mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 18:24:23 +08:00
73d5c38a95
There has been a race in raid10 and raid1 for a long time which has only recently started showing up due to a scheduler changed. When a sync_read request finishes, as soon as reschedule_retry is called, another thread can mark the resync request as having completed, so md_do_sync can finish, ->stop can be called, and ->conf can be freed. So using conf after reschedule_retry is not safe. Similarly, when finishing a sync_write, calling md_done_sync must be the last thing we do, as it allows a chain of events which will free conf and other data structures. The first of these requires action in raid10.c The second requires action in raid1.c and raid10.c Cc: stable@kernel.org Signed-off-by: NeilBrown <neilb@suse.de>
2276 lines
61 KiB
C
2276 lines
61 KiB
C
/*
|
|
* raid10.c : Multiple Devices driver for Linux
|
|
*
|
|
* Copyright (C) 2000-2004 Neil Brown
|
|
*
|
|
* RAID-10 support for md.
|
|
*
|
|
* Base on code in raid1.c. See raid1.c for futher copyright information.
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* (for example /usr/src/linux/COPYING); if not, write to the Free
|
|
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include "dm-bio-list.h"
|
|
#include <linux/delay.h>
|
|
#include <linux/raid/raid10.h>
|
|
#include <linux/raid/bitmap.h>
|
|
|
|
/*
|
|
* RAID10 provides a combination of RAID0 and RAID1 functionality.
|
|
* The layout of data is defined by
|
|
* chunk_size
|
|
* raid_disks
|
|
* near_copies (stored in low byte of layout)
|
|
* far_copies (stored in second byte of layout)
|
|
* far_offset (stored in bit 16 of layout )
|
|
*
|
|
* The data to be stored is divided into chunks using chunksize.
|
|
* Each device is divided into far_copies sections.
|
|
* In each section, chunks are laid out in a style similar to raid0, but
|
|
* near_copies copies of each chunk is stored (each on a different drive).
|
|
* The starting device for each section is offset near_copies from the starting
|
|
* device of the previous section.
|
|
* Thus they are (near_copies*far_copies) of each chunk, and each is on a different
|
|
* drive.
|
|
* near_copies and far_copies must be at least one, and their product is at most
|
|
* raid_disks.
|
|
*
|
|
* If far_offset is true, then the far_copies are handled a bit differently.
|
|
* The copies are still in different stripes, but instead of be very far apart
|
|
* on disk, there are adjacent stripes.
|
|
*/
|
|
|
|
/*
|
|
* Number of guaranteed r10bios in case of extreme VM load:
|
|
*/
|
|
#define NR_RAID10_BIOS 256
|
|
|
|
static void unplug_slaves(mddev_t *mddev);
|
|
|
|
static void allow_barrier(conf_t *conf);
|
|
static void lower_barrier(conf_t *conf);
|
|
|
|
static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
conf_t *conf = data;
|
|
r10bio_t *r10_bio;
|
|
int size = offsetof(struct r10bio_s, devs[conf->copies]);
|
|
|
|
/* allocate a r10bio with room for raid_disks entries in the bios array */
|
|
r10_bio = kzalloc(size, gfp_flags);
|
|
if (!r10_bio)
|
|
unplug_slaves(conf->mddev);
|
|
|
|
return r10_bio;
|
|
}
|
|
|
|
static void r10bio_pool_free(void *r10_bio, void *data)
|
|
{
|
|
kfree(r10_bio);
|
|
}
|
|
|
|
/* Maximum size of each resync request */
|
|
#define RESYNC_BLOCK_SIZE (64*1024)
|
|
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
|
|
/* amount of memory to reserve for resync requests */
|
|
#define RESYNC_WINDOW (1024*1024)
|
|
/* maximum number of concurrent requests, memory permitting */
|
|
#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
|
|
|
|
/*
|
|
* When performing a resync, we need to read and compare, so
|
|
* we need as many pages are there are copies.
|
|
* When performing a recovery, we need 2 bios, one for read,
|
|
* one for write (we recover only one drive per r10buf)
|
|
*
|
|
*/
|
|
static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
conf_t *conf = data;
|
|
struct page *page;
|
|
r10bio_t *r10_bio;
|
|
struct bio *bio;
|
|
int i, j;
|
|
int nalloc;
|
|
|
|
r10_bio = r10bio_pool_alloc(gfp_flags, conf);
|
|
if (!r10_bio) {
|
|
unplug_slaves(conf->mddev);
|
|
return NULL;
|
|
}
|
|
|
|
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
|
|
nalloc = conf->copies; /* resync */
|
|
else
|
|
nalloc = 2; /* recovery */
|
|
|
|
/*
|
|
* Allocate bios.
|
|
*/
|
|
for (j = nalloc ; j-- ; ) {
|
|
bio = bio_alloc(gfp_flags, RESYNC_PAGES);
|
|
if (!bio)
|
|
goto out_free_bio;
|
|
r10_bio->devs[j].bio = bio;
|
|
}
|
|
/*
|
|
* Allocate RESYNC_PAGES data pages and attach them
|
|
* where needed.
|
|
*/
|
|
for (j = 0 ; j < nalloc; j++) {
|
|
bio = r10_bio->devs[j].bio;
|
|
for (i = 0; i < RESYNC_PAGES; i++) {
|
|
page = alloc_page(gfp_flags);
|
|
if (unlikely(!page))
|
|
goto out_free_pages;
|
|
|
|
bio->bi_io_vec[i].bv_page = page;
|
|
}
|
|
}
|
|
|
|
return r10_bio;
|
|
|
|
out_free_pages:
|
|
for ( ; i > 0 ; i--)
|
|
safe_put_page(bio->bi_io_vec[i-1].bv_page);
|
|
while (j--)
|
|
for (i = 0; i < RESYNC_PAGES ; i++)
|
|
safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
|
|
j = -1;
|
|
out_free_bio:
|
|
while ( ++j < nalloc )
|
|
bio_put(r10_bio->devs[j].bio);
|
|
r10bio_pool_free(r10_bio, conf);
|
|
return NULL;
|
|
}
|
|
|
|
static void r10buf_pool_free(void *__r10_bio, void *data)
|
|
{
|
|
int i;
|
|
conf_t *conf = data;
|
|
r10bio_t *r10bio = __r10_bio;
|
|
int j;
|
|
|
|
for (j=0; j < conf->copies; j++) {
|
|
struct bio *bio = r10bio->devs[j].bio;
|
|
if (bio) {
|
|
for (i = 0; i < RESYNC_PAGES; i++) {
|
|
safe_put_page(bio->bi_io_vec[i].bv_page);
|
|
bio->bi_io_vec[i].bv_page = NULL;
|
|
}
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
r10bio_pool_free(r10bio, conf);
|
|
}
|
|
|
|
static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < conf->copies; i++) {
|
|
struct bio **bio = & r10_bio->devs[i].bio;
|
|
if (*bio && *bio != IO_BLOCKED)
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
}
|
|
|
|
static void free_r10bio(r10bio_t *r10_bio)
|
|
{
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
|
|
/*
|
|
* Wake up any possible resync thread that waits for the device
|
|
* to go idle.
|
|
*/
|
|
allow_barrier(conf);
|
|
|
|
put_all_bios(conf, r10_bio);
|
|
mempool_free(r10_bio, conf->r10bio_pool);
|
|
}
|
|
|
|
static void put_buf(r10bio_t *r10_bio)
|
|
{
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
|
|
mempool_free(r10_bio, conf->r10buf_pool);
|
|
|
|
lower_barrier(conf);
|
|
}
|
|
|
|
static void reschedule_retry(r10bio_t *r10_bio)
|
|
{
|
|
unsigned long flags;
|
|
mddev_t *mddev = r10_bio->mddev;
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
list_add(&r10_bio->retry_list, &conf->retry_list);
|
|
conf->nr_queued ++;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
/* wake up frozen array... */
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
|
|
/*
|
|
* raid_end_bio_io() is called when we have finished servicing a mirrored
|
|
* operation and are ready to return a success/failure code to the buffer
|
|
* cache layer.
|
|
*/
|
|
static void raid_end_bio_io(r10bio_t *r10_bio)
|
|
{
|
|
struct bio *bio = r10_bio->master_bio;
|
|
|
|
bio_endio(bio,
|
|
test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
|
|
free_r10bio(r10_bio);
|
|
}
|
|
|
|
/*
|
|
* Update disk head position estimator based on IRQ completion info.
|
|
*/
|
|
static inline void update_head_pos(int slot, r10bio_t *r10_bio)
|
|
{
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
|
|
conf->mirrors[r10_bio->devs[slot].devnum].head_position =
|
|
r10_bio->devs[slot].addr + (r10_bio->sectors);
|
|
}
|
|
|
|
static void raid10_end_read_request(struct bio *bio, int error)
|
|
{
|
|
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
|
|
int slot, dev;
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
|
|
|
|
slot = r10_bio->read_slot;
|
|
dev = r10_bio->devs[slot].devnum;
|
|
/*
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
|
*/
|
|
update_head_pos(slot, r10_bio);
|
|
|
|
if (uptodate) {
|
|
/*
|
|
* Set R10BIO_Uptodate in our master bio, so that
|
|
* we will return a good error code to the higher
|
|
* levels even if IO on some other mirrored buffer fails.
|
|
*
|
|
* The 'master' represents the composite IO operation to
|
|
* user-side. So if something waits for IO, then it will
|
|
* wait for the 'master' bio.
|
|
*/
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
raid_end_bio_io(r10_bio);
|
|
} else {
|
|
/*
|
|
* oops, read error:
|
|
*/
|
|
char b[BDEVNAME_SIZE];
|
|
if (printk_ratelimit())
|
|
printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
|
|
bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
|
|
reschedule_retry(r10_bio);
|
|
}
|
|
|
|
rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
|
|
}
|
|
|
|
static void raid10_end_write_request(struct bio *bio, int error)
|
|
{
|
|
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
|
|
int slot, dev;
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
|
|
for (slot = 0; slot < conf->copies; slot++)
|
|
if (r10_bio->devs[slot].bio == bio)
|
|
break;
|
|
dev = r10_bio->devs[slot].devnum;
|
|
|
|
/*
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
|
*/
|
|
if (!uptodate) {
|
|
md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
|
|
/* an I/O failed, we can't clear the bitmap */
|
|
set_bit(R10BIO_Degraded, &r10_bio->state);
|
|
} else
|
|
/*
|
|
* Set R10BIO_Uptodate in our master bio, so that
|
|
* we will return a good error code for to the higher
|
|
* levels even if IO on some other mirrored buffer fails.
|
|
*
|
|
* The 'master' represents the composite IO operation to
|
|
* user-side. So if something waits for IO, then it will
|
|
* wait for the 'master' bio.
|
|
*/
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
|
|
update_head_pos(slot, r10_bio);
|
|
|
|
/*
|
|
*
|
|
* Let's see if all mirrored write operations have finished
|
|
* already.
|
|
*/
|
|
if (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
/* clear the bitmap if all writes complete successfully */
|
|
bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
|
|
r10_bio->sectors,
|
|
!test_bit(R10BIO_Degraded, &r10_bio->state),
|
|
0);
|
|
md_write_end(r10_bio->mddev);
|
|
raid_end_bio_io(r10_bio);
|
|
}
|
|
|
|
rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
|
|
}
|
|
|
|
|
|
/*
|
|
* RAID10 layout manager
|
|
* Aswell as the chunksize and raid_disks count, there are two
|
|
* parameters: near_copies and far_copies.
|
|
* near_copies * far_copies must be <= raid_disks.
|
|
* Normally one of these will be 1.
|
|
* If both are 1, we get raid0.
|
|
* If near_copies == raid_disks, we get raid1.
|
|
*
|
|
* Chunks are layed out in raid0 style with near_copies copies of the
|
|
* first chunk, followed by near_copies copies of the next chunk and
|
|
* so on.
|
|
* If far_copies > 1, then after 1/far_copies of the array has been assigned
|
|
* as described above, we start again with a device offset of near_copies.
|
|
* So we effectively have another copy of the whole array further down all
|
|
* the drives, but with blocks on different drives.
|
|
* With this layout, and block is never stored twice on the one device.
|
|
*
|
|
* raid10_find_phys finds the sector offset of a given virtual sector
|
|
* on each device that it is on.
|
|
*
|
|
* raid10_find_virt does the reverse mapping, from a device and a
|
|
* sector offset to a virtual address
|
|
*/
|
|
|
|
static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
|
|
{
|
|
int n,f;
|
|
sector_t sector;
|
|
sector_t chunk;
|
|
sector_t stripe;
|
|
int dev;
|
|
|
|
int slot = 0;
|
|
|
|
/* now calculate first sector/dev */
|
|
chunk = r10bio->sector >> conf->chunk_shift;
|
|
sector = r10bio->sector & conf->chunk_mask;
|
|
|
|
chunk *= conf->near_copies;
|
|
stripe = chunk;
|
|
dev = sector_div(stripe, conf->raid_disks);
|
|
if (conf->far_offset)
|
|
stripe *= conf->far_copies;
|
|
|
|
sector += stripe << conf->chunk_shift;
|
|
|
|
/* and calculate all the others */
|
|
for (n=0; n < conf->near_copies; n++) {
|
|
int d = dev;
|
|
sector_t s = sector;
|
|
r10bio->devs[slot].addr = sector;
|
|
r10bio->devs[slot].devnum = d;
|
|
slot++;
|
|
|
|
for (f = 1; f < conf->far_copies; f++) {
|
|
d += conf->near_copies;
|
|
if (d >= conf->raid_disks)
|
|
d -= conf->raid_disks;
|
|
s += conf->stride;
|
|
r10bio->devs[slot].devnum = d;
|
|
r10bio->devs[slot].addr = s;
|
|
slot++;
|
|
}
|
|
dev++;
|
|
if (dev >= conf->raid_disks) {
|
|
dev = 0;
|
|
sector += (conf->chunk_mask + 1);
|
|
}
|
|
}
|
|
BUG_ON(slot != conf->copies);
|
|
}
|
|
|
|
static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
|
|
{
|
|
sector_t offset, chunk, vchunk;
|
|
|
|
offset = sector & conf->chunk_mask;
|
|
if (conf->far_offset) {
|
|
int fc;
|
|
chunk = sector >> conf->chunk_shift;
|
|
fc = sector_div(chunk, conf->far_copies);
|
|
dev -= fc * conf->near_copies;
|
|
if (dev < 0)
|
|
dev += conf->raid_disks;
|
|
} else {
|
|
while (sector >= conf->stride) {
|
|
sector -= conf->stride;
|
|
if (dev < conf->near_copies)
|
|
dev += conf->raid_disks - conf->near_copies;
|
|
else
|
|
dev -= conf->near_copies;
|
|
}
|
|
chunk = sector >> conf->chunk_shift;
|
|
}
|
|
vchunk = chunk * conf->raid_disks + dev;
|
|
sector_div(vchunk, conf->near_copies);
|
|
return (vchunk << conf->chunk_shift) + offset;
|
|
}
|
|
|
|
/**
|
|
* raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
|
|
* @q: request queue
|
|
* @bvm: properties of new bio
|
|
* @biovec: the request that could be merged to it.
|
|
*
|
|
* Return amount of bytes we can accept at this offset
|
|
* If near_copies == raid_disk, there are no striping issues,
|
|
* but in that case, the function isn't called at all.
|
|
*/
|
|
static int raid10_mergeable_bvec(struct request_queue *q,
|
|
struct bvec_merge_data *bvm,
|
|
struct bio_vec *biovec)
|
|
{
|
|
mddev_t *mddev = q->queuedata;
|
|
sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
|
|
int max;
|
|
unsigned int chunk_sectors = mddev->chunk_size >> 9;
|
|
unsigned int bio_sectors = bvm->bi_size >> 9;
|
|
|
|
max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
|
|
if (max < 0) max = 0; /* bio_add cannot handle a negative return */
|
|
if (max <= biovec->bv_len && bio_sectors == 0)
|
|
return biovec->bv_len;
|
|
else
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
* This routine returns the disk from which the requested read should
|
|
* be done. There is a per-array 'next expected sequential IO' sector
|
|
* number - if this matches on the next IO then we use the last disk.
|
|
* There is also a per-disk 'last know head position' sector that is
|
|
* maintained from IRQ contexts, both the normal and the resync IO
|
|
* completion handlers update this position correctly. If there is no
|
|
* perfect sequential match then we pick the disk whose head is closest.
|
|
*
|
|
* If there are 2 mirrors in the same 2 devices, performance degrades
|
|
* because position is mirror, not device based.
|
|
*
|
|
* The rdev for the device selected will have nr_pending incremented.
|
|
*/
|
|
|
|
/*
|
|
* FIXME: possibly should rethink readbalancing and do it differently
|
|
* depending on near_copies / far_copies geometry.
|
|
*/
|
|
static int read_balance(conf_t *conf, r10bio_t *r10_bio)
|
|
{
|
|
const unsigned long this_sector = r10_bio->sector;
|
|
int disk, slot, nslot;
|
|
const int sectors = r10_bio->sectors;
|
|
sector_t new_distance, current_distance;
|
|
mdk_rdev_t *rdev;
|
|
|
|
raid10_find_phys(conf, r10_bio);
|
|
rcu_read_lock();
|
|
/*
|
|
* Check if we can balance. We can balance on the whole
|
|
* device if no resync is going on (recovery is ok), or below
|
|
* the resync window. We take the first readable disk when
|
|
* above the resync window.
|
|
*/
|
|
if (conf->mddev->recovery_cp < MaxSector
|
|
&& (this_sector + sectors >= conf->next_resync)) {
|
|
/* make sure that disk is operational */
|
|
slot = 0;
|
|
disk = r10_bio->devs[slot].devnum;
|
|
|
|
while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
|
|
r10_bio->devs[slot].bio == IO_BLOCKED ||
|
|
!test_bit(In_sync, &rdev->flags)) {
|
|
slot++;
|
|
if (slot == conf->copies) {
|
|
slot = 0;
|
|
disk = -1;
|
|
break;
|
|
}
|
|
disk = r10_bio->devs[slot].devnum;
|
|
}
|
|
goto rb_out;
|
|
}
|
|
|
|
|
|
/* make sure the disk is operational */
|
|
slot = 0;
|
|
disk = r10_bio->devs[slot].devnum;
|
|
while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
|
|
r10_bio->devs[slot].bio == IO_BLOCKED ||
|
|
!test_bit(In_sync, &rdev->flags)) {
|
|
slot ++;
|
|
if (slot == conf->copies) {
|
|
disk = -1;
|
|
goto rb_out;
|
|
}
|
|
disk = r10_bio->devs[slot].devnum;
|
|
}
|
|
|
|
|
|
current_distance = abs(r10_bio->devs[slot].addr -
|
|
conf->mirrors[disk].head_position);
|
|
|
|
/* Find the disk whose head is closest,
|
|
* or - for far > 1 - find the closest to partition beginning */
|
|
|
|
for (nslot = slot; nslot < conf->copies; nslot++) {
|
|
int ndisk = r10_bio->devs[nslot].devnum;
|
|
|
|
|
|
if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
|
|
r10_bio->devs[nslot].bio == IO_BLOCKED ||
|
|
!test_bit(In_sync, &rdev->flags))
|
|
continue;
|
|
|
|
/* This optimisation is debatable, and completely destroys
|
|
* sequential read speed for 'far copies' arrays. So only
|
|
* keep it for 'near' arrays, and review those later.
|
|
*/
|
|
if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
|
|
disk = ndisk;
|
|
slot = nslot;
|
|
break;
|
|
}
|
|
|
|
/* for far > 1 always use the lowest address */
|
|
if (conf->far_copies > 1)
|
|
new_distance = r10_bio->devs[nslot].addr;
|
|
else
|
|
new_distance = abs(r10_bio->devs[nslot].addr -
|
|
conf->mirrors[ndisk].head_position);
|
|
if (new_distance < current_distance) {
|
|
current_distance = new_distance;
|
|
disk = ndisk;
|
|
slot = nslot;
|
|
}
|
|
}
|
|
|
|
rb_out:
|
|
r10_bio->read_slot = slot;
|
|
/* conf->next_seq_sect = this_sector + sectors;*/
|
|
|
|
if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
|
|
atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
|
|
else
|
|
disk = -1;
|
|
rcu_read_unlock();
|
|
|
|
return disk;
|
|
}
|
|
|
|
static void unplug_slaves(mddev_t *mddev)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for (i=0; i<mddev->raid_disks; i++) {
|
|
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
|
|
struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
|
|
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
|
|
blk_unplug(r_queue);
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void raid10_unplug(struct request_queue *q)
|
|
{
|
|
mddev_t *mddev = q->queuedata;
|
|
|
|
unplug_slaves(q->queuedata);
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
|
|
static int raid10_congested(void *data, int bits)
|
|
{
|
|
mddev_t *mddev = data;
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i, ret = 0;
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
|
|
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev && !test_bit(Faulty, &rdev->flags)) {
|
|
struct request_queue *q = bdev_get_queue(rdev->bdev);
|
|
|
|
ret |= bdi_congested(&q->backing_dev_info, bits);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static int flush_pending_writes(conf_t *conf)
|
|
{
|
|
/* Any writes that have been queued but are awaiting
|
|
* bitmap updates get flushed here.
|
|
* We return 1 if any requests were actually submitted.
|
|
*/
|
|
int rv = 0;
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
|
|
if (conf->pending_bio_list.head) {
|
|
struct bio *bio;
|
|
bio = bio_list_get(&conf->pending_bio_list);
|
|
blk_remove_plug(conf->mddev->queue);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
/* flush any pending bitmap writes to disk
|
|
* before proceeding w/ I/O */
|
|
bitmap_unplug(conf->mddev->bitmap);
|
|
|
|
while (bio) { /* submit pending writes */
|
|
struct bio *next = bio->bi_next;
|
|
bio->bi_next = NULL;
|
|
generic_make_request(bio);
|
|
bio = next;
|
|
}
|
|
rv = 1;
|
|
} else
|
|
spin_unlock_irq(&conf->device_lock);
|
|
return rv;
|
|
}
|
|
/* Barriers....
|
|
* Sometimes we need to suspend IO while we do something else,
|
|
* either some resync/recovery, or reconfigure the array.
|
|
* To do this we raise a 'barrier'.
|
|
* The 'barrier' is a counter that can be raised multiple times
|
|
* to count how many activities are happening which preclude
|
|
* normal IO.
|
|
* We can only raise the barrier if there is no pending IO.
|
|
* i.e. if nr_pending == 0.
|
|
* We choose only to raise the barrier if no-one is waiting for the
|
|
* barrier to go down. This means that as soon as an IO request
|
|
* is ready, no other operations which require a barrier will start
|
|
* until the IO request has had a chance.
|
|
*
|
|
* So: regular IO calls 'wait_barrier'. When that returns there
|
|
* is no backgroup IO happening, It must arrange to call
|
|
* allow_barrier when it has finished its IO.
|
|
* backgroup IO calls must call raise_barrier. Once that returns
|
|
* there is no normal IO happeing. It must arrange to call
|
|
* lower_barrier when the particular background IO completes.
|
|
*/
|
|
|
|
static void raise_barrier(conf_t *conf, int force)
|
|
{
|
|
BUG_ON(force && !conf->barrier);
|
|
spin_lock_irq(&conf->resync_lock);
|
|
|
|
/* Wait until no block IO is waiting (unless 'force') */
|
|
wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
|
|
conf->resync_lock,
|
|
raid10_unplug(conf->mddev->queue));
|
|
|
|
/* block any new IO from starting */
|
|
conf->barrier++;
|
|
|
|
/* No wait for all pending IO to complete */
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!conf->nr_pending && conf->barrier < RESYNC_DEPTH,
|
|
conf->resync_lock,
|
|
raid10_unplug(conf->mddev->queue));
|
|
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void lower_barrier(conf_t *conf)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->resync_lock, flags);
|
|
conf->barrier--;
|
|
spin_unlock_irqrestore(&conf->resync_lock, flags);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void wait_barrier(conf_t *conf)
|
|
{
|
|
spin_lock_irq(&conf->resync_lock);
|
|
if (conf->barrier) {
|
|
conf->nr_waiting++;
|
|
wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
|
|
conf->resync_lock,
|
|
raid10_unplug(conf->mddev->queue));
|
|
conf->nr_waiting--;
|
|
}
|
|
conf->nr_pending++;
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void allow_barrier(conf_t *conf)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->resync_lock, flags);
|
|
conf->nr_pending--;
|
|
spin_unlock_irqrestore(&conf->resync_lock, flags);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void freeze_array(conf_t *conf)
|
|
{
|
|
/* stop syncio and normal IO and wait for everything to
|
|
* go quiet.
|
|
* We increment barrier and nr_waiting, and then
|
|
* wait until nr_pending match nr_queued+1
|
|
* This is called in the context of one normal IO request
|
|
* that has failed. Thus any sync request that might be pending
|
|
* will be blocked by nr_pending, and we need to wait for
|
|
* pending IO requests to complete or be queued for re-try.
|
|
* Thus the number queued (nr_queued) plus this request (1)
|
|
* must match the number of pending IOs (nr_pending) before
|
|
* we continue.
|
|
*/
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->barrier++;
|
|
conf->nr_waiting++;
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
conf->nr_pending == conf->nr_queued+1,
|
|
conf->resync_lock,
|
|
({ flush_pending_writes(conf);
|
|
raid10_unplug(conf->mddev->queue); }));
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void unfreeze_array(conf_t *conf)
|
|
{
|
|
/* reverse the effect of the freeze */
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->barrier--;
|
|
conf->nr_waiting--;
|
|
wake_up(&conf->wait_barrier);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static int make_request(struct request_queue *q, struct bio * bio)
|
|
{
|
|
mddev_t *mddev = q->queuedata;
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
mirror_info_t *mirror;
|
|
r10bio_t *r10_bio;
|
|
struct bio *read_bio;
|
|
int cpu;
|
|
int i;
|
|
int chunk_sects = conf->chunk_mask + 1;
|
|
const int rw = bio_data_dir(bio);
|
|
const int do_sync = bio_sync(bio);
|
|
struct bio_list bl;
|
|
unsigned long flags;
|
|
mdk_rdev_t *blocked_rdev;
|
|
|
|
if (unlikely(bio_barrier(bio))) {
|
|
bio_endio(bio, -EOPNOTSUPP);
|
|
return 0;
|
|
}
|
|
|
|
/* If this request crosses a chunk boundary, we need to
|
|
* split it. This will only happen for 1 PAGE (or less) requests.
|
|
*/
|
|
if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
|
|
> chunk_sects &&
|
|
conf->near_copies < conf->raid_disks)) {
|
|
struct bio_pair *bp;
|
|
/* Sanity check -- queue functions should prevent this happening */
|
|
if (bio->bi_vcnt != 1 ||
|
|
bio->bi_idx != 0)
|
|
goto bad_map;
|
|
/* This is a one page bio that upper layers
|
|
* refuse to split for us, so we need to split it.
|
|
*/
|
|
bp = bio_split(bio,
|
|
chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
|
|
if (make_request(q, &bp->bio1))
|
|
generic_make_request(&bp->bio1);
|
|
if (make_request(q, &bp->bio2))
|
|
generic_make_request(&bp->bio2);
|
|
|
|
bio_pair_release(bp);
|
|
return 0;
|
|
bad_map:
|
|
printk("raid10_make_request bug: can't convert block across chunks"
|
|
" or bigger than %dk %llu %d\n", chunk_sects/2,
|
|
(unsigned long long)bio->bi_sector, bio->bi_size >> 10);
|
|
|
|
bio_io_error(bio);
|
|
return 0;
|
|
}
|
|
|
|
md_write_start(mddev, bio);
|
|
|
|
/*
|
|
* Register the new request and wait if the reconstruction
|
|
* thread has put up a bar for new requests.
|
|
* Continue immediately if no resync is active currently.
|
|
*/
|
|
wait_barrier(conf);
|
|
|
|
cpu = part_stat_lock();
|
|
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
|
|
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
|
|
bio_sectors(bio));
|
|
part_stat_unlock();
|
|
|
|
r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
|
|
|
|
r10_bio->master_bio = bio;
|
|
r10_bio->sectors = bio->bi_size >> 9;
|
|
|
|
r10_bio->mddev = mddev;
|
|
r10_bio->sector = bio->bi_sector;
|
|
r10_bio->state = 0;
|
|
|
|
if (rw == READ) {
|
|
/*
|
|
* read balancing logic:
|
|
*/
|
|
int disk = read_balance(conf, r10_bio);
|
|
int slot = r10_bio->read_slot;
|
|
if (disk < 0) {
|
|
raid_end_bio_io(r10_bio);
|
|
return 0;
|
|
}
|
|
mirror = conf->mirrors + disk;
|
|
|
|
read_bio = bio_clone(bio, GFP_NOIO);
|
|
|
|
r10_bio->devs[slot].bio = read_bio;
|
|
|
|
read_bio->bi_sector = r10_bio->devs[slot].addr +
|
|
mirror->rdev->data_offset;
|
|
read_bio->bi_bdev = mirror->rdev->bdev;
|
|
read_bio->bi_end_io = raid10_end_read_request;
|
|
read_bio->bi_rw = READ | do_sync;
|
|
read_bio->bi_private = r10_bio;
|
|
|
|
generic_make_request(read_bio);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* WRITE:
|
|
*/
|
|
/* first select target devices under rcu_lock and
|
|
* inc refcount on their rdev. Record them by setting
|
|
* bios[x] to bio
|
|
*/
|
|
raid10_find_phys(conf, r10_bio);
|
|
retry_write:
|
|
blocked_rdev = NULL;
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
blocked_rdev = rdev;
|
|
break;
|
|
}
|
|
if (rdev && !test_bit(Faulty, &rdev->flags)) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
r10_bio->devs[i].bio = bio;
|
|
} else {
|
|
r10_bio->devs[i].bio = NULL;
|
|
set_bit(R10BIO_Degraded, &r10_bio->state);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (unlikely(blocked_rdev)) {
|
|
/* Have to wait for this device to get unblocked, then retry */
|
|
int j;
|
|
int d;
|
|
|
|
for (j = 0; j < i; j++)
|
|
if (r10_bio->devs[j].bio) {
|
|
d = r10_bio->devs[j].devnum;
|
|
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
|
|
}
|
|
allow_barrier(conf);
|
|
md_wait_for_blocked_rdev(blocked_rdev, mddev);
|
|
wait_barrier(conf);
|
|
goto retry_write;
|
|
}
|
|
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
|
|
bio_list_init(&bl);
|
|
for (i = 0; i < conf->copies; i++) {
|
|
struct bio *mbio;
|
|
int d = r10_bio->devs[i].devnum;
|
|
if (!r10_bio->devs[i].bio)
|
|
continue;
|
|
|
|
mbio = bio_clone(bio, GFP_NOIO);
|
|
r10_bio->devs[i].bio = mbio;
|
|
|
|
mbio->bi_sector = r10_bio->devs[i].addr+
|
|
conf->mirrors[d].rdev->data_offset;
|
|
mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
|
|
mbio->bi_end_io = raid10_end_write_request;
|
|
mbio->bi_rw = WRITE | do_sync;
|
|
mbio->bi_private = r10_bio;
|
|
|
|
atomic_inc(&r10_bio->remaining);
|
|
bio_list_add(&bl, mbio);
|
|
}
|
|
|
|
if (unlikely(!atomic_read(&r10_bio->remaining))) {
|
|
/* the array is dead */
|
|
md_write_end(mddev);
|
|
raid_end_bio_io(r10_bio);
|
|
return 0;
|
|
}
|
|
|
|
bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
bio_list_merge(&conf->pending_bio_list, &bl);
|
|
blk_plug_device(mddev->queue);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
/* In case raid10d snuck in to freeze_array */
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
if (do_sync)
|
|
md_wakeup_thread(mddev->thread);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void status(struct seq_file *seq, mddev_t *mddev)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i;
|
|
|
|
if (conf->near_copies < conf->raid_disks)
|
|
seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
|
|
if (conf->near_copies > 1)
|
|
seq_printf(seq, " %d near-copies", conf->near_copies);
|
|
if (conf->far_copies > 1) {
|
|
if (conf->far_offset)
|
|
seq_printf(seq, " %d offset-copies", conf->far_copies);
|
|
else
|
|
seq_printf(seq, " %d far-copies", conf->far_copies);
|
|
}
|
|
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
|
|
conf->raid_disks - mddev->degraded);
|
|
for (i = 0; i < conf->raid_disks; i++)
|
|
seq_printf(seq, "%s",
|
|
conf->mirrors[i].rdev &&
|
|
test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
|
|
seq_printf(seq, "]");
|
|
}
|
|
|
|
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
|
|
/*
|
|
* If it is not operational, then we have already marked it as dead
|
|
* else if it is the last working disks, ignore the error, let the
|
|
* next level up know.
|
|
* else mark the drive as failed
|
|
*/
|
|
if (test_bit(In_sync, &rdev->flags)
|
|
&& conf->raid_disks-mddev->degraded == 1)
|
|
/*
|
|
* Don't fail the drive, just return an IO error.
|
|
* The test should really be more sophisticated than
|
|
* "working_disks == 1", but it isn't critical, and
|
|
* can wait until we do more sophisticated "is the drive
|
|
* really dead" tests...
|
|
*/
|
|
return;
|
|
if (test_and_clear_bit(In_sync, &rdev->flags)) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded++;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
/*
|
|
* if recovery is running, make sure it aborts.
|
|
*/
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
}
|
|
set_bit(Faulty, &rdev->flags);
|
|
set_bit(MD_CHANGE_DEVS, &mddev->flags);
|
|
printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
|
|
"raid10: Operation continuing on %d devices.\n",
|
|
bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
|
|
}
|
|
|
|
static void print_conf(conf_t *conf)
|
|
{
|
|
int i;
|
|
mirror_info_t *tmp;
|
|
|
|
printk("RAID10 conf printout:\n");
|
|
if (!conf) {
|
|
printk("(!conf)\n");
|
|
return;
|
|
}
|
|
printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
|
|
conf->raid_disks);
|
|
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
char b[BDEVNAME_SIZE];
|
|
tmp = conf->mirrors + i;
|
|
if (tmp->rdev)
|
|
printk(" disk %d, wo:%d, o:%d, dev:%s\n",
|
|
i, !test_bit(In_sync, &tmp->rdev->flags),
|
|
!test_bit(Faulty, &tmp->rdev->flags),
|
|
bdevname(tmp->rdev->bdev,b));
|
|
}
|
|
}
|
|
|
|
static void close_sync(conf_t *conf)
|
|
{
|
|
wait_barrier(conf);
|
|
allow_barrier(conf);
|
|
|
|
mempool_destroy(conf->r10buf_pool);
|
|
conf->r10buf_pool = NULL;
|
|
}
|
|
|
|
/* check if there are enough drives for
|
|
* every block to appear on atleast one
|
|
*/
|
|
static int enough(conf_t *conf)
|
|
{
|
|
int first = 0;
|
|
|
|
do {
|
|
int n = conf->copies;
|
|
int cnt = 0;
|
|
while (n--) {
|
|
if (conf->mirrors[first].rdev)
|
|
cnt++;
|
|
first = (first+1) % conf->raid_disks;
|
|
}
|
|
if (cnt == 0)
|
|
return 0;
|
|
} while (first != 0);
|
|
return 1;
|
|
}
|
|
|
|
static int raid10_spare_active(mddev_t *mddev)
|
|
{
|
|
int i;
|
|
conf_t *conf = mddev->private;
|
|
mirror_info_t *tmp;
|
|
|
|
/*
|
|
* Find all non-in_sync disks within the RAID10 configuration
|
|
* and mark them in_sync
|
|
*/
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
tmp = conf->mirrors + i;
|
|
if (tmp->rdev
|
|
&& !test_bit(Faulty, &tmp->rdev->flags)
|
|
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded--;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
}
|
|
}
|
|
|
|
print_conf(conf);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
|
|
{
|
|
conf_t *conf = mddev->private;
|
|
int err = -EEXIST;
|
|
int mirror;
|
|
mirror_info_t *p;
|
|
int first = 0;
|
|
int last = mddev->raid_disks - 1;
|
|
|
|
if (mddev->recovery_cp < MaxSector)
|
|
/* only hot-add to in-sync arrays, as recovery is
|
|
* very different from resync
|
|
*/
|
|
return -EBUSY;
|
|
if (!enough(conf))
|
|
return -EINVAL;
|
|
|
|
if (rdev->raid_disk >= 0)
|
|
first = last = rdev->raid_disk;
|
|
|
|
if (rdev->saved_raid_disk >= 0 &&
|
|
rdev->saved_raid_disk >= first &&
|
|
conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
|
|
mirror = rdev->saved_raid_disk;
|
|
else
|
|
mirror = first;
|
|
for ( ; mirror <= last ; mirror++)
|
|
if ( !(p=conf->mirrors+mirror)->rdev) {
|
|
|
|
blk_queue_stack_limits(mddev->queue,
|
|
rdev->bdev->bd_disk->queue);
|
|
/* as we don't honour merge_bvec_fn, we must never risk
|
|
* violating it, so limit ->max_sector to one PAGE, as
|
|
* a one page request is never in violation.
|
|
*/
|
|
if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
|
|
mddev->queue->max_sectors > (PAGE_SIZE>>9))
|
|
mddev->queue->max_sectors = (PAGE_SIZE>>9);
|
|
|
|
p->head_position = 0;
|
|
rdev->raid_disk = mirror;
|
|
err = 0;
|
|
if (rdev->saved_raid_disk != mirror)
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p->rdev, rdev);
|
|
break;
|
|
}
|
|
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static int raid10_remove_disk(mddev_t *mddev, int number)
|
|
{
|
|
conf_t *conf = mddev->private;
|
|
int err = 0;
|
|
mdk_rdev_t *rdev;
|
|
mirror_info_t *p = conf->mirrors+ number;
|
|
|
|
print_conf(conf);
|
|
rdev = p->rdev;
|
|
if (rdev) {
|
|
if (test_bit(In_sync, &rdev->flags) ||
|
|
atomic_read(&rdev->nr_pending)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
/* Only remove faulty devices in recovery
|
|
* is not possible.
|
|
*/
|
|
if (!test_bit(Faulty, &rdev->flags) &&
|
|
enough(conf)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
p->rdev = NULL;
|
|
synchronize_rcu();
|
|
if (atomic_read(&rdev->nr_pending)) {
|
|
/* lost the race, try later */
|
|
err = -EBUSY;
|
|
p->rdev = rdev;
|
|
}
|
|
}
|
|
abort:
|
|
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
|
|
static void end_sync_read(struct bio *bio, int error)
|
|
{
|
|
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
|
|
conf_t *conf = mddev_to_conf(r10_bio->mddev);
|
|
int i,d;
|
|
|
|
for (i=0; i<conf->copies; i++)
|
|
if (r10_bio->devs[i].bio == bio)
|
|
break;
|
|
BUG_ON(i == conf->copies);
|
|
update_head_pos(i, r10_bio);
|
|
d = r10_bio->devs[i].devnum;
|
|
|
|
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
else {
|
|
atomic_add(r10_bio->sectors,
|
|
&conf->mirrors[d].rdev->corrected_errors);
|
|
if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
|
|
md_error(r10_bio->mddev,
|
|
conf->mirrors[d].rdev);
|
|
}
|
|
|
|
/* for reconstruct, we always reschedule after a read.
|
|
* for resync, only after all reads
|
|
*/
|
|
rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
|
|
if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
|
|
atomic_dec_and_test(&r10_bio->remaining)) {
|
|
/* we have read all the blocks,
|
|
* do the comparison in process context in raid10d
|
|
*/
|
|
reschedule_retry(r10_bio);
|
|
}
|
|
}
|
|
|
|
static void end_sync_write(struct bio *bio, int error)
|
|
{
|
|
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
|
|
mddev_t *mddev = r10_bio->mddev;
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i,d;
|
|
|
|
for (i = 0; i < conf->copies; i++)
|
|
if (r10_bio->devs[i].bio == bio)
|
|
break;
|
|
d = r10_bio->devs[i].devnum;
|
|
|
|
if (!uptodate)
|
|
md_error(mddev, conf->mirrors[d].rdev);
|
|
|
|
update_head_pos(i, r10_bio);
|
|
|
|
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
|
|
while (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
if (r10_bio->master_bio == NULL) {
|
|
/* the primary of several recovery bios */
|
|
sector_t s = r10_bio->sectors;
|
|
put_buf(r10_bio);
|
|
md_done_sync(mddev, s, 1);
|
|
break;
|
|
} else {
|
|
r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
|
|
put_buf(r10_bio);
|
|
r10_bio = r10_bio2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: sync and recover and handled very differently for raid10
|
|
* This code is for resync.
|
|
* For resync, we read through virtual addresses and read all blocks.
|
|
* If there is any error, we schedule a write. The lowest numbered
|
|
* drive is authoritative.
|
|
* However requests come for physical address, so we need to map.
|
|
* For every physical address there are raid_disks/copies virtual addresses,
|
|
* which is always are least one, but is not necessarly an integer.
|
|
* This means that a physical address can span multiple chunks, so we may
|
|
* have to submit multiple io requests for a single sync request.
|
|
*/
|
|
/*
|
|
* We check if all blocks are in-sync and only write to blocks that
|
|
* aren't in sync
|
|
*/
|
|
static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i, first;
|
|
struct bio *tbio, *fbio;
|
|
|
|
atomic_set(&r10_bio->remaining, 1);
|
|
|
|
/* find the first device with a block */
|
|
for (i=0; i<conf->copies; i++)
|
|
if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
|
|
break;
|
|
|
|
if (i == conf->copies)
|
|
goto done;
|
|
|
|
first = i;
|
|
fbio = r10_bio->devs[i].bio;
|
|
|
|
/* now find blocks with errors */
|
|
for (i=0 ; i < conf->copies ; i++) {
|
|
int j, d;
|
|
int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
|
|
|
|
tbio = r10_bio->devs[i].bio;
|
|
|
|
if (tbio->bi_end_io != end_sync_read)
|
|
continue;
|
|
if (i == first)
|
|
continue;
|
|
if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
|
|
/* We know that the bi_io_vec layout is the same for
|
|
* both 'first' and 'i', so we just compare them.
|
|
* All vec entries are PAGE_SIZE;
|
|
*/
|
|
for (j = 0; j < vcnt; j++)
|
|
if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
|
|
page_address(tbio->bi_io_vec[j].bv_page),
|
|
PAGE_SIZE))
|
|
break;
|
|
if (j == vcnt)
|
|
continue;
|
|
mddev->resync_mismatches += r10_bio->sectors;
|
|
}
|
|
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
|
|
/* Don't fix anything. */
|
|
continue;
|
|
/* Ok, we need to write this bio
|
|
* First we need to fixup bv_offset, bv_len and
|
|
* bi_vecs, as the read request might have corrupted these
|
|
*/
|
|
tbio->bi_vcnt = vcnt;
|
|
tbio->bi_size = r10_bio->sectors << 9;
|
|
tbio->bi_idx = 0;
|
|
tbio->bi_phys_segments = 0;
|
|
tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
|
|
tbio->bi_flags |= 1 << BIO_UPTODATE;
|
|
tbio->bi_next = NULL;
|
|
tbio->bi_rw = WRITE;
|
|
tbio->bi_private = r10_bio;
|
|
tbio->bi_sector = r10_bio->devs[i].addr;
|
|
|
|
for (j=0; j < vcnt ; j++) {
|
|
tbio->bi_io_vec[j].bv_offset = 0;
|
|
tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
|
|
|
|
memcpy(page_address(tbio->bi_io_vec[j].bv_page),
|
|
page_address(fbio->bi_io_vec[j].bv_page),
|
|
PAGE_SIZE);
|
|
}
|
|
tbio->bi_end_io = end_sync_write;
|
|
|
|
d = r10_bio->devs[i].devnum;
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
atomic_inc(&r10_bio->remaining);
|
|
md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
|
|
|
|
tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
|
|
tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
|
|
generic_make_request(tbio);
|
|
}
|
|
|
|
done:
|
|
if (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
md_done_sync(mddev, r10_bio->sectors, 1);
|
|
put_buf(r10_bio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now for the recovery code.
|
|
* Recovery happens across physical sectors.
|
|
* We recover all non-is_sync drives by finding the virtual address of
|
|
* each, and then choose a working drive that also has that virt address.
|
|
* There is a separate r10_bio for each non-in_sync drive.
|
|
* Only the first two slots are in use. The first for reading,
|
|
* The second for writing.
|
|
*
|
|
*/
|
|
|
|
static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
int i, d;
|
|
struct bio *bio, *wbio;
|
|
|
|
|
|
/* move the pages across to the second bio
|
|
* and submit the write request
|
|
*/
|
|
bio = r10_bio->devs[0].bio;
|
|
wbio = r10_bio->devs[1].bio;
|
|
for (i=0; i < wbio->bi_vcnt; i++) {
|
|
struct page *p = bio->bi_io_vec[i].bv_page;
|
|
bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
|
|
wbio->bi_io_vec[i].bv_page = p;
|
|
}
|
|
d = r10_bio->devs[1].devnum;
|
|
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
|
|
if (test_bit(R10BIO_Uptodate, &r10_bio->state))
|
|
generic_make_request(wbio);
|
|
else
|
|
bio_endio(wbio, -EIO);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is a kernel thread which:
|
|
*
|
|
* 1. Retries failed read operations on working mirrors.
|
|
* 2. Updates the raid superblock when problems encounter.
|
|
* 3. Performs writes following reads for array synchronising.
|
|
*/
|
|
|
|
static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
|
|
{
|
|
int sect = 0; /* Offset from r10_bio->sector */
|
|
int sectors = r10_bio->sectors;
|
|
mdk_rdev_t*rdev;
|
|
while(sectors) {
|
|
int s = sectors;
|
|
int sl = r10_bio->read_slot;
|
|
int success = 0;
|
|
int start;
|
|
|
|
if (s > (PAGE_SIZE>>9))
|
|
s = PAGE_SIZE >> 9;
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
int d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
test_bit(In_sync, &rdev->flags)) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
success = sync_page_io(rdev->bdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect + rdev->data_offset,
|
|
s<<9,
|
|
conf->tmppage, READ);
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
if (success)
|
|
break;
|
|
}
|
|
sl++;
|
|
if (sl == conf->copies)
|
|
sl = 0;
|
|
} while (!success && sl != r10_bio->read_slot);
|
|
rcu_read_unlock();
|
|
|
|
if (!success) {
|
|
/* Cannot read from anywhere -- bye bye array */
|
|
int dn = r10_bio->devs[r10_bio->read_slot].devnum;
|
|
md_error(mddev, conf->mirrors[dn].rdev);
|
|
break;
|
|
}
|
|
|
|
start = sl;
|
|
/* write it back and re-read */
|
|
rcu_read_lock();
|
|
while (sl != r10_bio->read_slot) {
|
|
int d;
|
|
if (sl==0)
|
|
sl = conf->copies;
|
|
sl--;
|
|
d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
test_bit(In_sync, &rdev->flags)) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
atomic_add(s, &rdev->corrected_errors);
|
|
if (sync_page_io(rdev->bdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect + rdev->data_offset,
|
|
s<<9, conf->tmppage, WRITE)
|
|
== 0)
|
|
/* Well, this device is dead */
|
|
md_error(mddev, rdev);
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
}
|
|
}
|
|
sl = start;
|
|
while (sl != r10_bio->read_slot) {
|
|
int d;
|
|
if (sl==0)
|
|
sl = conf->copies;
|
|
sl--;
|
|
d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
test_bit(In_sync, &rdev->flags)) {
|
|
char b[BDEVNAME_SIZE];
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
if (sync_page_io(rdev->bdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect + rdev->data_offset,
|
|
s<<9, conf->tmppage, READ) == 0)
|
|
/* Well, this device is dead */
|
|
md_error(mddev, rdev);
|
|
else
|
|
printk(KERN_INFO
|
|
"raid10:%s: read error corrected"
|
|
" (%d sectors at %llu on %s)\n",
|
|
mdname(mddev), s,
|
|
(unsigned long long)(sect+
|
|
rdev->data_offset),
|
|
bdevname(rdev->bdev, b));
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
sectors -= s;
|
|
sect += s;
|
|
}
|
|
}
|
|
|
|
static void raid10d(mddev_t *mddev)
|
|
{
|
|
r10bio_t *r10_bio;
|
|
struct bio *bio;
|
|
unsigned long flags;
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
struct list_head *head = &conf->retry_list;
|
|
int unplug=0;
|
|
mdk_rdev_t *rdev;
|
|
|
|
md_check_recovery(mddev);
|
|
|
|
for (;;) {
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
unplug += flush_pending_writes(conf);
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (list_empty(head)) {
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
break;
|
|
}
|
|
r10_bio = list_entry(head->prev, r10bio_t, retry_list);
|
|
list_del(head->prev);
|
|
conf->nr_queued--;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
mddev = r10_bio->mddev;
|
|
conf = mddev_to_conf(mddev);
|
|
if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
|
|
sync_request_write(mddev, r10_bio);
|
|
unplug = 1;
|
|
} else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
|
|
recovery_request_write(mddev, r10_bio);
|
|
unplug = 1;
|
|
} else {
|
|
int mirror;
|
|
/* we got a read error. Maybe the drive is bad. Maybe just
|
|
* the block and we can fix it.
|
|
* We freeze all other IO, and try reading the block from
|
|
* other devices. When we find one, we re-write
|
|
* and check it that fixes the read error.
|
|
* This is all done synchronously while the array is
|
|
* frozen.
|
|
*/
|
|
if (mddev->ro == 0) {
|
|
freeze_array(conf);
|
|
fix_read_error(conf, mddev, r10_bio);
|
|
unfreeze_array(conf);
|
|
}
|
|
|
|
bio = r10_bio->devs[r10_bio->read_slot].bio;
|
|
r10_bio->devs[r10_bio->read_slot].bio =
|
|
mddev->ro ? IO_BLOCKED : NULL;
|
|
mirror = read_balance(conf, r10_bio);
|
|
if (mirror == -1) {
|
|
printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
|
|
" read error for block %llu\n",
|
|
bdevname(bio->bi_bdev,b),
|
|
(unsigned long long)r10_bio->sector);
|
|
raid_end_bio_io(r10_bio);
|
|
bio_put(bio);
|
|
} else {
|
|
const int do_sync = bio_sync(r10_bio->master_bio);
|
|
bio_put(bio);
|
|
rdev = conf->mirrors[mirror].rdev;
|
|
if (printk_ratelimit())
|
|
printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
|
|
" another mirror\n",
|
|
bdevname(rdev->bdev,b),
|
|
(unsigned long long)r10_bio->sector);
|
|
bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
|
|
r10_bio->devs[r10_bio->read_slot].bio = bio;
|
|
bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
|
|
+ rdev->data_offset;
|
|
bio->bi_bdev = rdev->bdev;
|
|
bio->bi_rw = READ | do_sync;
|
|
bio->bi_private = r10_bio;
|
|
bio->bi_end_io = raid10_end_read_request;
|
|
unplug = 1;
|
|
generic_make_request(bio);
|
|
}
|
|
}
|
|
}
|
|
if (unplug)
|
|
unplug_slaves(mddev);
|
|
}
|
|
|
|
|
|
static int init_resync(conf_t *conf)
|
|
{
|
|
int buffs;
|
|
|
|
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
|
|
BUG_ON(conf->r10buf_pool);
|
|
conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
|
|
if (!conf->r10buf_pool)
|
|
return -ENOMEM;
|
|
conf->next_resync = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* perform a "sync" on one "block"
|
|
*
|
|
* We need to make sure that no normal I/O request - particularly write
|
|
* requests - conflict with active sync requests.
|
|
*
|
|
* This is achieved by tracking pending requests and a 'barrier' concept
|
|
* that can be installed to exclude normal IO requests.
|
|
*
|
|
* Resync and recovery are handled very differently.
|
|
* We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
|
|
*
|
|
* For resync, we iterate over virtual addresses, read all copies,
|
|
* and update if there are differences. If only one copy is live,
|
|
* skip it.
|
|
* For recovery, we iterate over physical addresses, read a good
|
|
* value for each non-in_sync drive, and over-write.
|
|
*
|
|
* So, for recovery we may have several outstanding complex requests for a
|
|
* given address, one for each out-of-sync device. We model this by allocating
|
|
* a number of r10_bio structures, one for each out-of-sync device.
|
|
* As we setup these structures, we collect all bio's together into a list
|
|
* which we then process collectively to add pages, and then process again
|
|
* to pass to generic_make_request.
|
|
*
|
|
* The r10_bio structures are linked using a borrowed master_bio pointer.
|
|
* This link is counted in ->remaining. When the r10_bio that points to NULL
|
|
* has its remaining count decremented to 0, the whole complex operation
|
|
* is complete.
|
|
*
|
|
*/
|
|
|
|
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
r10bio_t *r10_bio;
|
|
struct bio *biolist = NULL, *bio;
|
|
sector_t max_sector, nr_sectors;
|
|
int disk;
|
|
int i;
|
|
int max_sync;
|
|
int sync_blocks;
|
|
|
|
sector_t sectors_skipped = 0;
|
|
int chunks_skipped = 0;
|
|
|
|
if (!conf->r10buf_pool)
|
|
if (init_resync(conf))
|
|
return 0;
|
|
|
|
skipped:
|
|
max_sector = mddev->size << 1;
|
|
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
|
|
max_sector = mddev->resync_max_sectors;
|
|
if (sector_nr >= max_sector) {
|
|
/* If we aborted, we need to abort the
|
|
* sync on the 'current' bitmap chucks (there can
|
|
* be several when recovering multiple devices).
|
|
* as we may have started syncing it but not finished.
|
|
* We can find the current address in
|
|
* mddev->curr_resync, but for recovery,
|
|
* we need to convert that to several
|
|
* virtual addresses.
|
|
*/
|
|
if (mddev->curr_resync < max_sector) { /* aborted */
|
|
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
|
|
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
|
|
&sync_blocks, 1);
|
|
else for (i=0; i<conf->raid_disks; i++) {
|
|
sector_t sect =
|
|
raid10_find_virt(conf, mddev->curr_resync, i);
|
|
bitmap_end_sync(mddev->bitmap, sect,
|
|
&sync_blocks, 1);
|
|
}
|
|
} else /* completed sync */
|
|
conf->fullsync = 0;
|
|
|
|
bitmap_close_sync(mddev->bitmap);
|
|
close_sync(conf);
|
|
*skipped = 1;
|
|
return sectors_skipped;
|
|
}
|
|
if (chunks_skipped >= conf->raid_disks) {
|
|
/* if there has been nothing to do on any drive,
|
|
* then there is nothing to do at all..
|
|
*/
|
|
*skipped = 1;
|
|
return (max_sector - sector_nr) + sectors_skipped;
|
|
}
|
|
|
|
if (max_sector > mddev->resync_max)
|
|
max_sector = mddev->resync_max; /* Don't do IO beyond here */
|
|
|
|
/* make sure whole request will fit in a chunk - if chunks
|
|
* are meaningful
|
|
*/
|
|
if (conf->near_copies < conf->raid_disks &&
|
|
max_sector > (sector_nr | conf->chunk_mask))
|
|
max_sector = (sector_nr | conf->chunk_mask) + 1;
|
|
/*
|
|
* If there is non-resync activity waiting for us then
|
|
* put in a delay to throttle resync.
|
|
*/
|
|
if (!go_faster && conf->nr_waiting)
|
|
msleep_interruptible(1000);
|
|
|
|
/* Again, very different code for resync and recovery.
|
|
* Both must result in an r10bio with a list of bios that
|
|
* have bi_end_io, bi_sector, bi_bdev set,
|
|
* and bi_private set to the r10bio.
|
|
* For recovery, we may actually create several r10bios
|
|
* with 2 bios in each, that correspond to the bios in the main one.
|
|
* In this case, the subordinate r10bios link back through a
|
|
* borrowed master_bio pointer, and the counter in the master
|
|
* includes a ref from each subordinate.
|
|
*/
|
|
/* First, we decide what to do and set ->bi_end_io
|
|
* To end_sync_read if we want to read, and
|
|
* end_sync_write if we will want to write.
|
|
*/
|
|
|
|
max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
|
|
if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
|
|
/* recovery... the complicated one */
|
|
int i, j, k;
|
|
r10_bio = NULL;
|
|
|
|
for (i=0 ; i<conf->raid_disks; i++)
|
|
if (conf->mirrors[i].rdev &&
|
|
!test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
|
|
int still_degraded = 0;
|
|
/* want to reconstruct this device */
|
|
r10bio_t *rb2 = r10_bio;
|
|
sector_t sect = raid10_find_virt(conf, sector_nr, i);
|
|
int must_sync;
|
|
/* Unless we are doing a full sync, we only need
|
|
* to recover the block if it is set in the bitmap
|
|
*/
|
|
must_sync = bitmap_start_sync(mddev->bitmap, sect,
|
|
&sync_blocks, 1);
|
|
if (sync_blocks < max_sync)
|
|
max_sync = sync_blocks;
|
|
if (!must_sync &&
|
|
!conf->fullsync) {
|
|
/* yep, skip the sync_blocks here, but don't assume
|
|
* that there will never be anything to do here
|
|
*/
|
|
chunks_skipped = -1;
|
|
continue;
|
|
}
|
|
|
|
r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
|
|
raise_barrier(conf, rb2 != NULL);
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
|
|
r10_bio->master_bio = (struct bio*)rb2;
|
|
if (rb2)
|
|
atomic_inc(&rb2->remaining);
|
|
r10_bio->mddev = mddev;
|
|
set_bit(R10BIO_IsRecover, &r10_bio->state);
|
|
r10_bio->sector = sect;
|
|
|
|
raid10_find_phys(conf, r10_bio);
|
|
/* Need to check if this section will still be
|
|
* degraded
|
|
*/
|
|
for (j=0; j<conf->copies;j++) {
|
|
int d = r10_bio->devs[j].devnum;
|
|
if (conf->mirrors[d].rdev == NULL ||
|
|
test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
|
|
still_degraded = 1;
|
|
break;
|
|
}
|
|
}
|
|
must_sync = bitmap_start_sync(mddev->bitmap, sect,
|
|
&sync_blocks, still_degraded);
|
|
|
|
for (j=0; j<conf->copies;j++) {
|
|
int d = r10_bio->devs[j].devnum;
|
|
if (conf->mirrors[d].rdev &&
|
|
test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
|
|
/* This is where we read from */
|
|
bio = r10_bio->devs[0].bio;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_private = r10_bio;
|
|
bio->bi_end_io = end_sync_read;
|
|
bio->bi_rw = READ;
|
|
bio->bi_sector = r10_bio->devs[j].addr +
|
|
conf->mirrors[d].rdev->data_offset;
|
|
bio->bi_bdev = conf->mirrors[d].rdev->bdev;
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
atomic_inc(&r10_bio->remaining);
|
|
/* and we write to 'i' */
|
|
|
|
for (k=0; k<conf->copies; k++)
|
|
if (r10_bio->devs[k].devnum == i)
|
|
break;
|
|
BUG_ON(k == conf->copies);
|
|
bio = r10_bio->devs[1].bio;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_private = r10_bio;
|
|
bio->bi_end_io = end_sync_write;
|
|
bio->bi_rw = WRITE;
|
|
bio->bi_sector = r10_bio->devs[k].addr +
|
|
conf->mirrors[i].rdev->data_offset;
|
|
bio->bi_bdev = conf->mirrors[i].rdev->bdev;
|
|
|
|
r10_bio->devs[0].devnum = d;
|
|
r10_bio->devs[1].devnum = i;
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (j == conf->copies) {
|
|
/* Cannot recover, so abort the recovery */
|
|
put_buf(r10_bio);
|
|
if (rb2)
|
|
atomic_dec(&rb2->remaining);
|
|
r10_bio = rb2;
|
|
if (!test_and_set_bit(MD_RECOVERY_INTR,
|
|
&mddev->recovery))
|
|
printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
|
|
mdname(mddev));
|
|
break;
|
|
}
|
|
}
|
|
if (biolist == NULL) {
|
|
while (r10_bio) {
|
|
r10bio_t *rb2 = r10_bio;
|
|
r10_bio = (r10bio_t*) rb2->master_bio;
|
|
rb2->master_bio = NULL;
|
|
put_buf(rb2);
|
|
}
|
|
goto giveup;
|
|
}
|
|
} else {
|
|
/* resync. Schedule a read for every block at this virt offset */
|
|
int count = 0;
|
|
|
|
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
|
|
|
|
if (!bitmap_start_sync(mddev->bitmap, sector_nr,
|
|
&sync_blocks, mddev->degraded) &&
|
|
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
|
|
/* We can skip this block */
|
|
*skipped = 1;
|
|
return sync_blocks + sectors_skipped;
|
|
}
|
|
if (sync_blocks < max_sync)
|
|
max_sync = sync_blocks;
|
|
r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
|
|
|
|
r10_bio->mddev = mddev;
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
raise_barrier(conf, 0);
|
|
conf->next_resync = sector_nr;
|
|
|
|
r10_bio->master_bio = NULL;
|
|
r10_bio->sector = sector_nr;
|
|
set_bit(R10BIO_IsSync, &r10_bio->state);
|
|
raid10_find_phys(conf, r10_bio);
|
|
r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
|
|
|
|
for (i=0; i<conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
bio = r10_bio->devs[i].bio;
|
|
bio->bi_end_io = NULL;
|
|
clear_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
if (conf->mirrors[d].rdev == NULL ||
|
|
test_bit(Faulty, &conf->mirrors[d].rdev->flags))
|
|
continue;
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
atomic_inc(&r10_bio->remaining);
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_private = r10_bio;
|
|
bio->bi_end_io = end_sync_read;
|
|
bio->bi_rw = READ;
|
|
bio->bi_sector = r10_bio->devs[i].addr +
|
|
conf->mirrors[d].rdev->data_offset;
|
|
bio->bi_bdev = conf->mirrors[d].rdev->bdev;
|
|
count++;
|
|
}
|
|
|
|
if (count < 2) {
|
|
for (i=0; i<conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
if (r10_bio->devs[i].bio->bi_end_io)
|
|
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
|
|
}
|
|
put_buf(r10_bio);
|
|
biolist = NULL;
|
|
goto giveup;
|
|
}
|
|
}
|
|
|
|
for (bio = biolist; bio ; bio=bio->bi_next) {
|
|
|
|
bio->bi_flags &= ~(BIO_POOL_MASK - 1);
|
|
if (bio->bi_end_io)
|
|
bio->bi_flags |= 1 << BIO_UPTODATE;
|
|
bio->bi_vcnt = 0;
|
|
bio->bi_idx = 0;
|
|
bio->bi_phys_segments = 0;
|
|
bio->bi_size = 0;
|
|
}
|
|
|
|
nr_sectors = 0;
|
|
if (sector_nr + max_sync < max_sector)
|
|
max_sector = sector_nr + max_sync;
|
|
do {
|
|
struct page *page;
|
|
int len = PAGE_SIZE;
|
|
disk = 0;
|
|
if (sector_nr + (len>>9) > max_sector)
|
|
len = (max_sector - sector_nr) << 9;
|
|
if (len == 0)
|
|
break;
|
|
for (bio= biolist ; bio ; bio=bio->bi_next) {
|
|
page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
|
|
if (bio_add_page(bio, page, len, 0) == 0) {
|
|
/* stop here */
|
|
struct bio *bio2;
|
|
bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
|
|
for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
|
|
/* remove last page from this bio */
|
|
bio2->bi_vcnt--;
|
|
bio2->bi_size -= len;
|
|
bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
|
|
}
|
|
goto bio_full;
|
|
}
|
|
disk = i;
|
|
}
|
|
nr_sectors += len>>9;
|
|
sector_nr += len>>9;
|
|
} while (biolist->bi_vcnt < RESYNC_PAGES);
|
|
bio_full:
|
|
r10_bio->sectors = nr_sectors;
|
|
|
|
while (biolist) {
|
|
bio = biolist;
|
|
biolist = biolist->bi_next;
|
|
|
|
bio->bi_next = NULL;
|
|
r10_bio = bio->bi_private;
|
|
r10_bio->sectors = nr_sectors;
|
|
|
|
if (bio->bi_end_io == end_sync_read) {
|
|
md_sync_acct(bio->bi_bdev, nr_sectors);
|
|
generic_make_request(bio);
|
|
}
|
|
}
|
|
|
|
if (sectors_skipped)
|
|
/* pretend they weren't skipped, it makes
|
|
* no important difference in this case
|
|
*/
|
|
md_done_sync(mddev, sectors_skipped, 1);
|
|
|
|
return sectors_skipped + nr_sectors;
|
|
giveup:
|
|
/* There is nowhere to write, so all non-sync
|
|
* drives must be failed, so try the next chunk...
|
|
*/
|
|
if (sector_nr + max_sync < max_sector)
|
|
max_sector = sector_nr + max_sync;
|
|
|
|
sectors_skipped += (max_sector - sector_nr);
|
|
chunks_skipped ++;
|
|
sector_nr = max_sector;
|
|
goto skipped;
|
|
}
|
|
|
|
static int run(mddev_t *mddev)
|
|
{
|
|
conf_t *conf;
|
|
int i, disk_idx;
|
|
mirror_info_t *disk;
|
|
mdk_rdev_t *rdev;
|
|
int nc, fc, fo;
|
|
sector_t stride, size;
|
|
|
|
if (mddev->chunk_size < PAGE_SIZE) {
|
|
printk(KERN_ERR "md/raid10: chunk size must be "
|
|
"at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nc = mddev->layout & 255;
|
|
fc = (mddev->layout >> 8) & 255;
|
|
fo = mddev->layout & (1<<16);
|
|
if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
|
|
(mddev->layout >> 17)) {
|
|
printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
|
|
mdname(mddev), mddev->layout);
|
|
goto out;
|
|
}
|
|
/*
|
|
* copy the already verified devices into our private RAID10
|
|
* bookkeeping area. [whatever we allocate in run(),
|
|
* should be freed in stop()]
|
|
*/
|
|
conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
|
|
mddev->private = conf;
|
|
if (!conf) {
|
|
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
|
|
mdname(mddev));
|
|
goto out;
|
|
}
|
|
conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
|
|
GFP_KERNEL);
|
|
if (!conf->mirrors) {
|
|
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
|
|
mdname(mddev));
|
|
goto out_free_conf;
|
|
}
|
|
|
|
conf->tmppage = alloc_page(GFP_KERNEL);
|
|
if (!conf->tmppage)
|
|
goto out_free_conf;
|
|
|
|
conf->mddev = mddev;
|
|
conf->raid_disks = mddev->raid_disks;
|
|
conf->near_copies = nc;
|
|
conf->far_copies = fc;
|
|
conf->copies = nc*fc;
|
|
conf->far_offset = fo;
|
|
conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
|
|
conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
|
|
size = mddev->size >> (conf->chunk_shift-1);
|
|
sector_div(size, fc);
|
|
size = size * conf->raid_disks;
|
|
sector_div(size, nc);
|
|
/* 'size' is now the number of chunks in the array */
|
|
/* calculate "used chunks per device" in 'stride' */
|
|
stride = size * conf->copies;
|
|
|
|
/* We need to round up when dividing by raid_disks to
|
|
* get the stride size.
|
|
*/
|
|
stride += conf->raid_disks - 1;
|
|
sector_div(stride, conf->raid_disks);
|
|
mddev->size = stride << (conf->chunk_shift-1);
|
|
|
|
if (fo)
|
|
stride = 1;
|
|
else
|
|
sector_div(stride, fc);
|
|
conf->stride = stride << conf->chunk_shift;
|
|
|
|
conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
|
|
r10bio_pool_free, conf);
|
|
if (!conf->r10bio_pool) {
|
|
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
|
|
mdname(mddev));
|
|
goto out_free_conf;
|
|
}
|
|
|
|
spin_lock_init(&conf->device_lock);
|
|
mddev->queue->queue_lock = &conf->device_lock;
|
|
|
|
list_for_each_entry(rdev, &mddev->disks, same_set) {
|
|
disk_idx = rdev->raid_disk;
|
|
if (disk_idx >= mddev->raid_disks
|
|
|| disk_idx < 0)
|
|
continue;
|
|
disk = conf->mirrors + disk_idx;
|
|
|
|
disk->rdev = rdev;
|
|
|
|
blk_queue_stack_limits(mddev->queue,
|
|
rdev->bdev->bd_disk->queue);
|
|
/* as we don't honour merge_bvec_fn, we must never risk
|
|
* violating it, so limit ->max_sector to one PAGE, as
|
|
* a one page request is never in violation.
|
|
*/
|
|
if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
|
|
mddev->queue->max_sectors > (PAGE_SIZE>>9))
|
|
mddev->queue->max_sectors = (PAGE_SIZE>>9);
|
|
|
|
disk->head_position = 0;
|
|
}
|
|
INIT_LIST_HEAD(&conf->retry_list);
|
|
|
|
spin_lock_init(&conf->resync_lock);
|
|
init_waitqueue_head(&conf->wait_barrier);
|
|
|
|
/* need to check that every block has at least one working mirror */
|
|
if (!enough(conf)) {
|
|
printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
|
|
mdname(mddev));
|
|
goto out_free_conf;
|
|
}
|
|
|
|
mddev->degraded = 0;
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
|
|
disk = conf->mirrors + i;
|
|
|
|
if (!disk->rdev ||
|
|
!test_bit(In_sync, &disk->rdev->flags)) {
|
|
disk->head_position = 0;
|
|
mddev->degraded++;
|
|
if (disk->rdev)
|
|
conf->fullsync = 1;
|
|
}
|
|
}
|
|
|
|
|
|
mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
|
|
if (!mddev->thread) {
|
|
printk(KERN_ERR
|
|
"raid10: couldn't allocate thread for %s\n",
|
|
mdname(mddev));
|
|
goto out_free_conf;
|
|
}
|
|
|
|
printk(KERN_INFO
|
|
"raid10: raid set %s active with %d out of %d devices\n",
|
|
mdname(mddev), mddev->raid_disks - mddev->degraded,
|
|
mddev->raid_disks);
|
|
/*
|
|
* Ok, everything is just fine now
|
|
*/
|
|
mddev->array_sectors = size << conf->chunk_shift;
|
|
mddev->resync_max_sectors = size << conf->chunk_shift;
|
|
|
|
mddev->queue->unplug_fn = raid10_unplug;
|
|
mddev->queue->backing_dev_info.congested_fn = raid10_congested;
|
|
mddev->queue->backing_dev_info.congested_data = mddev;
|
|
|
|
/* Calculate max read-ahead size.
|
|
* We need to readahead at least twice a whole stripe....
|
|
* maybe...
|
|
*/
|
|
{
|
|
int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
|
|
stripe /= conf->near_copies;
|
|
if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
|
|
mddev->queue->backing_dev_info.ra_pages = 2* stripe;
|
|
}
|
|
|
|
if (conf->near_copies < mddev->raid_disks)
|
|
blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
|
|
return 0;
|
|
|
|
out_free_conf:
|
|
if (conf->r10bio_pool)
|
|
mempool_destroy(conf->r10bio_pool);
|
|
safe_put_page(conf->tmppage);
|
|
kfree(conf->mirrors);
|
|
kfree(conf);
|
|
mddev->private = NULL;
|
|
out:
|
|
return -EIO;
|
|
}
|
|
|
|
static int stop(mddev_t *mddev)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
|
|
md_unregister_thread(mddev->thread);
|
|
mddev->thread = NULL;
|
|
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
|
|
if (conf->r10bio_pool)
|
|
mempool_destroy(conf->r10bio_pool);
|
|
kfree(conf->mirrors);
|
|
kfree(conf);
|
|
mddev->private = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static void raid10_quiesce(mddev_t *mddev, int state)
|
|
{
|
|
conf_t *conf = mddev_to_conf(mddev);
|
|
|
|
switch(state) {
|
|
case 1:
|
|
raise_barrier(conf, 0);
|
|
break;
|
|
case 0:
|
|
lower_barrier(conf);
|
|
break;
|
|
}
|
|
if (mddev->thread) {
|
|
if (mddev->bitmap)
|
|
mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
|
|
else
|
|
mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
}
|
|
|
|
static struct mdk_personality raid10_personality =
|
|
{
|
|
.name = "raid10",
|
|
.level = 10,
|
|
.owner = THIS_MODULE,
|
|
.make_request = make_request,
|
|
.run = run,
|
|
.stop = stop,
|
|
.status = status,
|
|
.error_handler = error,
|
|
.hot_add_disk = raid10_add_disk,
|
|
.hot_remove_disk= raid10_remove_disk,
|
|
.spare_active = raid10_spare_active,
|
|
.sync_request = sync_request,
|
|
.quiesce = raid10_quiesce,
|
|
};
|
|
|
|
static int __init raid_init(void)
|
|
{
|
|
return register_md_personality(&raid10_personality);
|
|
}
|
|
|
|
static void raid_exit(void)
|
|
{
|
|
unregister_md_personality(&raid10_personality);
|
|
}
|
|
|
|
module_init(raid_init);
|
|
module_exit(raid_exit);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("md-personality-9"); /* RAID10 */
|
|
MODULE_ALIAS("md-raid10");
|
|
MODULE_ALIAS("md-level-10");
|