2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/kernel/sched/debug.c
Peter Zijlstra 769fdf83df sched: Fix DEBUG && !SCHEDSTATS warn
When !SCHEDSTATS schedstat_enabled() is an unconditional 0 and the
whole block doesn't exist, however GCC figures the scoped variable
'stats' is unused and complains about it.

Upgrade the warning from -Wunused-variable to -Wunused-but-set-variable
by writing it in two statements. This fixes the build because the new
warning is in W=1.

Given that whole if(0) {} thing, I don't feel motivated to change
things overly much and quite strongly feel this is the compiler being
daft.

Fixes: cb3e971c435d ("sched: Make struct sched_statistics independent of fair sched class")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-10-06 10:30:57 +02:00

1087 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/debug.c
*
* Print the CFS rbtree and other debugging details
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*/
#include "sched.h"
/*
* This allows printing both to /proc/sched_debug and
* to the console
*/
#define SEQ_printf(m, x...) \
do { \
if (m) \
seq_printf(m, x); \
else \
pr_cont(x); \
} while (0)
/*
* Ease the printing of nsec fields:
*/
static long long nsec_high(unsigned long long nsec)
{
if ((long long)nsec < 0) {
nsec = -nsec;
do_div(nsec, 1000000);
return -nsec;
}
do_div(nsec, 1000000);
return nsec;
}
static unsigned long nsec_low(unsigned long long nsec)
{
if ((long long)nsec < 0)
nsec = -nsec;
return do_div(nsec, 1000000);
}
#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
#define SCHED_FEAT(name, enabled) \
#name ,
static const char * const sched_feat_names[] = {
#include "features.h"
};
#undef SCHED_FEAT
static int sched_feat_show(struct seq_file *m, void *v)
{
int i;
for (i = 0; i < __SCHED_FEAT_NR; i++) {
if (!(sysctl_sched_features & (1UL << i)))
seq_puts(m, "NO_");
seq_printf(m, "%s ", sched_feat_names[i]);
}
seq_puts(m, "\n");
return 0;
}
#ifdef CONFIG_JUMP_LABEL
#define jump_label_key__true STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
#define SCHED_FEAT(name, enabled) \
jump_label_key__##enabled ,
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};
#undef SCHED_FEAT
static void sched_feat_disable(int i)
{
static_key_disable_cpuslocked(&sched_feat_keys[i]);
}
static void sched_feat_enable(int i)
{
static_key_enable_cpuslocked(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* CONFIG_JUMP_LABEL */
static int sched_feat_set(char *cmp)
{
int i;
int neg = 0;
if (strncmp(cmp, "NO_", 3) == 0) {
neg = 1;
cmp += 3;
}
i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
if (i < 0)
return i;
if (neg) {
sysctl_sched_features &= ~(1UL << i);
sched_feat_disable(i);
} else {
sysctl_sched_features |= (1UL << i);
sched_feat_enable(i);
}
return 0;
}
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64];
char *cmp;
int ret;
struct inode *inode;
if (cnt > 63)
cnt = 63;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
cmp = strstrip(buf);
/* Ensure the static_key remains in a consistent state */
inode = file_inode(filp);
cpus_read_lock();
inode_lock(inode);
ret = sched_feat_set(cmp);
inode_unlock(inode);
cpus_read_unlock();
if (ret < 0)
return ret;
*ppos += cnt;
return cnt;
}
static int sched_feat_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_feat_show, NULL);
}
static const struct file_operations sched_feat_fops = {
.open = sched_feat_open,
.write = sched_feat_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#ifdef CONFIG_SMP
static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[16];
unsigned int scaling;
if (cnt > 15)
cnt = 15;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = '\0';
if (kstrtouint(buf, 10, &scaling))
return -EINVAL;
if (scaling >= SCHED_TUNABLESCALING_END)
return -EINVAL;
sysctl_sched_tunable_scaling = scaling;
if (sched_update_scaling())
return -EINVAL;
*ppos += cnt;
return cnt;
}
static int sched_scaling_show(struct seq_file *m, void *v)
{
seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
return 0;
}
static int sched_scaling_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_scaling_show, NULL);
}
static const struct file_operations sched_scaling_fops = {
.open = sched_scaling_open,
.write = sched_scaling_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* SMP */
#ifdef CONFIG_PREEMPT_DYNAMIC
static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[16];
int mode;
if (cnt > 15)
cnt = 15;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
mode = sched_dynamic_mode(strstrip(buf));
if (mode < 0)
return mode;
sched_dynamic_update(mode);
*ppos += cnt;
return cnt;
}
static int sched_dynamic_show(struct seq_file *m, void *v)
{
static const char * preempt_modes[] = {
"none", "voluntary", "full"
};
int i;
for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
if (preempt_dynamic_mode == i)
seq_puts(m, "(");
seq_puts(m, preempt_modes[i]);
if (preempt_dynamic_mode == i)
seq_puts(m, ")");
seq_puts(m, " ");
}
seq_puts(m, "\n");
return 0;
}
static int sched_dynamic_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_dynamic_show, NULL);
}
static const struct file_operations sched_dynamic_fops = {
.open = sched_dynamic_open,
.write = sched_dynamic_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PREEMPT_DYNAMIC */
__read_mostly bool sched_debug_verbose;
static const struct seq_operations sched_debug_sops;
static int sched_debug_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &sched_debug_sops);
}
static const struct file_operations sched_debug_fops = {
.open = sched_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static struct dentry *debugfs_sched;
static __init int sched_init_debug(void)
{
struct dentry __maybe_unused *numa;
debugfs_sched = debugfs_create_dir("sched", NULL);
debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
#ifdef CONFIG_PREEMPT_DYNAMIC
debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
#endif
debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity);
debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
#ifdef CONFIG_SMP
debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
mutex_lock(&sched_domains_mutex);
update_sched_domain_debugfs();
mutex_unlock(&sched_domains_mutex);
#endif
#ifdef CONFIG_NUMA_BALANCING
numa = debugfs_create_dir("numa_balancing", debugfs_sched);
debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
#endif
debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
return 0;
}
late_initcall(sched_init_debug);
#ifdef CONFIG_SMP
static cpumask_var_t sd_sysctl_cpus;
static struct dentry *sd_dentry;
static int sd_flags_show(struct seq_file *m, void *v)
{
unsigned long flags = *(unsigned int *)m->private;
int idx;
for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
seq_puts(m, sd_flag_debug[idx].name);
seq_puts(m, " ");
}
seq_puts(m, "\n");
return 0;
}
static int sd_flags_open(struct inode *inode, struct file *file)
{
return single_open(file, sd_flags_show, inode->i_private);
}
static const struct file_operations sd_flags_fops = {
.open = sd_flags_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void register_sd(struct sched_domain *sd, struct dentry *parent)
{
#define SDM(type, mode, member) \
debugfs_create_##type(#member, mode, parent, &sd->member)
SDM(ulong, 0644, min_interval);
SDM(ulong, 0644, max_interval);
SDM(u64, 0644, max_newidle_lb_cost);
SDM(u32, 0644, busy_factor);
SDM(u32, 0644, imbalance_pct);
SDM(u32, 0644, cache_nice_tries);
SDM(str, 0444, name);
#undef SDM
debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
}
void update_sched_domain_debugfs(void)
{
int cpu, i;
/*
* This can unfortunately be invoked before sched_debug_init() creates
* the debug directory. Don't touch sd_sysctl_cpus until then.
*/
if (!debugfs_sched)
return;
if (!cpumask_available(sd_sysctl_cpus)) {
if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
return;
cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
}
if (!sd_dentry)
sd_dentry = debugfs_create_dir("domains", debugfs_sched);
for_each_cpu(cpu, sd_sysctl_cpus) {
struct sched_domain *sd;
struct dentry *d_cpu;
char buf[32];
snprintf(buf, sizeof(buf), "cpu%d", cpu);
debugfs_remove(debugfs_lookup(buf, sd_dentry));
d_cpu = debugfs_create_dir(buf, sd_dentry);
i = 0;
for_each_domain(cpu, sd) {
struct dentry *d_sd;
snprintf(buf, sizeof(buf), "domain%d", i);
d_sd = debugfs_create_dir(buf, d_cpu);
register_sd(sd, d_sd);
i++;
}
__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
}
}
void dirty_sched_domain_sysctl(int cpu)
{
if (cpumask_available(sd_sysctl_cpus))
__cpumask_set_cpu(cpu, sd_sysctl_cpus);
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
{
struct sched_entity *se = tg->se[cpu];
#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
#F, (long long)schedstat_val(stats->F))
#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
#F, SPLIT_NS((long long)schedstat_val(stats->F)))
if (!se)
return;
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
if (schedstat_enabled()) {
struct sched_statistics *stats;
stats = __schedstats_from_se(se);
PN_SCHEDSTAT(wait_start);
PN_SCHEDSTAT(sleep_start);
PN_SCHEDSTAT(block_start);
PN_SCHEDSTAT(sleep_max);
PN_SCHEDSTAT(block_max);
PN_SCHEDSTAT(exec_max);
PN_SCHEDSTAT(slice_max);
PN_SCHEDSTAT(wait_max);
PN_SCHEDSTAT(wait_sum);
P_SCHEDSTAT(wait_count);
}
P(se->load.weight);
#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
P(se->avg.runnable_avg);
#endif
#undef PN_SCHEDSTAT
#undef PN
#undef P_SCHEDSTAT
#undef P
}
#endif
#ifdef CONFIG_CGROUP_SCHED
static DEFINE_SPINLOCK(sched_debug_lock);
static char group_path[PATH_MAX];
static void task_group_path(struct task_group *tg, char *path, int plen)
{
if (autogroup_path(tg, path, plen))
return;
cgroup_path(tg->css.cgroup, path, plen);
}
/*
* Only 1 SEQ_printf_task_group_path() caller can use the full length
* group_path[] for cgroup path. Other simultaneous callers will have
* to use a shorter stack buffer. A "..." suffix is appended at the end
* of the stack buffer so that it will show up in case the output length
* matches the given buffer size to indicate possible path name truncation.
*/
#define SEQ_printf_task_group_path(m, tg, fmt...) \
{ \
if (spin_trylock(&sched_debug_lock)) { \
task_group_path(tg, group_path, sizeof(group_path)); \
SEQ_printf(m, fmt, group_path); \
spin_unlock(&sched_debug_lock); \
} else { \
char buf[128]; \
char *bufend = buf + sizeof(buf) - 3; \
task_group_path(tg, buf, bufend - buf); \
strcpy(bufend - 1, "..."); \
SEQ_printf(m, fmt, buf); \
} \
}
#endif
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (task_current(rq, p))
SEQ_printf(m, ">R");
else
SEQ_printf(m, " %c", task_state_to_char(p));
SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
#ifdef CONFIG_NUMA_BALANCING
SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
SEQ_printf_task_group_path(m, task_group(p), " %s")
#endif
SEQ_printf(m, "\n");
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
SEQ_printf(m, "\n");
SEQ_printf(m, "runnable tasks:\n");
SEQ_printf(m, " S task PID tree-key switches prio"
" wait-time sum-exec sum-sleep\n");
SEQ_printf(m, "-------------------------------------------------------"
"------------------------------------------------------\n");
rcu_read_lock();
for_each_process_thread(g, p) {
if (task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p);
}
rcu_read_unlock();
}
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
spread, rq0_min_vruntime, spread0;
struct rq *rq = cpu_rq(cpu);
struct sched_entity *last;
unsigned long flags;
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, "\n");
SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
#else
SEQ_printf(m, "\n");
SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
#endif
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
SPLIT_NS(cfs_rq->exec_clock));
raw_spin_rq_lock_irqsave(rq, flags);
if (rb_first_cached(&cfs_rq->tasks_timeline))
MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
last = __pick_last_entity(cfs_rq);
if (last)
max_vruntime = last->vruntime;
min_vruntime = cfs_rq->min_vruntime;
rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
raw_spin_rq_unlock_irqrestore(rq, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
SPLIT_NS(MIN_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
SPLIT_NS(min_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
SPLIT_NS(max_vruntime));
spread = max_vruntime - MIN_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
SPLIT_NS(spread));
spread0 = min_vruntime - rq0_min_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
SPLIT_NS(spread0));
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
cfs_rq->idle_nr_running);
SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
cfs_rq->idle_h_nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
cfs_rq->avg.runnable_avg);
SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
cfs_rq->avg.util_avg);
SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
cfs_rq->avg.util_est.enqueued);
SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
cfs_rq->removed.load_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
cfs_rq->removed.util_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
cfs_rq->removed.runnable_avg);
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
#endif
#endif
#ifdef CONFIG_CFS_BANDWIDTH
SEQ_printf(m, " .%-30s: %d\n", "throttled",
cfs_rq->throttled);
SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
cfs_rq->throttle_count);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(m, cpu, cfs_rq->tg);
#endif
}
void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
{
#ifdef CONFIG_RT_GROUP_SCHED
SEQ_printf(m, "\n");
SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
#else
SEQ_printf(m, "\n");
SEQ_printf(m, "rt_rq[%d]:\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
PU(rt_nr_running);
#ifdef CONFIG_SMP
PU(rt_nr_migratory);
#endif
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
#undef PN
#undef PU
#undef P
}
void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
{
struct dl_bw *dl_bw;
SEQ_printf(m, "\n");
SEQ_printf(m, "dl_rq[%d]:\n", cpu);
#define PU(x) \
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
PU(dl_nr_running);
#ifdef CONFIG_SMP
PU(dl_nr_migratory);
dl_bw = &cpu_rq(cpu)->rd->dl_bw;
#else
dl_bw = &dl_rq->dl_bw;
#endif
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
#undef PU
}
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_X86
{
unsigned int freq = cpu_khz ? : 1;
SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
#else
SEQ_printf(m, "cpu#%d\n", cpu);
#endif
#define P(x) \
do { \
if (sizeof(rq->x) == 4) \
SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
else \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
} while (0)
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
P(nr_running);
P(nr_switches);
P(nr_uninterruptible);
PN(next_balance);
SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
PN(clock);
PN(clock_task);
#undef P
#undef PN
#ifdef CONFIG_SMP
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
P64(avg_idle);
P64(max_idle_balance_cost);
#undef P64
#endif
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
if (schedstat_enabled()) {
P(yld_count);
P(sched_count);
P(sched_goidle);
P(ttwu_count);
P(ttwu_local);
}
#undef P
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
print_dl_stats(m, cpu);
print_rq(m, rq, cpu);
SEQ_printf(m, "\n");
}
static const char *sched_tunable_scaling_names[] = {
"none",
"logarithmic",
"linear"
};
static void sched_debug_header(struct seq_file *m)
{
u64 ktime, sched_clk, cpu_clk;
unsigned long flags;
local_irq_save(flags);
ktime = ktime_to_ns(ktime_get());
sched_clk = sched_clock();
cpu_clk = local_clock();
local_irq_restore(flags);
SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
#define P(x) \
SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(ktime);
PN(sched_clk);
PN(cpu_clk);
P(jiffies);
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
P(sched_clock_stable());
#endif
#undef PN
#undef P
SEQ_printf(m, "\n");
SEQ_printf(m, "sysctl_sched\n");
#define P(x) \
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(sysctl_sched_latency);
PN(sysctl_sched_min_granularity);
PN(sysctl_sched_idle_min_granularity);
PN(sysctl_sched_wakeup_granularity);
P(sysctl_sched_child_runs_first);
P(sysctl_sched_features);
#undef PN
#undef P
SEQ_printf(m, " .%-40s: %d (%s)\n",
"sysctl_sched_tunable_scaling",
sysctl_sched_tunable_scaling,
sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
SEQ_printf(m, "\n");
}
static int sched_debug_show(struct seq_file *m, void *v)
{
int cpu = (unsigned long)(v - 2);
if (cpu != -1)
print_cpu(m, cpu);
else
sched_debug_header(m);
return 0;
}
void sysrq_sched_debug_show(void)
{
int cpu;
sched_debug_header(NULL);
for_each_online_cpu(cpu) {
/*
* Need to reset softlockup watchdogs on all CPUs, because
* another CPU might be blocked waiting for us to process
* an IPI or stop_machine.
*/
touch_nmi_watchdog();
touch_all_softlockup_watchdogs();
print_cpu(NULL, cpu);
}
}
/*
* This iterator needs some explanation.
* It returns 1 for the header position.
* This means 2 is CPU 0.
* In a hotplugged system some CPUs, including CPU 0, may be missing so we have
* to use cpumask_* to iterate over the CPUs.
*/
static void *sched_debug_start(struct seq_file *file, loff_t *offset)
{
unsigned long n = *offset;
if (n == 0)
return (void *) 1;
n--;
if (n > 0)
n = cpumask_next(n - 1, cpu_online_mask);
else
n = cpumask_first(cpu_online_mask);
*offset = n + 1;
if (n < nr_cpu_ids)
return (void *)(unsigned long)(n + 2);
return NULL;
}
static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
return sched_debug_start(file, offset);
}
static void sched_debug_stop(struct seq_file *file, void *data)
{
}
static const struct seq_operations sched_debug_sops = {
.start = sched_debug_start,
.next = sched_debug_next,
.stop = sched_debug_stop,
.show = sched_debug_show,
};
#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
#define __P(F) __PS(#F, F)
#define P(F) __PS(#F, p->F)
#define PM(F, M) __PS(#F, p->F & (M))
#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
#define __PN(F) __PSN(#F, F)
#define PN(F) __PSN(#F, p->F)
#ifdef CONFIG_NUMA_BALANCING
void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf)
{
SEQ_printf(m, "numa_faults node=%d ", node);
SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
}
#endif
static void sched_show_numa(struct task_struct *p, struct seq_file *m)
{
#ifdef CONFIG_NUMA_BALANCING
struct mempolicy *pol;
if (p->mm)
P(mm->numa_scan_seq);
task_lock(p);
pol = p->mempolicy;
if (pol && !(pol->flags & MPOL_F_MORON))
pol = NULL;
mpol_get(pol);
task_unlock(p);
P(numa_pages_migrated);
P(numa_preferred_nid);
P(total_numa_faults);
SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
task_node(p), task_numa_group_id(p));
show_numa_stats(p, m);
mpol_put(pol);
#endif
}
void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
struct seq_file *m)
{
unsigned long nr_switches;
SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
get_nr_threads(p));
SEQ_printf(m,
"---------------------------------------------------------"
"----------\n");
#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
PN(se.exec_start);
PN(se.vruntime);
PN(se.sum_exec_runtime);
nr_switches = p->nvcsw + p->nivcsw;
P(se.nr_migrations);
if (schedstat_enabled()) {
u64 avg_atom, avg_per_cpu;
PN_SCHEDSTAT(sum_sleep_runtime);
PN_SCHEDSTAT(sum_block_runtime);
PN_SCHEDSTAT(wait_start);
PN_SCHEDSTAT(sleep_start);
PN_SCHEDSTAT(block_start);
PN_SCHEDSTAT(sleep_max);
PN_SCHEDSTAT(block_max);
PN_SCHEDSTAT(exec_max);
PN_SCHEDSTAT(slice_max);
PN_SCHEDSTAT(wait_max);
PN_SCHEDSTAT(wait_sum);
P_SCHEDSTAT(wait_count);
PN_SCHEDSTAT(iowait_sum);
P_SCHEDSTAT(iowait_count);
P_SCHEDSTAT(nr_migrations_cold);
P_SCHEDSTAT(nr_failed_migrations_affine);
P_SCHEDSTAT(nr_failed_migrations_running);
P_SCHEDSTAT(nr_failed_migrations_hot);
P_SCHEDSTAT(nr_forced_migrations);
P_SCHEDSTAT(nr_wakeups);
P_SCHEDSTAT(nr_wakeups_sync);
P_SCHEDSTAT(nr_wakeups_migrate);
P_SCHEDSTAT(nr_wakeups_local);
P_SCHEDSTAT(nr_wakeups_remote);
P_SCHEDSTAT(nr_wakeups_affine);
P_SCHEDSTAT(nr_wakeups_affine_attempts);
P_SCHEDSTAT(nr_wakeups_passive);
P_SCHEDSTAT(nr_wakeups_idle);
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
avg_atom = div64_ul(avg_atom, nr_switches);
else
avg_atom = -1LL;
avg_per_cpu = p->se.sum_exec_runtime;
if (p->se.nr_migrations) {
avg_per_cpu = div64_u64(avg_per_cpu,
p->se.nr_migrations);
} else {
avg_per_cpu = -1LL;
}
__PN(avg_atom);
__PN(avg_per_cpu);
}
__P(nr_switches);
__PS("nr_voluntary_switches", p->nvcsw);
__PS("nr_involuntary_switches", p->nivcsw);
P(se.load.weight);
#ifdef CONFIG_SMP
P(se.avg.load_sum);
P(se.avg.runnable_sum);
P(se.avg.util_sum);
P(se.avg.load_avg);
P(se.avg.runnable_avg);
P(se.avg.util_avg);
P(se.avg.last_update_time);
P(se.avg.util_est.ewma);
PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
#endif
#ifdef CONFIG_UCLAMP_TASK
__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
#endif
P(policy);
P(prio);
if (task_has_dl_policy(p)) {
P(dl.runtime);
P(dl.deadline);
}
#undef PN_SCHEDSTAT
#undef P_SCHEDSTAT
{
unsigned int this_cpu = raw_smp_processor_id();
u64 t0, t1;
t0 = cpu_clock(this_cpu);
t1 = cpu_clock(this_cpu);
__PS("clock-delta", t1-t0);
}
sched_show_numa(p, m);
}
void proc_sched_set_task(struct task_struct *p)
{
#ifdef CONFIG_SCHEDSTATS
memset(&p->stats, 0, sizeof(p->stats));
#endif
}
void resched_latency_warn(int cpu, u64 latency)
{
static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
WARN(__ratelimit(&latency_check_ratelimit),
"sched: CPU %d need_resched set for > %llu ns (%d ticks) "
"without schedule\n",
cpu, latency, cpu_rq(cpu)->ticks_without_resched);
}