2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/fs/btrfs/zoned.h
Naohiro Aota 40ab3be102 btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems.

The tree-log feature does not work on a zoned filesystem as is. Blocks for
a tree-log tree are allocated mixed with other metadata blocks and btrfs
writes and syncs the tree-log blocks to devices at the time of fsync(),
which has a different timing than a global transaction commit. As a
result, both writing tree-log blocks and writing other metadata blocks
become non-sequential writes that zoned filesystems must avoid.

Introduce a dedicated block group for tree-log blocks, so that tree-log
blocks and other metadata blocks can be separate write streams.  As a
result, each write stream can now be written to devices separately.
"fs_info->treelog_bg" tracks the dedicated block group and assigns
"treelog_bg" on-demand on tree-log block allocation time.

This commit extends the zoned block allocator to use the block group.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:08 +01:00

308 lines
8.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BTRFS_ZONED_H
#define BTRFS_ZONED_H
#include <linux/types.h>
#include <linux/blkdev.h>
#include "volumes.h"
#include "disk-io.h"
#include "block-group.h"
struct btrfs_zoned_device_info {
/*
* Number of zones, zone size and types of zones if bdev is a
* zoned block device.
*/
u64 zone_size;
u8 zone_size_shift;
u64 max_zone_append_size;
u32 nr_zones;
unsigned long *seq_zones;
unsigned long *empty_zones;
struct blk_zone sb_zones[2 * BTRFS_SUPER_MIRROR_MAX];
};
#ifdef CONFIG_BLK_DEV_ZONED
int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
struct blk_zone *zone);
int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info);
int btrfs_get_dev_zone_info(struct btrfs_device *device);
void btrfs_destroy_dev_zone_info(struct btrfs_device *device);
int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info);
int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info);
int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
u64 *bytenr_ret);
int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
u64 *bytenr_ret);
void btrfs_advance_sb_log(struct btrfs_device *device, int mirror);
int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror);
u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
u64 hole_end, u64 num_bytes);
int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
u64 length, u64 *bytes);
int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size);
int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new);
void btrfs_calc_zone_unusable(struct btrfs_block_group *cache);
void btrfs_redirty_list_add(struct btrfs_transaction *trans,
struct extent_buffer *eb);
void btrfs_free_redirty_list(struct btrfs_transaction *trans);
bool btrfs_use_zone_append(struct btrfs_inode *inode, struct extent_map *em);
void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
struct bio *bio);
void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered);
bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb,
struct btrfs_block_group **cache_ret);
void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
struct extent_buffer *eb);
int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length);
int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
u64 physical_start, u64 physical_pos);
#else /* CONFIG_BLK_DEV_ZONED */
static inline int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
struct blk_zone *zone)
{
return 0;
}
static inline int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
{
return 0;
}
static inline int btrfs_get_dev_zone_info(struct btrfs_device *device)
{
return 0;
}
static inline void btrfs_destroy_dev_zone_info(struct btrfs_device *device) { }
static inline int btrfs_check_zoned_mode(const struct btrfs_fs_info *fs_info)
{
if (!btrfs_is_zoned(fs_info))
return 0;
btrfs_err(fs_info, "zoned block devices support is not enabled");
return -EOPNOTSUPP;
}
static inline int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
{
return 0;
}
static inline int btrfs_sb_log_location_bdev(struct block_device *bdev,
int mirror, int rw, u64 *bytenr_ret)
{
*bytenr_ret = btrfs_sb_offset(mirror);
return 0;
}
static inline int btrfs_sb_log_location(struct btrfs_device *device, int mirror,
int rw, u64 *bytenr_ret)
{
*bytenr_ret = btrfs_sb_offset(mirror);
return 0;
}
static inline void btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
{ }
static inline int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
{
return 0;
}
static inline u64 btrfs_find_allocatable_zones(struct btrfs_device *device,
u64 hole_start, u64 hole_end,
u64 num_bytes)
{
return hole_start;
}
static inline int btrfs_reset_device_zone(struct btrfs_device *device,
u64 physical, u64 length, u64 *bytes)
{
*bytes = 0;
return 0;
}
static inline int btrfs_ensure_empty_zones(struct btrfs_device *device,
u64 start, u64 size)
{
return 0;
}
static inline int btrfs_load_block_group_zone_info(
struct btrfs_block_group *cache, bool new)
{
return 0;
}
static inline void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) { }
static inline void btrfs_redirty_list_add(struct btrfs_transaction *trans,
struct extent_buffer *eb) { }
static inline void btrfs_free_redirty_list(struct btrfs_transaction *trans) { }
static inline bool btrfs_use_zone_append(struct btrfs_inode *inode,
struct extent_map *em)
{
return false;
}
static inline void btrfs_record_physical_zoned(struct inode *inode,
u64 file_offset, struct bio *bio)
{
}
static inline void btrfs_rewrite_logical_zoned(
struct btrfs_ordered_extent *ordered) { }
static inline bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb,
struct btrfs_block_group **cache_ret)
{
return true;
}
static inline void btrfs_revert_meta_write_pointer(
struct btrfs_block_group *cache,
struct extent_buffer *eb)
{
}
static inline int btrfs_zoned_issue_zeroout(struct btrfs_device *device,
u64 physical, u64 length)
{
return -EOPNOTSUPP;
}
static inline int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev,
u64 logical, u64 physical_start,
u64 physical_pos)
{
return -EOPNOTSUPP;
}
#endif
static inline bool btrfs_dev_is_sequential(struct btrfs_device *device, u64 pos)
{
struct btrfs_zoned_device_info *zone_info = device->zone_info;
if (!zone_info)
return false;
return test_bit(pos >> zone_info->zone_size_shift, zone_info->seq_zones);
}
static inline bool btrfs_dev_is_empty_zone(struct btrfs_device *device, u64 pos)
{
struct btrfs_zoned_device_info *zone_info = device->zone_info;
if (!zone_info)
return true;
return test_bit(pos >> zone_info->zone_size_shift, zone_info->empty_zones);
}
static inline void btrfs_dev_set_empty_zone_bit(struct btrfs_device *device,
u64 pos, bool set)
{
struct btrfs_zoned_device_info *zone_info = device->zone_info;
unsigned int zno;
if (!zone_info)
return;
zno = pos >> zone_info->zone_size_shift;
if (set)
set_bit(zno, zone_info->empty_zones);
else
clear_bit(zno, zone_info->empty_zones);
}
static inline void btrfs_dev_set_zone_empty(struct btrfs_device *device, u64 pos)
{
btrfs_dev_set_empty_zone_bit(device, pos, true);
}
static inline void btrfs_dev_clear_zone_empty(struct btrfs_device *device, u64 pos)
{
btrfs_dev_set_empty_zone_bit(device, pos, false);
}
static inline bool btrfs_check_device_zone_type(const struct btrfs_fs_info *fs_info,
struct block_device *bdev)
{
if (btrfs_is_zoned(fs_info)) {
/*
* We can allow a regular device on a zoned filesystem, because
* we will emulate the zoned capabilities.
*/
if (!bdev_is_zoned(bdev))
return true;
return fs_info->zone_size ==
(bdev_zone_sectors(bdev) << SECTOR_SHIFT);
}
/* Do not allow Host Manged zoned device */
return bdev_zoned_model(bdev) != BLK_ZONED_HM;
}
static inline bool btrfs_check_super_location(struct btrfs_device *device, u64 pos)
{
/*
* On a non-zoned device, any address is OK. On a zoned device,
* non-SEQUENTIAL WRITE REQUIRED zones are capable.
*/
return device->zone_info == NULL || !btrfs_dev_is_sequential(device, pos);
}
static inline bool btrfs_can_zone_reset(struct btrfs_device *device,
u64 physical, u64 length)
{
u64 zone_size;
if (!btrfs_dev_is_sequential(device, physical))
return false;
zone_size = device->zone_info->zone_size;
if (!IS_ALIGNED(physical, zone_size) || !IS_ALIGNED(length, zone_size))
return false;
return true;
}
static inline void btrfs_zoned_meta_io_lock(struct btrfs_fs_info *fs_info)
{
if (!btrfs_is_zoned(fs_info))
return;
mutex_lock(&fs_info->zoned_meta_io_lock);
}
static inline void btrfs_zoned_meta_io_unlock(struct btrfs_fs_info *fs_info)
{
if (!btrfs_is_zoned(fs_info))
return;
mutex_unlock(&fs_info->zoned_meta_io_lock);
}
static inline void btrfs_clear_treelog_bg(struct btrfs_block_group *bg)
{
struct btrfs_fs_info *fs_info = bg->fs_info;
if (!btrfs_is_zoned(fs_info))
return;
spin_lock(&fs_info->treelog_bg_lock);
if (fs_info->treelog_bg == bg->start)
fs_info->treelog_bg = 0;
spin_unlock(&fs_info->treelog_bg_lock);
}
#endif