
|
} else {
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP3_SHIFT));
|
|
|
|
if (oob)
|
|
out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
|
|
else
|
|
out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
|
|
}
|
|
}
|
|
|
|
/* cmdfunc send commands to the FCM */
|
|
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
|
|
int column, int page_addr)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
ctrl->use_mdr = 0;
|
|
|
|
/* clear the read buffer */
|
|
ctrl->read_bytes = 0;
|
|
if (command != NAND_CMD_PAGEPROG)
|
|
ctrl->index = 0;
|
|
|
|
switch (command) {
|
|
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
|
|
case NAND_CMD_READ1:
|
|
column += 256;
|
|
|
|
/* fall-through */
|
|
case NAND_CMD_READ0:
|
|
dev_dbg(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
|
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
|
|
|
|
|
out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
|
|
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
ctrl->index += column;
|
|
|
|
fsl_elbc_do_read(chip, 0);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* READOOB reads only the OOB because no ECC is performed. */
|
|
case NAND_CMD_READOOB:
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
|
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
|
|
|
out_be32(&lbc->fbcr, mtd->oobsize - column);
|
|
set_addr(mtd, column, page_addr, 1);
|
|
|
|
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
|
|
fsl_elbc_do_read(chip, 1);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* READID must read all 5 possible bytes while CEB is active */
|
|
case NAND_CMD_READID:
|
|
dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
|
|
|
|
out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_UA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP2_SHIFT));
|
|
out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
|
|
/* 5 bytes for manuf, device and exts */
|
|
out_be32(&lbc->fbcr, 5);
|
|
ctrl->read_bytes = 5;
|
|
ctrl->use_mdr = 1;
|
|
ctrl->mdr = 0;
|
|
|
|
set_addr(mtd, 0, 0, 0);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* ERASE1 stores the block and page address */
|
|
case NAND_CMD_ERASE1:
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
|
|
"page_addr: 0x%x.\n", page_addr);
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
return;
|
|
|
|
/* ERASE2 uses the block and page address from ERASE1 */
|
|
case NAND_CMD_ERASE2:
|
|
dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
|
|
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_CM1 << FIR_OP2_SHIFT));
|
|
|
|
out_be32(&lbc->fcr,
|
|
(NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
|
|
(NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
|
|
|
|
out_be32(&lbc->fbcr, 0);
|
|
ctrl->read_bytes = 0;
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
/* SEQIN sets up the addr buffer and all registers except the length */
|
|
case NAND_CMD_SEQIN: {
|
|
__be32 fcr;
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
|
|
"page_addr: 0x%x, column: 0x%x.\n",
|
|
page_addr, column);
|
|
|
|
ctrl->column = column;
|
|
ctrl->oob = 0;
|
|
|
|
if (priv->page_size) {
|
|
fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
|
|
(NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
|
|
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_WB << FIR_OP3_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP4_SHIFT));
|
|
} else {
|
|
fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
|
|
(NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
|
|
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_CM2 << FIR_OP1_SHIFT) |
|
|
(FIR_OP_CA << FIR_OP2_SHIFT) |
|
|
(FIR_OP_PA << FIR_OP3_SHIFT) |
|
|
(FIR_OP_WB << FIR_OP4_SHIFT) |
|
|
(FIR_OP_CW1 << FIR_OP5_SHIFT));
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area --> READOOB */
|
|
column -= mtd->writesize;
|
|
fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
|
|
ctrl->oob = 1;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
|
|
} else {
|
|
/* Second 256 bytes --> READ1 */
|
|
fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
|
|
}
|
|
}
|
|
|
|
out_be32(&lbc->fcr, fcr);
|
|
set_addr(mtd, column, page_addr, ctrl->oob);
|
|
return;
|
|
}
|
|
|
|
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
|
|
case NAND_CMD_PAGEPROG: {
|
|
int full_page;
|
|
dev_vdbg(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
|
|
"writing %d bytes.\n", ctrl->index);
|
|
|
|
/* if the write did not start at 0 or is not a full page
|
|
* then set the exact length, otherwise use a full page
|
|
* write so the HW generates the ECC.
|
|
*/
|
|
if (ctrl->oob || ctrl->column != 0 ||
|
|
ctrl->index != mtd->writesize + mtd->oobsize) {
|
|
out_be32(&lbc->fbcr, ctrl->index);
|
|
full_page = 0;
|
|
} else {
|
|
out_be32(&lbc->fbcr, 0);
|
|
full_page = 1;
|
|
}
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
|
|
/* Read back the page in order to fill in the ECC for the
|
|
* caller. Is this really needed?
|
|
*/
|
|
if (full_page && ctrl->oob_poi) {
|
|
out_be32(&lbc->fbcr, 3);
|
|
set_addr(mtd, 6, page_addr, 1);
|
|
|
|
ctrl->read_bytes = mtd->writesize + 9;
|
|
|
|
fsl_elbc_do_read(chip, 1);
|
|
fsl_elbc_run_command(mtd);
|
|
|
|
memcpy_fromio(ctrl->oob_poi + 6,
|
|
&ctrl->addr[ctrl->index], 3);
|
|
ctrl->index += 3;
|
|
}
|
|
|
|
ctrl->oob_poi = NULL;
|
|
return;
|
|
}
|
|
|
|
/* CMD_STATUS must read the status byte while CEB is active */
|
|
/* Note - it does not wait for the ready line */
|
|
case NAND_CMD_STATUS:
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP1_SHIFT));
|
|
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
|
|
out_be32(&lbc->fbcr, 1);
|
|
set_addr(mtd, 0, 0, 0);
|
|
ctrl->read_bytes = 1;
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
|
|
/* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
setbits8(ctrl->addr, NAND_STATUS_WP);
|
|
return;
|
|
|
|
/* RESET without waiting for the ready line */
|
|
case NAND_CMD_RESET:
|
|
dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
|
|
out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
|
|
out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
|
|
fsl_elbc_run_command(mtd);
|
|
return;
|
|
|
|
default:
|
|
dev_err(ctrl->dev,
|
|
"fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
|
|
command);
|
|
}
|
|
}
|
|
|
|
static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
/* The hardware does not seem to support multiple
|
|
* chips per bank.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Write buf to the FCM Controller Data Buffer
|
|
*/
|
|
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
unsigned int bufsize = mtd->writesize + mtd->oobsize;
|
|
|
|
if (len <= 0) {
|
|
dev_err(ctrl->dev, "write_buf of %d bytes", len);
|
|
ctrl->status = 0;
|
|
return;
|
|
}
|
|
|
|
if ((unsigned int)len > bufsize - ctrl->index) {
|
|
dev_err(ctrl->dev,
|
|
"write_buf beyond end of buffer "
|
|
"(%d requested, %u available)\n",
|
|
len, bufsize - ctrl->index);
|
|
len = bufsize - ctrl->index;
|
|
}
|
|
|
|
memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
|
|
/*
|
|
* This is workaround for the weird elbc hangs during nand write,
|
|
* Scott Wood says: "...perhaps difference in how long it takes a
|
|
* write to make it through the localbus compared to a write to IMMR
|
|
* is causing problems, and sync isn't helping for some reason."
|
|
* Reading back the last byte helps though.
|
|
*/
|
|
in_8(&ctrl->addr[ctrl->index] + len - 1);
|
|
|
|
ctrl->index += len;
|
|
}
|
|
|
|
/*
|
|
* read a byte from either the FCM hardware buffer if it has any data left
|
|
* otherwise issue a command to read a single byte.
|
|
*/
|
|
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
|
|
/* If there are still bytes in the FCM, then use the next byte. */
|
|
if (ctrl->index < ctrl->read_bytes)
|
|
return in_8(&ctrl->addr[ctrl->index++]);
|
|
|
|
dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
|
|
return ERR_BYTE;
|
|
}
|
|
|
|
/*
|
|
* Read from the FCM Controller Data Buffer
|
|
*/
|
|
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
int avail;
|
|
|
|
if (len < 0)
|
|
return;
|
|
|
|
avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
|
|
memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
|
|
ctrl->index += avail;
|
|
|
|
if (len > avail)
|
|
dev_err(ctrl->dev,
|
|
"read_buf beyond end of buffer "
|
|
"(%d requested, %d available)\n",
|
|
len, avail);
|
|
}
|
|
|
|
/*
|
|
* Verify buffer against the FCM Controller Data Buffer
|
|
*/
|
|
static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
int i;
|
|
|
|
if (len < 0) {
|
|
dev_err(ctrl->dev, "write_buf of %d bytes", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
|
|
dev_err(ctrl->dev,
|
|
"verify_buf beyond end of buffer "
|
|
"(%d requested, %u available)\n",
|
|
len, ctrl->read_bytes - ctrl->index);
|
|
|
|
ctrl->index = ctrl->read_bytes;
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
|
|
break;
|
|
|
|
ctrl->index += len;
|
|
return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
|
|
}
|
|
|
|
/* This function is called after Program and Erase Operations to
|
|
* check for success or failure.
|
|
*/
|
|
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
if (ctrl->status != LTESR_CC)
|
|
return NAND_STATUS_FAIL;
|
|
|
|
/* Use READ_STATUS command, but wait for the device to be ready */
|
|
ctrl->use_mdr = 0;
|
|
out_be32(&lbc->fir,
|
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
|
(FIR_OP_RBW << FIR_OP1_SHIFT));
|
|
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
|
|
out_be32(&lbc->fbcr, 1);
|
|
set_addr(mtd, 0, 0, 0);
|
|
ctrl->read_bytes = 1;
|
|
|
|
fsl_elbc_run_command(mtd);
|
|
|
|
if (ctrl->status != LTESR_CC)
|
|
return NAND_STATUS_FAIL;
|
|
|
|
/* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
setbits8(ctrl->addr, NAND_STATUS_WP);
|
|
return fsl_elbc_read_byte(mtd);
|
|
}
|
|
|
|
static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
unsigned int al;
|
|
|
|
/* calculate FMR Address Length field */
|
|
al = 0;
|
|
if (chip->pagemask & 0xffff0000)
|
|
al++;
|
|
if (chip->pagemask & 0xff000000)
|
|
al++;
|
|
|
|
/* add to ECCM mode set in fsl_elbc_init */
|
|
priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
|
|
(al << FMR_AL_SHIFT);
|
|
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
|
|
chip->numchips);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
|
|
chip->chipsize);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
|
|
chip->pagemask);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
|
|
chip->chip_delay);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
|
|
chip->badblockpos);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
|
|
chip->chip_shift);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
|
|
chip->page_shift);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
|
|
chip->phys_erase_shift);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
|
|
chip->ecclayout);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
|
|
chip->ecc.mode);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
|
|
chip->ecc.steps);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
|
|
chip->ecc.bytes);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
|
|
chip->ecc.total);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
|
|
chip->ecc.layout);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
|
|
mtd->erasesize);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
|
|
mtd->writesize);
|
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
|
|
mtd->oobsize);
|
|
|
|
/* adjust Option Register and ECC to match Flash page size */
|
|
if (mtd->writesize == 512) {
|
|
priv->page_size = 0;
|
|
clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
|
|
} else if (mtd->writesize == 2048) {
|
|
priv->page_size = 1;
|
|
setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
|
|
/* adjust ecc setup if needed */
|
|
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
|
|
BR_DECC_CHK_GEN) {
|
|
chip->ecc.size = 512;
|
|
chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
|
|
&fsl_elbc_oob_lp_eccm1 :
|
|
&fsl_elbc_oob_lp_eccm0;
|
|
chip->badblock_pattern = &largepage_memorybased;
|
|
}
|
|
} else {
|
|
dev_err(ctrl->dev,
|
|
"fsl_elbc_init: page size %d is not supported\n",
|
|
mtd->writesize);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_elbc_read_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
uint8_t *buf)
|
|
{
|
|
fsl_elbc_read_buf(mtd, buf, mtd->writesize);
|
|
fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
|
|
mtd->ecc_stats.failed++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ECC will be calculated automatically, and errors will be detected in
|
|
* waitfunc.
|
|
*/
|
|
static void fsl_elbc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf)
|
|
{
|
|
struct fsl_elbc_mtd *priv = chip->priv;
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
|
|
fsl_elbc_write_buf(mtd, buf, mtd->writesize);
|
|
fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
ctrl->oob_poi = chip->oob_poi;
|
|
}
|
|
|
|
static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
|
|
{
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
struct nand_chip *chip = &priv->chip;
|
|
|
|
dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
|
|
|
|
/* Fill in fsl_elbc_mtd structure */
|
|
priv->mtd.priv = chip;
|
|
priv->mtd.owner = THIS_MODULE;
|
|
|
|
/* Set the ECCM according to the settings in bootloader.*/
|
|
priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
|
|
|
|
/* fill in nand_chip structure */
|
|
/* set up function call table */
|
|
chip->read_byte = fsl_elbc_read_byte;
|
|
chip->write_buf = fsl_elbc_write_buf;
|
|
chip->read_buf = fsl_elbc_read_buf;
|
|
chip->verify_buf = fsl_elbc_verify_buf;
|
|
chip->select_chip = fsl_elbc_select_chip;
|
|
chip->cmdfunc = fsl_elbc_cmdfunc;
|
|
chip->waitfunc = fsl_elbc_wait;
|
|
|
|
chip->bbt_td = &bbt_main_descr;
|
|
chip->bbt_md = &bbt_mirror_descr;
|
|
|
|
/* set up nand options */
|
|
chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
|
|
NAND_USE_FLASH_BBT;
|
|
|
|
chip->controller = &ctrl->controller;
|
|
chip->priv = priv;
|
|
|
|
chip->ecc.read_page = fsl_elbc_read_page;
|
|
chip->ecc.write_page = fsl_elbc_write_page;
|
|
|
|
/* If CS Base Register selects full hardware ECC then use it */
|
|
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
|
|
BR_DECC_CHK_GEN) {
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
/* put in small page settings and adjust later if needed */
|
|
chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
|
|
&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 3;
|
|
} else {
|
|
/* otherwise fall back to default software ECC */
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
|
|
{
|
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
|
|
|
nand_release(&priv->mtd);
|
|
|
|
kfree(priv->mtd.name);
|
|
|
|
if (priv->vbase)
|
|
iounmap(priv->vbase);
|
|
|
|
ctrl->chips[priv->bank] = NULL;
|
|
kfree(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
|
|
struct device_node *node)
|
|
{
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
struct fsl_elbc_mtd *priv;
|
|
struct resource res;
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
static const char *part_probe_types[]
|
|
= { "cmdlinepart", "RedBoot", NULL };
|
|
struct mtd_partition *parts;
|
|
#endif
|
|
int ret;
|
|
int bank;
|
|
|
|
/* get, allocate and map the memory resource */
|
|
ret = of_address_to_resource(node, 0, &res);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "failed to get resource\n");
|
|
return ret;
|
|
}
|
|
|
|
/* find which chip select it is connected to */
|
|
for (bank = 0; bank < MAX_BANKS; bank++)
|
|
if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
|
|
(in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
|
|
(in_be32(&lbc->bank[bank].br) &
|
|
in_be32(&lbc->bank[bank].or) & BR_BA)
|
|
== res.start)
|
|
break;
|
|
|
|
if (bank >= MAX_BANKS) {
|
|
dev_err(ctrl->dev, "address did not match any chip selects\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
ctrl->chips[bank] = priv;
|
|
priv->bank = bank;
|
|
priv->ctrl = ctrl;
|
|
priv->dev = ctrl->dev;
|
|
|
|
priv->vbase = ioremap(res.start, res.end - res.start + 1);
|
|
if (!priv->vbase) {
|
|
dev_err(ctrl->dev, "failed to map chip region\n");
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
|
|
if (!priv->mtd.name) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = fsl_elbc_chip_init(priv);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = nand_scan_ident(&priv->mtd, 1);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = fsl_elbc_chip_init_tail(&priv->mtd);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = nand_scan_tail(&priv->mtd);
|
|
if (ret)
|
|
goto err;
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
/* First look for RedBoot table or partitions on the command
|
|
* line, these take precedence over device tree information */
|
|
ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
#ifdef CONFIG_MTD_OF_PARTS
|
|
if (ret == 0) {
|
|
ret = of_mtd_parse_partitions(priv->dev, node, &parts);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if (ret > 0)
|
|
add_mtd_partitions(&priv->mtd, parts, ret);
|
|
else
|
|
#endif
|
|
add_mtd_device(&priv->mtd);
|
|
|
|
printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
|
|
(unsigned long long)res.start, priv->bank);
|
|
return 0;
|
|
|
|
err:
|
|
fsl_elbc_chip_remove(priv);
|
|
return ret;
|
|
}
|
|
|
|
static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
|
|
{
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
|
|
/* clear event registers */
|
|
setbits32(&lbc->ltesr, LTESR_NAND_MASK);
|
|
out_be32(&lbc->lteatr, 0);
|
|
|
|
/* Enable interrupts for any detected events */
|
|
out_be32(&lbc->lteir, LTESR_NAND_MASK);
|
|
|
|
ctrl->read_bytes = 0;
|
|
ctrl->index = 0;
|
|
ctrl->addr = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
|
|
{
|
|
struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BANKS; i++)
|
|
if (ctrl->chips[i])
|
|
fsl_elbc_chip_remove(ctrl->chips[i]);
|
|
|
|
if (ctrl->irq)
|
|
free_irq(ctrl->irq, ctrl);
|
|
|
|
if (ctrl->regs)
|
|
iounmap(ctrl->regs);
|
|
|
|
dev_set_drvdata(&ofdev->dev, NULL);
|
|
kfree(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
/* NOTE: This interrupt is also used to report other localbus events,
|
|
* such as transaction errors on other chipselects. If we want to
|
|
* capture those, we'll need to move the IRQ code into a shared
|
|
* LBC driver.
|
|
*/
|
|
|
|
static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
|
|
{
|
|
struct fsl_elbc_ctrl *ctrl = data;
|
|
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
|
|
__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
|
|
|
|
if (status) {
|
|
out_be32(&lbc->ltesr, status);
|
|
out_be32(&lbc->lteatr, 0);
|
|
|
|
ctrl->irq_status = status;
|
|
smp_wmb();
|
|
wake_up(&ctrl->irq_wait);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* fsl_elbc_ctrl_probe
|
|
*
|
|
* called by device layer when it finds a device matching
|
|
* one our driver can handled. This code allocates all of
|
|
* the resources needed for the controller only. The
|
|
* resources for the NAND banks themselves are allocated
|
|
* in the chip probe function.
|
|
*/
|
|
|
|
static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
|
|
const struct of_device_id *match)
|
|
{
|
|
struct device_node *child;
|
|
struct fsl_elbc_ctrl *ctrl;
|
|
int ret;
|
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return -ENOMEM;
|
|
|
|
dev_set_drvdata(&ofdev->dev, ctrl);
|
|
|
|
spin_lock_init(&ctrl->controller.lock);
|
|
init_waitqueue_head(&ctrl->controller.wq);
|
|
init_waitqueue_head(&ctrl->irq_wait);
|
|
|
|
ctrl->regs = of_iomap(ofdev->node, 0);
|
|
if (!ctrl->regs) {
|
|
dev_err(&ofdev->dev, "failed to get memory region\n");
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
|
|
if (ctrl->irq == NO_IRQ) {
|
|
dev_err(&ofdev->dev, "failed to get irq resource\n");
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
ctrl->dev = &ofdev->dev;
|
|
|
|
ret = fsl_elbc_ctrl_init(ctrl);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
|
|
if (ret != 0) {
|
|
dev_err(&ofdev->dev, "failed to install irq (%d)\n",
|
|
ctrl->irq);
|
|
ret = ctrl->irq;
|
|
goto err;
|
|
}
|
|
|
|
for_each_child_of_node(ofdev->node, child)
|
|
if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
|
|
fsl_elbc_chip_probe(ctrl, child);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
fsl_elbc_ctrl_remove(ofdev);
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id fsl_elbc_match[] = {
|
|
{
|
|
.compatible = "fsl,elbc",
|
|
},
|
|
{}
|
|
};
|
|
|
|
static struct of_platform_driver fsl_elbc_ctrl_driver = {
|
|
.driver = {
|
|
.name = "fsl-elbc",
|
|
},
|
|
.match_table = fsl_elbc_match,
|
|
.probe = fsl_elbc_ctrl_probe,
|
|
.remove = fsl_elbc_ctrl_remove,
|
|
};
|
|
|
|
static int __init fsl_elbc_init(void)
|
|
{
|
|
return of_register_platform_driver(&fsl_elbc_ctrl_driver);
|
|
}
|
|
|
|
static void __exit fsl_elbc_exit(void)
|
|
{
|
|
of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
|
|
}
|
|
|
|
module_init(fsl_elbc_init);
|
|
module_exit(fsl_elbc_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Freescale");
|
|
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
|