mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-29 23:53:55 +08:00
5f54d3e869
of_device_ids are not supposed to change at runtime. All functions working with of_device_ids provided by <linux/of.h> work with const of_device_ids. So mark the non-const structs as const. File size before: text data bss dec hex filename 3981 608 0 4589 11ed drivers/dma/fsl_raid.o File size after constify: text data bss dec hex filename 4381 192 0 4573 11dd drivers/dma/fsl_raid.o Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
900 lines
25 KiB
C
900 lines
25 KiB
C
/*
|
|
* drivers/dma/fsl_raid.c
|
|
*
|
|
* Freescale RAID Engine device driver
|
|
*
|
|
* Author:
|
|
* Harninder Rai <harninder.rai@freescale.com>
|
|
* Naveen Burmi <naveenburmi@freescale.com>
|
|
*
|
|
* Rewrite:
|
|
* Xuelin Shi <xuelin.shi@freescale.com>
|
|
*
|
|
* Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Freescale Semiconductor nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* ALTERNATIVELY, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") as published by the Free Software
|
|
* Foundation, either version 2 of that License or (at your option) any
|
|
* later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Theory of operation:
|
|
*
|
|
* General capabilities:
|
|
* RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
|
|
* calculations required in RAID5 and RAID6 operations. RE driver
|
|
* registers with Linux's ASYNC layer as dma driver. RE hardware
|
|
* maintains strict ordering of the requests through chained
|
|
* command queueing.
|
|
*
|
|
* Data flow:
|
|
* Software RAID layer of Linux (MD layer) maintains RAID partitions,
|
|
* strips, stripes etc. It sends requests to the underlying ASYNC layer
|
|
* which further passes it to RE driver. ASYNC layer decides which request
|
|
* goes to which job ring of RE hardware. For every request processed by
|
|
* RAID Engine, driver gets an interrupt unless coalescing is set. The
|
|
* per job ring interrupt handler checks the status register for errors,
|
|
* clears the interrupt and leave the post interrupt processing to the irq
|
|
* thread.
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/io.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "fsl_raid.h"
|
|
|
|
#define FSL_RE_MAX_XOR_SRCS 16
|
|
#define FSL_RE_MAX_PQ_SRCS 16
|
|
#define FSL_RE_MIN_DESCS 256
|
|
#define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
|
|
#define FSL_RE_FRAME_FORMAT 0x1
|
|
#define FSL_RE_MAX_DATA_LEN (1024*1024)
|
|
|
|
#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
|
|
|
|
/* Add descriptors into per chan software queue - submit_q */
|
|
static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct fsl_re_desc *desc;
|
|
struct fsl_re_chan *re_chan;
|
|
dma_cookie_t cookie;
|
|
unsigned long flags;
|
|
|
|
desc = to_fsl_re_dma_desc(tx);
|
|
re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, flags);
|
|
cookie = dma_cookie_assign(tx);
|
|
list_add_tail(&desc->node, &re_chan->submit_q);
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/* Copy descriptor from per chan software queue into hardware job ring */
|
|
static void fsl_re_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
int avail;
|
|
struct fsl_re_desc *desc, *_desc;
|
|
unsigned long flags;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, flags);
|
|
avail = FSL_RE_SLOT_AVAIL(
|
|
in_be32(&re_chan->jrregs->inbring_slot_avail));
|
|
|
|
list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
|
|
if (!avail)
|
|
break;
|
|
|
|
list_move_tail(&desc->node, &re_chan->active_q);
|
|
|
|
memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
|
|
&desc->hwdesc, sizeof(struct fsl_re_hw_desc));
|
|
|
|
re_chan->inb_count = (re_chan->inb_count + 1) &
|
|
FSL_RE_RING_SIZE_MASK;
|
|
out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
|
|
avail--;
|
|
}
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
|
|
}
|
|
|
|
static void fsl_re_desc_done(struct fsl_re_desc *desc)
|
|
{
|
|
dma_cookie_complete(&desc->async_tx);
|
|
dma_descriptor_unmap(&desc->async_tx);
|
|
dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
|
|
}
|
|
|
|
static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
|
|
{
|
|
struct fsl_re_desc *desc, *_desc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, flags);
|
|
list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
|
|
if (async_tx_test_ack(&desc->async_tx))
|
|
list_move_tail(&desc->node, &re_chan->free_q);
|
|
}
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
|
|
|
|
fsl_re_issue_pending(&re_chan->chan);
|
|
}
|
|
|
|
static void fsl_re_dequeue(unsigned long data)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc, *_desc;
|
|
struct fsl_re_hw_desc *hwdesc;
|
|
unsigned long flags;
|
|
unsigned int count, oub_count;
|
|
int found;
|
|
|
|
re_chan = dev_get_drvdata((struct device *)data);
|
|
|
|
fsl_re_cleanup_descs(re_chan);
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, flags);
|
|
count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
|
|
while (count--) {
|
|
found = 0;
|
|
hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
|
|
list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
|
|
node) {
|
|
/* compare the hw dma addr to find the completed */
|
|
if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
|
|
desc->hwdesc.addr_low == hwdesc->addr_low) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
fsl_re_desc_done(desc);
|
|
list_move_tail(&desc->node, &re_chan->ack_q);
|
|
} else {
|
|
dev_err(re_chan->dev,
|
|
"found hwdesc not in sw queue, discard it\n");
|
|
}
|
|
|
|
oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
|
|
re_chan->oub_count = oub_count;
|
|
|
|
out_be32(&re_chan->jrregs->oubring_job_rmvd,
|
|
FSL_RE_RMVD_JOB(1));
|
|
}
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
|
|
}
|
|
|
|
/* Per Job Ring interrupt handler */
|
|
static irqreturn_t fsl_re_isr(int irq, void *data)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
u32 irqstate, status;
|
|
|
|
re_chan = dev_get_drvdata((struct device *)data);
|
|
|
|
irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
|
|
if (!irqstate)
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* There's no way in upper layer (read MD layer) to recover from
|
|
* error conditions except restart everything. In long term we
|
|
* need to do something more than just crashing
|
|
*/
|
|
if (irqstate & FSL_RE_ERROR) {
|
|
status = in_be32(&re_chan->jrregs->jr_status);
|
|
dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
|
|
irqstate, status);
|
|
}
|
|
|
|
/* Clear interrupt */
|
|
out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
|
|
|
|
tasklet_schedule(&re_chan->irqtask);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
return dma_cookie_status(chan, cookie, txstate);
|
|
}
|
|
|
|
static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
|
|
size_t length, dma_addr_t addr, bool final)
|
|
{
|
|
u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
|
|
|
|
efrl |= final << FSL_RE_CF_FINAL_SHIFT;
|
|
cf[index].efrl32 = efrl;
|
|
cf[index].addr_high = upper_32_bits(addr);
|
|
cf[index].addr_low = lower_32_bits(addr);
|
|
}
|
|
|
|
static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
|
|
struct fsl_re_desc *desc,
|
|
void *cf, dma_addr_t paddr)
|
|
{
|
|
desc->re_chan = re_chan;
|
|
desc->async_tx.tx_submit = fsl_re_tx_submit;
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
|
|
INIT_LIST_HEAD(&desc->node);
|
|
|
|
desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
|
|
desc->hwdesc.lbea32 = upper_32_bits(paddr);
|
|
desc->hwdesc.addr_low = lower_32_bits(paddr);
|
|
desc->cf_addr = cf;
|
|
desc->cf_paddr = paddr;
|
|
|
|
desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
|
|
desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
|
|
unsigned long flags)
|
|
{
|
|
struct fsl_re_desc *desc = NULL;
|
|
void *cf;
|
|
dma_addr_t paddr;
|
|
unsigned long lock_flag;
|
|
|
|
fsl_re_cleanup_descs(re_chan);
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
|
|
if (!list_empty(&re_chan->free_q)) {
|
|
/* take one desc from free_q */
|
|
desc = list_first_entry(&re_chan->free_q,
|
|
struct fsl_re_desc, node);
|
|
list_del(&desc->node);
|
|
|
|
desc->async_tx.flags = flags;
|
|
}
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
|
|
|
|
if (!desc) {
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
|
|
&paddr);
|
|
if (!cf) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
|
|
desc->async_tx.flags = flags;
|
|
|
|
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
|
|
re_chan->alloc_count++;
|
|
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
unsigned long flags)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc;
|
|
struct fsl_re_xor_cdb *xor;
|
|
struct fsl_re_cmpnd_frame *cf;
|
|
u32 cdb;
|
|
unsigned int i, j;
|
|
unsigned int save_src_cnt = src_cnt;
|
|
int cont_q = 0;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
if (len > FSL_RE_MAX_DATA_LEN) {
|
|
dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
|
|
len, FSL_RE_MAX_DATA_LEN);
|
|
return NULL;
|
|
}
|
|
|
|
desc = fsl_re_chan_alloc_desc(re_chan, flags);
|
|
if (desc <= 0)
|
|
return NULL;
|
|
|
|
if (scf && (flags & DMA_PREP_CONTINUE)) {
|
|
cont_q = 1;
|
|
src_cnt += 1;
|
|
}
|
|
|
|
/* Filling xor CDB */
|
|
cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
|
|
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
|
|
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
|
|
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
|
|
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
|
|
xor = desc->cdb_addr;
|
|
xor->cdb32 = cdb;
|
|
|
|
if (scf) {
|
|
/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
|
|
for (i = 0; i < save_src_cnt; i++)
|
|
xor->gfm[i] = scf[i];
|
|
if (cont_q)
|
|
xor->gfm[i++] = 1;
|
|
} else {
|
|
/* compute P, that is XOR all srcs */
|
|
for (i = 0; i < src_cnt; i++)
|
|
xor->gfm[i] = 1;
|
|
}
|
|
|
|
/* Filling frame 0 of compound frame descriptor with CDB */
|
|
cf = desc->cf_addr;
|
|
fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
|
|
|
|
/* Fill CFD's 1st frame with dest buffer */
|
|
fill_cfd_frame(cf, 1, len, dest, 0);
|
|
|
|
/* Fill CFD's rest of the frames with source buffers */
|
|
for (i = 2, j = 0; j < save_src_cnt; i++, j++)
|
|
fill_cfd_frame(cf, i, len, src[j], 0);
|
|
|
|
if (cont_q)
|
|
fill_cfd_frame(cf, i++, len, dest, 0);
|
|
|
|
/* Setting the final bit in the last source buffer frame in CFD */
|
|
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
|
|
|
|
return &desc->async_tx;
|
|
}
|
|
|
|
/*
|
|
* Prep function for P parity calculation.In RAID Engine terminology,
|
|
* XOR calculation is called GenQ calculation done through GenQ command
|
|
*/
|
|
static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len, unsigned long flags)
|
|
{
|
|
/* NULL let genq take all coef as 1 */
|
|
return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
|
|
}
|
|
|
|
/*
|
|
* Prep function for P/Q parity calculation.In RAID Engine terminology,
|
|
* P/Q calculation is called GenQQ done through GenQQ command
|
|
*/
|
|
static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
|
|
struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
unsigned long flags)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc;
|
|
struct fsl_re_pq_cdb *pq;
|
|
struct fsl_re_cmpnd_frame *cf;
|
|
u32 cdb;
|
|
u8 *p;
|
|
int gfmq_len, i, j;
|
|
unsigned int save_src_cnt = src_cnt;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
if (len > FSL_RE_MAX_DATA_LEN) {
|
|
dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
|
|
len, FSL_RE_MAX_DATA_LEN);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* RE requires at least 2 sources, if given only one source, we pass the
|
|
* second source same as the first one.
|
|
* With only one source, generating P is meaningless, only generate Q.
|
|
*/
|
|
if (src_cnt == 1) {
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_addr_t dma_src[2];
|
|
unsigned char coef[2];
|
|
|
|
dma_src[0] = *src;
|
|
coef[0] = *scf;
|
|
dma_src[1] = *src;
|
|
coef[1] = 0;
|
|
tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
|
|
flags);
|
|
if (tx)
|
|
desc = to_fsl_re_dma_desc(tx);
|
|
|
|
return tx;
|
|
}
|
|
|
|
/*
|
|
* During RAID6 array creation, Linux's MD layer gets P and Q
|
|
* calculated separately in two steps. But our RAID Engine has
|
|
* the capability to calculate both P and Q with a single command
|
|
* Hence to merge well with MD layer, we need to provide a hook
|
|
* here and call re_jq_prep_dma_genq() function
|
|
*/
|
|
|
|
if (flags & DMA_PREP_PQ_DISABLE_P)
|
|
return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
|
|
scf, len, flags);
|
|
|
|
if (flags & DMA_PREP_CONTINUE)
|
|
src_cnt += 3;
|
|
|
|
desc = fsl_re_chan_alloc_desc(re_chan, flags);
|
|
if (desc <= 0)
|
|
return NULL;
|
|
|
|
/* Filling GenQQ CDB */
|
|
cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
|
|
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
|
|
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
|
|
cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
|
|
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
|
|
|
|
pq = desc->cdb_addr;
|
|
pq->cdb32 = cdb;
|
|
|
|
p = pq->gfm_q1;
|
|
/* Init gfm_q1[] */
|
|
for (i = 0; i < src_cnt; i++)
|
|
p[i] = 1;
|
|
|
|
/* Align gfm[] to 32bit */
|
|
gfmq_len = ALIGN(src_cnt, 4);
|
|
|
|
/* Init gfm_q2[] */
|
|
p += gfmq_len;
|
|
for (i = 0; i < src_cnt; i++)
|
|
p[i] = scf[i];
|
|
|
|
/* Filling frame 0 of compound frame descriptor with CDB */
|
|
cf = desc->cf_addr;
|
|
fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
|
|
|
|
/* Fill CFD's 1st & 2nd frame with dest buffers */
|
|
for (i = 1, j = 0; i < 3; i++, j++)
|
|
fill_cfd_frame(cf, i, len, dest[j], 0);
|
|
|
|
/* Fill CFD's rest of the frames with source buffers */
|
|
for (i = 3, j = 0; j < save_src_cnt; i++, j++)
|
|
fill_cfd_frame(cf, i, len, src[j], 0);
|
|
|
|
/* PQ computation continuation */
|
|
if (flags & DMA_PREP_CONTINUE) {
|
|
if (src_cnt - save_src_cnt == 3) {
|
|
p[save_src_cnt] = 0;
|
|
p[save_src_cnt + 1] = 0;
|
|
p[save_src_cnt + 2] = 1;
|
|
fill_cfd_frame(cf, i++, len, dest[0], 0);
|
|
fill_cfd_frame(cf, i++, len, dest[1], 0);
|
|
fill_cfd_frame(cf, i++, len, dest[1], 0);
|
|
} else {
|
|
dev_err(re_chan->dev, "PQ tx continuation error!\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Setting the final bit in the last source buffer frame in CFD */
|
|
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
|
|
|
|
return &desc->async_tx;
|
|
}
|
|
|
|
/*
|
|
* Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
|
|
* command. Logic of this function will need to be modified once multipage
|
|
* support is added in Linux's MD/ASYNC Layer
|
|
*/
|
|
static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc;
|
|
size_t length;
|
|
struct fsl_re_cmpnd_frame *cf;
|
|
struct fsl_re_move_cdb *move;
|
|
u32 cdb;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
|
|
if (len > FSL_RE_MAX_DATA_LEN) {
|
|
dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
|
|
len, FSL_RE_MAX_DATA_LEN);
|
|
return NULL;
|
|
}
|
|
|
|
desc = fsl_re_chan_alloc_desc(re_chan, flags);
|
|
if (desc <= 0)
|
|
return NULL;
|
|
|
|
/* Filling move CDB */
|
|
cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
|
|
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
|
|
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
|
|
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
|
|
|
|
move = desc->cdb_addr;
|
|
move->cdb32 = cdb;
|
|
|
|
/* Filling frame 0 of CFD with move CDB */
|
|
cf = desc->cf_addr;
|
|
fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
|
|
|
|
length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
|
|
|
|
/* Fill CFD's 1st frame with dest buffer */
|
|
fill_cfd_frame(cf, 1, length, dest, 0);
|
|
|
|
/* Fill CFD's 2nd frame with src buffer */
|
|
fill_cfd_frame(cf, 2, length, src, 1);
|
|
|
|
return &desc->async_tx;
|
|
}
|
|
|
|
static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc;
|
|
void *cf;
|
|
dma_addr_t paddr;
|
|
int i;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
|
|
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
|
if (!desc)
|
|
break;
|
|
|
|
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
|
|
&paddr);
|
|
if (!cf) {
|
|
kfree(desc);
|
|
break;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&desc->node);
|
|
fsl_re_init_desc(re_chan, desc, cf, paddr);
|
|
|
|
list_add_tail(&desc->node, &re_chan->free_q);
|
|
re_chan->alloc_count++;
|
|
}
|
|
return re_chan->alloc_count;
|
|
}
|
|
|
|
static void fsl_re_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct fsl_re_chan *re_chan;
|
|
struct fsl_re_desc *desc;
|
|
|
|
re_chan = container_of(chan, struct fsl_re_chan, chan);
|
|
while (re_chan->alloc_count--) {
|
|
desc = list_first_entry(&re_chan->free_q,
|
|
struct fsl_re_desc,
|
|
node);
|
|
|
|
list_del(&desc->node);
|
|
dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
|
|
desc->cf_paddr);
|
|
kfree(desc);
|
|
}
|
|
|
|
if (!list_empty(&re_chan->free_q))
|
|
dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
|
|
}
|
|
|
|
static int fsl_re_chan_probe(struct platform_device *ofdev,
|
|
struct device_node *np, u8 q, u32 off)
|
|
{
|
|
struct device *dev, *chandev;
|
|
struct fsl_re_drv_private *re_priv;
|
|
struct fsl_re_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
u32 ptr;
|
|
u32 status;
|
|
int ret = 0, rc;
|
|
struct platform_device *chan_ofdev;
|
|
|
|
dev = &ofdev->dev;
|
|
re_priv = dev_get_drvdata(dev);
|
|
dma_dev = &re_priv->dma_dev;
|
|
|
|
chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return -ENOMEM;
|
|
|
|
/* create platform device for chan node */
|
|
chan_ofdev = of_platform_device_create(np, NULL, dev);
|
|
if (!chan_ofdev) {
|
|
dev_err(dev, "Not able to create ofdev for jr %d\n", q);
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
/* read reg property from dts */
|
|
rc = of_property_read_u32(np, "reg", &ptr);
|
|
if (rc) {
|
|
dev_err(dev, "Reg property not found in jr %d\n", q);
|
|
ret = -ENODEV;
|
|
goto err_free;
|
|
}
|
|
|
|
chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
|
|
off + ptr);
|
|
|
|
/* read irq property from dts */
|
|
chan->irq = irq_of_parse_and_map(np, 0);
|
|
if (!chan->irq) {
|
|
dev_err(dev, "No IRQ defined for JR %d\n", q);
|
|
ret = -ENODEV;
|
|
goto err_free;
|
|
}
|
|
|
|
snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
|
|
|
|
chandev = &chan_ofdev->dev;
|
|
tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
|
|
|
|
ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
|
|
if (ret) {
|
|
dev_err(dev, "Unable to register interrupt for JR %d\n", q);
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
re_priv->re_jrs[q] = chan;
|
|
chan->chan.device = dma_dev;
|
|
chan->chan.private = chan;
|
|
chan->dev = chandev;
|
|
chan->re_dev = re_priv;
|
|
|
|
spin_lock_init(&chan->desc_lock);
|
|
INIT_LIST_HEAD(&chan->ack_q);
|
|
INIT_LIST_HEAD(&chan->active_q);
|
|
INIT_LIST_HEAD(&chan->submit_q);
|
|
INIT_LIST_HEAD(&chan->free_q);
|
|
|
|
chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
|
|
GFP_KERNEL, &chan->inb_phys_addr);
|
|
if (!chan->inb_ring_virt_addr) {
|
|
dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
|
|
ret = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
|
|
chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
|
|
GFP_KERNEL, &chan->oub_phys_addr);
|
|
if (!chan->oub_ring_virt_addr) {
|
|
dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
|
|
ret = -ENOMEM;
|
|
goto err_free_1;
|
|
}
|
|
|
|
/* Program the Inbound/Outbound ring base addresses and size */
|
|
out_be32(&chan->jrregs->inbring_base_h,
|
|
chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
|
|
out_be32(&chan->jrregs->oubring_base_h,
|
|
chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
|
|
out_be32(&chan->jrregs->inbring_base_l,
|
|
chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
|
|
out_be32(&chan->jrregs->oubring_base_l,
|
|
chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
|
|
out_be32(&chan->jrregs->inbring_size,
|
|
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
|
|
out_be32(&chan->jrregs->oubring_size,
|
|
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
|
|
|
|
/* Read LIODN value from u-boot */
|
|
status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
|
|
|
|
/* Program the CFG reg */
|
|
out_be32(&chan->jrregs->jr_config_1,
|
|
FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
|
|
|
|
dev_set_drvdata(chandev, chan);
|
|
|
|
/* Enable RE/CHAN */
|
|
out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
|
|
|
|
return 0;
|
|
|
|
err_free_1:
|
|
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
|
|
chan->inb_phys_addr);
|
|
err_free:
|
|
return ret;
|
|
}
|
|
|
|
/* Probe function for RAID Engine */
|
|
static int fsl_re_probe(struct platform_device *ofdev)
|
|
{
|
|
struct fsl_re_drv_private *re_priv;
|
|
struct device_node *np;
|
|
struct device_node *child;
|
|
u32 off;
|
|
u8 ridx = 0;
|
|
struct dma_device *dma_dev;
|
|
struct resource *res;
|
|
int rc;
|
|
struct device *dev = &ofdev->dev;
|
|
|
|
re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
|
|
if (!re_priv)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
/* IOMAP the entire RAID Engine region */
|
|
re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!re_priv->re_regs)
|
|
return -EBUSY;
|
|
|
|
/* Program the RE mode */
|
|
out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
|
|
|
|
/* Program Galois Field polynomial */
|
|
out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
|
|
|
|
dev_info(dev, "version %x, mode %x, gfp %x\n",
|
|
in_be32(&re_priv->re_regs->re_version_id),
|
|
in_be32(&re_priv->re_regs->global_config),
|
|
in_be32(&re_priv->re_regs->galois_field_config));
|
|
|
|
dma_dev = &re_priv->dma_dev;
|
|
dma_dev->dev = dev;
|
|
INIT_LIST_HEAD(&dma_dev->channels);
|
|
dma_set_mask(dev, DMA_BIT_MASK(40));
|
|
|
|
dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
|
|
dma_dev->device_tx_status = fsl_re_tx_status;
|
|
dma_dev->device_issue_pending = fsl_re_issue_pending;
|
|
|
|
dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
|
|
dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
|
|
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
|
|
|
|
dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
|
|
dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
|
|
dma_cap_set(DMA_PQ, dma_dev->cap_mask);
|
|
|
|
dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
|
|
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
|
|
|
|
dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
|
|
|
|
re_priv->total_chans = 0;
|
|
|
|
re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
|
|
FSL_RE_CF_CDB_SIZE,
|
|
FSL_RE_CF_CDB_ALIGN, 0);
|
|
|
|
if (!re_priv->cf_desc_pool) {
|
|
dev_err(dev, "No memory for fsl re_cf desc pool\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
|
|
sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
|
|
FSL_RE_FRAME_ALIGN, 0);
|
|
if (!re_priv->hw_desc_pool) {
|
|
dev_err(dev, "No memory for fsl re_hw desc pool\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_set_drvdata(dev, re_priv);
|
|
|
|
/* Parse Device tree to find out the total number of JQs present */
|
|
for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
|
|
rc = of_property_read_u32(np, "reg", &off);
|
|
if (rc) {
|
|
dev_err(dev, "Reg property not found in JQ node\n");
|
|
of_node_put(np);
|
|
return -ENODEV;
|
|
}
|
|
/* Find out the Job Rings present under each JQ */
|
|
for_each_child_of_node(np, child) {
|
|
rc = of_device_is_compatible(child,
|
|
"fsl,raideng-v1.0-job-ring");
|
|
if (rc) {
|
|
fsl_re_chan_probe(ofdev, child, ridx++, off);
|
|
re_priv->total_chans++;
|
|
}
|
|
}
|
|
}
|
|
|
|
dma_async_device_register(dma_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_re_remove_chan(struct fsl_re_chan *chan)
|
|
{
|
|
tasklet_kill(&chan->irqtask);
|
|
|
|
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
|
|
chan->inb_phys_addr);
|
|
|
|
dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
|
|
chan->oub_phys_addr);
|
|
}
|
|
|
|
static int fsl_re_remove(struct platform_device *ofdev)
|
|
{
|
|
struct fsl_re_drv_private *re_priv;
|
|
struct device *dev;
|
|
int i;
|
|
|
|
dev = &ofdev->dev;
|
|
re_priv = dev_get_drvdata(dev);
|
|
|
|
/* Cleanup chan related memory areas */
|
|
for (i = 0; i < re_priv->total_chans; i++)
|
|
fsl_re_remove_chan(re_priv->re_jrs[i]);
|
|
|
|
/* Unregister the driver */
|
|
dma_async_device_unregister(&re_priv->dma_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id fsl_re_ids[] = {
|
|
{ .compatible = "fsl,raideng-v1.0", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_re_ids);
|
|
|
|
static struct platform_driver fsl_re_driver = {
|
|
.driver = {
|
|
.name = "fsl-raideng",
|
|
.of_match_table = fsl_re_ids,
|
|
},
|
|
.probe = fsl_re_probe,
|
|
.remove = fsl_re_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_re_driver);
|
|
|
|
MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
|