mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-27 08:05:27 +08:00
6dd7a82cc5
Use the vector polynomial multiply-sum instructions in POWER8 to speed up crc32c. This is just over 41x faster than the slice-by-8 method that it replaces. Measurements on a 4.1 GHz POWER8 show it sustaining 52 GiB/sec. A simple btrfs write performance test: dd if=/dev/zero of=/mnt/tmpfile bs=1M count=4096 sync is over 3.7x faster. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1554 lines
40 KiB
ArmAsm
1554 lines
40 KiB
ArmAsm
/*
|
|
* Calculate the checksum of data that is 16 byte aligned and a multiple of
|
|
* 16 bytes.
|
|
*
|
|
* The first step is to reduce it to 1024 bits. We do this in 8 parallel
|
|
* chunks in order to mask the latency of the vpmsum instructions. If we
|
|
* have more than 32 kB of data to checksum we repeat this step multiple
|
|
* times, passing in the previous 1024 bits.
|
|
*
|
|
* The next step is to reduce the 1024 bits to 64 bits. This step adds
|
|
* 32 bits of 0s to the end - this matches what a CRC does. We just
|
|
* calculate constants that land the data in this 32 bits.
|
|
*
|
|
* We then use fixed point Barrett reduction to compute a mod n over GF(2)
|
|
* for n = CRC using POWER8 instructions. We use x = 32.
|
|
*
|
|
* http://en.wikipedia.org/wiki/Barrett_reduction
|
|
*
|
|
* Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <asm/ppc_asm.h>
|
|
#include <asm/ppc-opcode.h>
|
|
|
|
.section .rodata
|
|
.balign 16
|
|
|
|
.byteswap_constant:
|
|
/* byte reverse permute constant */
|
|
.octa 0x0F0E0D0C0B0A09080706050403020100
|
|
|
|
#define MAX_SIZE 32768
|
|
.constants:
|
|
|
|
/* Reduce 262144 kbits to 1024 bits */
|
|
/* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
|
|
.octa 0x00000000b6ca9e20000000009c37c408
|
|
|
|
/* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
|
|
.octa 0x00000000350249a800000001b51df26c
|
|
|
|
/* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
|
|
.octa 0x00000001862dac54000000000724b9d0
|
|
|
|
/* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
|
|
.octa 0x00000001d87fb48c00000001c00532fe
|
|
|
|
/* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
|
|
.octa 0x00000001f39b699e00000000f05a9362
|
|
|
|
/* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
|
|
.octa 0x0000000101da11b400000001e1007970
|
|
|
|
/* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
|
|
.octa 0x00000001cab571e000000000a57366ee
|
|
|
|
/* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
|
|
.octa 0x00000000c7020cfe0000000192011284
|
|
|
|
/* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
|
|
.octa 0x00000000cdaed1ae0000000162716d9a
|
|
|
|
/* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
|
|
.octa 0x00000001e804effc00000000cd97ecde
|
|
|
|
/* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
|
|
.octa 0x0000000077c3ea3a0000000058812bc0
|
|
|
|
/* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
|
|
.octa 0x0000000068df31b40000000088b8c12e
|
|
|
|
/* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
|
|
.octa 0x00000000b059b6c200000001230b234c
|
|
|
|
/* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
|
|
.octa 0x0000000145fb8ed800000001120b416e
|
|
|
|
/* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
|
|
.octa 0x00000000cbc0916800000001974aecb0
|
|
|
|
/* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
|
|
.octa 0x000000005ceeedc2000000008ee3f226
|
|
|
|
/* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
|
|
.octa 0x0000000047d74e8600000001089aba9a
|
|
|
|
/* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
|
|
.octa 0x00000001407e9e220000000065113872
|
|
|
|
/* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
|
|
.octa 0x00000001da967bda000000005c07ec10
|
|
|
|
/* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
|
|
.octa 0x000000006c8983680000000187590924
|
|
|
|
/* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
|
|
.octa 0x00000000f2d14c9800000000e35da7c6
|
|
|
|
/* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
|
|
.octa 0x00000001993c6ad4000000000415855a
|
|
|
|
/* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
|
|
.octa 0x000000014683d1ac0000000073617758
|
|
|
|
/* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
|
|
.octa 0x00000001a7c93e6c0000000176021d28
|
|
|
|
/* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
|
|
.octa 0x000000010211e90a00000001c358fd0a
|
|
|
|
/* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
|
|
.octa 0x000000001119403e00000001ff7a2c18
|
|
|
|
/* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
|
|
.octa 0x000000001c3261aa00000000f2d9f7e4
|
|
|
|
/* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
|
|
.octa 0x000000014e37a634000000016cf1f9c8
|
|
|
|
/* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
|
|
.octa 0x0000000073786c0c000000010af9279a
|
|
|
|
/* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
|
|
.octa 0x000000011dc037f80000000004f101e8
|
|
|
|
/* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
|
|
.octa 0x0000000031433dfc0000000070bcf184
|
|
|
|
/* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
|
|
.octa 0x000000009cde8348000000000a8de642
|
|
|
|
/* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
|
|
.octa 0x0000000038d3c2a60000000062ea130c
|
|
|
|
/* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
|
|
.octa 0x000000011b25f26000000001eb31cbb2
|
|
|
|
/* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
|
|
.octa 0x000000001629e6f00000000170783448
|
|
|
|
/* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
|
|
.octa 0x0000000160838b4c00000001a684b4c6
|
|
|
|
/* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
|
|
.octa 0x000000007a44011c00000000253ca5b4
|
|
|
|
/* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
|
|
.octa 0x00000000226f417a0000000057b4b1e2
|
|
|
|
/* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
|
|
.octa 0x0000000045eb2eb400000000b6bd084c
|
|
|
|
/* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
|
|
.octa 0x000000014459d70c0000000123c2d592
|
|
|
|
/* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
|
|
.octa 0x00000001d406ed8200000000159dafce
|
|
|
|
/* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
|
|
.octa 0x0000000160c8e1a80000000127e1a64e
|
|
|
|
/* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
|
|
.octa 0x0000000027ba80980000000056860754
|
|
|
|
/* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
|
|
.octa 0x000000006d92d01800000001e661aae8
|
|
|
|
/* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
|
|
.octa 0x000000012ed7e3f200000000f82c6166
|
|
|
|
/* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
|
|
.octa 0x000000002dc8778800000000c4f9c7ae
|
|
|
|
/* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
|
|
.octa 0x0000000018240bb80000000074203d20
|
|
|
|
/* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
|
|
.octa 0x000000001ad381580000000198173052
|
|
|
|
/* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
|
|
.octa 0x00000001396b78f200000001ce8aba54
|
|
|
|
/* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
|
|
.octa 0x000000011a68133400000001850d5d94
|
|
|
|
/* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
|
|
.octa 0x000000012104732e00000001d609239c
|
|
|
|
/* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
|
|
.octa 0x00000000a140d90c000000001595f048
|
|
|
|
/* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
|
|
.octa 0x00000001b7215eda0000000042ccee08
|
|
|
|
/* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
|
|
.octa 0x00000001aaf1df3c000000010a389d74
|
|
|
|
/* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
|
|
.octa 0x0000000029d15b8a000000012a840da6
|
|
|
|
/* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
|
|
.octa 0x00000000f1a96922000000001d181c0c
|
|
|
|
/* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
|
|
.octa 0x00000001ac80d03c0000000068b7d1f6
|
|
|
|
/* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
|
|
.octa 0x000000000f11d56a000000005b0f14fc
|
|
|
|
/* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
|
|
.octa 0x00000001f1c022a20000000179e9e730
|
|
|
|
/* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
|
|
.octa 0x0000000173d00ae200000001ce1368d6
|
|
|
|
/* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
|
|
.octa 0x00000001d4ffe4ac0000000112c3a84c
|
|
|
|
/* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
|
|
.octa 0x000000016edc5ae400000000de940fee
|
|
|
|
/* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
|
|
.octa 0x00000001f1a0214000000000fe896b7e
|
|
|
|
/* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
|
|
.octa 0x00000000ca0b28a000000001f797431c
|
|
|
|
/* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
|
|
.octa 0x00000001928e30a20000000053e989ba
|
|
|
|
/* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
|
|
.octa 0x0000000097b1b002000000003920cd16
|
|
|
|
/* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
|
|
.octa 0x00000000b15bf90600000001e6f579b8
|
|
|
|
/* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
|
|
.octa 0x00000000411c5d52000000007493cb0a
|
|
|
|
/* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
|
|
.octa 0x00000001c36f330000000001bdd376d8
|
|
|
|
/* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
|
|
.octa 0x00000001119227e0000000016badfee6
|
|
|
|
/* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
|
|
.octa 0x00000000114d47020000000071de5c58
|
|
|
|
/* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
|
|
.octa 0x00000000458b5b9800000000453f317c
|
|
|
|
/* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
|
|
.octa 0x000000012e31fb8e0000000121675cce
|
|
|
|
/* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
|
|
.octa 0x000000005cf619d800000001f409ee92
|
|
|
|
/* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
|
|
.octa 0x0000000063f4d8b200000000f36b9c88
|
|
|
|
/* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
|
|
.octa 0x000000004138dc8a0000000036b398f4
|
|
|
|
/* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
|
|
.octa 0x00000001d29ee8e000000001748f9adc
|
|
|
|
/* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
|
|
.octa 0x000000006a08ace800000001be94ec00
|
|
|
|
/* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
|
|
.octa 0x0000000127d4201000000000b74370d6
|
|
|
|
/* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
|
|
.octa 0x0000000019d76b6200000001174d0b98
|
|
|
|
/* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
|
|
.octa 0x00000001b1471f6e00000000befc06a4
|
|
|
|
/* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
|
|
.octa 0x00000001f64c19cc00000001ae125288
|
|
|
|
/* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
|
|
.octa 0x00000000003c0ea00000000095c19b34
|
|
|
|
/* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
|
|
.octa 0x000000014d73abf600000001a78496f2
|
|
|
|
/* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
|
|
.octa 0x00000001620eb84400000001ac5390a0
|
|
|
|
/* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
|
|
.octa 0x0000000147655048000000002a80ed6e
|
|
|
|
/* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
|
|
.octa 0x0000000067b5077e00000001fa9b0128
|
|
|
|
/* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
|
|
.octa 0x0000000010ffe20600000001ea94929e
|
|
|
|
/* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
|
|
.octa 0x000000000fee8f1e0000000125f4305c
|
|
|
|
/* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
|
|
.octa 0x00000001da26fbae00000001471e2002
|
|
|
|
/* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
|
|
.octa 0x00000001b3a8bd880000000132d2253a
|
|
|
|
/* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
|
|
.octa 0x00000000e8f3898e00000000f26b3592
|
|
|
|
/* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
|
|
.octa 0x00000000b0d0d28c00000000bc8b67b0
|
|
|
|
/* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
|
|
.octa 0x0000000030f2a798000000013a826ef2
|
|
|
|
/* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
|
|
.octa 0x000000000fba10020000000081482c84
|
|
|
|
/* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
|
|
.octa 0x00000000bdb9bd7200000000e77307c2
|
|
|
|
/* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
|
|
.octa 0x0000000075d3bf5a00000000d4a07ec8
|
|
|
|
/* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
|
|
.octa 0x00000000ef1f98a00000000017102100
|
|
|
|
/* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
|
|
.octa 0x00000000689c760200000000db406486
|
|
|
|
/* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
|
|
.octa 0x000000016d5fa5fe0000000192db7f88
|
|
|
|
/* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
|
|
.octa 0x00000001d0d2b9ca000000018bf67b1e
|
|
|
|
/* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
|
|
.octa 0x0000000041e7b470000000007c09163e
|
|
|
|
/* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
|
|
.octa 0x00000001cbb6495e000000000adac060
|
|
|
|
/* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
|
|
.octa 0x000000010052a0b000000000bd8316ae
|
|
|
|
/* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
|
|
.octa 0x00000001d8effb5c000000019f09ab54
|
|
|
|
/* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
|
|
.octa 0x00000001d969853c0000000125155542
|
|
|
|
/* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
|
|
.octa 0x00000000523ccce2000000018fdb5882
|
|
|
|
/* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
|
|
.octa 0x000000001e2436bc00000000e794b3f4
|
|
|
|
/* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
|
|
.octa 0x00000000ddd1c3a2000000016f9bb022
|
|
|
|
/* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
|
|
.octa 0x0000000019fcfe3800000000290c9978
|
|
|
|
/* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
|
|
.octa 0x00000001ce95db640000000083c0f350
|
|
|
|
/* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
|
|
.octa 0x00000000af5828060000000173ea6628
|
|
|
|
/* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
|
|
.octa 0x00000001006388f600000001c8b4e00a
|
|
|
|
/* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
|
|
.octa 0x0000000179eca00a00000000de95d6aa
|
|
|
|
/* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
|
|
.octa 0x0000000122410a6a000000010b7f7248
|
|
|
|
/* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
|
|
.octa 0x000000004288e87c00000001326e3a06
|
|
|
|
/* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
|
|
.octa 0x000000016c5490da00000000bb62c2e6
|
|
|
|
/* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
|
|
.octa 0x00000000d1c71f6e0000000156a4b2c2
|
|
|
|
/* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
|
|
.octa 0x00000001b4ce08a6000000011dfe763a
|
|
|
|
/* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
|
|
.octa 0x00000001466ba60c000000007bcca8e2
|
|
|
|
/* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
|
|
.octa 0x00000001f6c488a40000000186118faa
|
|
|
|
/* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
|
|
.octa 0x000000013bfb06820000000111a65a88
|
|
|
|
/* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
|
|
.octa 0x00000000690e9e54000000003565e1c4
|
|
|
|
/* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
|
|
.octa 0x00000000281346b6000000012ed02a82
|
|
|
|
/* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
|
|
.octa 0x000000015646402400000000c486ecfc
|
|
|
|
/* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
|
|
.octa 0x000000016063a8dc0000000001b951b2
|
|
|
|
/* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
|
|
.octa 0x0000000116a663620000000048143916
|
|
|
|
/* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
|
|
.octa 0x000000017e8aa4d200000001dc2ae124
|
|
|
|
/* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
|
|
.octa 0x00000001728eb10c00000001416c58d6
|
|
|
|
/* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
|
|
.octa 0x00000001b08fd7fa00000000a479744a
|
|
|
|
/* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
|
|
.octa 0x00000001092a16e80000000096ca3a26
|
|
|
|
/* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
|
|
.octa 0x00000000a505637c00000000ff223d4e
|
|
|
|
/* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
|
|
.octa 0x00000000d94869b2000000010e84da42
|
|
|
|
/* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
|
|
.octa 0x00000001c8b203ae00000001b61ba3d0
|
|
|
|
/* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
|
|
.octa 0x000000005704aea000000000680f2de8
|
|
|
|
/* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
|
|
.octa 0x000000012e295fa2000000008772a9a8
|
|
|
|
/* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
|
|
.octa 0x000000011d0908bc0000000155f295bc
|
|
|
|
/* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
|
|
.octa 0x0000000193ed97ea00000000595f9282
|
|
|
|
/* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
|
|
.octa 0x000000013a0f1c520000000164b1c25a
|
|
|
|
/* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
|
|
.octa 0x000000010c2c40c000000000fbd67c50
|
|
|
|
/* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
|
|
.octa 0x00000000ff6fac3e0000000096076268
|
|
|
|
/* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
|
|
.octa 0x000000017b3609c000000001d288e4cc
|
|
|
|
/* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
|
|
.octa 0x0000000088c8c92200000001eaac1bdc
|
|
|
|
/* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
|
|
.octa 0x00000001751baae600000001f1ea39e2
|
|
|
|
/* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
|
|
.octa 0x000000010795297200000001eb6506fc
|
|
|
|
/* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
|
|
.octa 0x0000000162b00abe000000010f806ffe
|
|
|
|
/* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
|
|
.octa 0x000000000d7b404c000000010408481e
|
|
|
|
/* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
|
|
.octa 0x00000000763b13d40000000188260534
|
|
|
|
/* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
|
|
.octa 0x00000000f6dc22d80000000058fc73e0
|
|
|
|
/* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
|
|
.octa 0x000000007daae06000000000391c59b8
|
|
|
|
/* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
|
|
.octa 0x000000013359ab7c000000018b638400
|
|
|
|
/* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
|
|
.octa 0x000000008add438a000000011738f5c4
|
|
|
|
/* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
|
|
.octa 0x00000001edbefdea000000008cf7c6da
|
|
|
|
/* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
|
|
.octa 0x000000004104e0f800000001ef97fb16
|
|
|
|
/* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
|
|
.octa 0x00000000b48a82220000000102130e20
|
|
|
|
/* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
|
|
.octa 0x00000001bcb4684400000000db968898
|
|
|
|
/* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
|
|
.octa 0x000000013293ce0a00000000b5047b5e
|
|
|
|
/* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
|
|
.octa 0x00000001710d0844000000010b90fdb2
|
|
|
|
/* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
|
|
.octa 0x0000000117907f6e000000004834a32e
|
|
|
|
/* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
|
|
.octa 0x0000000087ddf93e0000000059c8f2b0
|
|
|
|
/* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
|
|
.octa 0x000000005970e9b00000000122cec508
|
|
|
|
/* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
|
|
.octa 0x0000000185b2b7d0000000000a330cda
|
|
|
|
/* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
|
|
.octa 0x00000001dcee0efc000000014a47148c
|
|
|
|
/* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
|
|
.octa 0x0000000030da27220000000042c61cb8
|
|
|
|
/* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
|
|
.octa 0x000000012f925a180000000012fe6960
|
|
|
|
/* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
|
|
.octa 0x00000000dd2e357c00000000dbda2c20
|
|
|
|
/* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
|
|
.octa 0x00000000071c80de000000011122410c
|
|
|
|
/* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
|
|
.octa 0x000000011513140a00000000977b2070
|
|
|
|
/* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
|
|
.octa 0x00000001df876e8e000000014050438e
|
|
|
|
/* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
|
|
.octa 0x000000015f81d6ce0000000147c840e8
|
|
|
|
/* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
|
|
.octa 0x000000019dd94dbe00000001cc7c88ce
|
|
|
|
/* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
|
|
.octa 0x00000001373d206e00000001476b35a4
|
|
|
|
/* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
|
|
.octa 0x00000000668ccade000000013d52d508
|
|
|
|
/* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
|
|
.octa 0x00000001b192d268000000008e4be32e
|
|
|
|
/* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
|
|
.octa 0x00000000e30f3a7800000000024120fe
|
|
|
|
/* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
|
|
.octa 0x000000010ef1f7bc00000000ddecddb4
|
|
|
|
/* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
|
|
.octa 0x00000001f5ac738000000000d4d403bc
|
|
|
|
/* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
|
|
.octa 0x000000011822ea7000000001734b89aa
|
|
|
|
/* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
|
|
.octa 0x00000000c3a33848000000010e7a58d6
|
|
|
|
/* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
|
|
.octa 0x00000001bd151c2400000001f9f04e9c
|
|
|
|
/* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
|
|
.octa 0x0000000056002d7600000000b692225e
|
|
|
|
/* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
|
|
.octa 0x000000014657c4f4000000019b8d3f3e
|
|
|
|
/* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
|
|
.octa 0x0000000113742d7c00000001a874f11e
|
|
|
|
/* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
|
|
.octa 0x000000019c5920ba000000010d5a4254
|
|
|
|
/* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
|
|
.octa 0x000000005216d2d600000000bbb2f5d6
|
|
|
|
/* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
|
|
.octa 0x0000000136f5ad8a0000000179cc0e36
|
|
|
|
/* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
|
|
.octa 0x000000018b07beb600000001dca1da4a
|
|
|
|
/* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
|
|
.octa 0x00000000db1e93b000000000feb1a192
|
|
|
|
/* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
|
|
.octa 0x000000000b96fa3a00000000d1eeedd6
|
|
|
|
/* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
|
|
.octa 0x00000001d9968af0000000008fad9bb4
|
|
|
|
/* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
|
|
.octa 0x000000000e4a77a200000001884938e4
|
|
|
|
/* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
|
|
.octa 0x00000000508c2ac800000001bc2e9bc0
|
|
|
|
/* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
|
|
.octa 0x0000000021572a8000000001f9658a68
|
|
|
|
/* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
|
|
.octa 0x00000001b859daf2000000001b9224fc
|
|
|
|
/* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
|
|
.octa 0x000000016f7884740000000055b2fb84
|
|
|
|
/* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
|
|
.octa 0x00000001b438810e000000018b090348
|
|
|
|
/* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
|
|
.octa 0x0000000095ddc6f2000000011ccbd5ea
|
|
|
|
/* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
|
|
.octa 0x00000001d977c20c0000000007ae47f8
|
|
|
|
/* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
|
|
.octa 0x00000000ebedb99a0000000172acbec0
|
|
|
|
/* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
|
|
.octa 0x00000001df9e9e9200000001c6e3ff20
|
|
|
|
/* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
|
|
.octa 0x00000001a4a3f95200000000e1b38744
|
|
|
|
/* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
|
|
.octa 0x00000000e2f5122000000000791585b2
|
|
|
|
/* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
|
|
.octa 0x000000004aa01f3e00000000ac53b894
|
|
|
|
/* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
|
|
.octa 0x00000000b3e90a5800000001ed5f2cf4
|
|
|
|
/* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
|
|
.octa 0x000000000c9ca2aa00000001df48b2e0
|
|
|
|
/* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
|
|
.octa 0x000000015168231600000000049c1c62
|
|
|
|
/* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
|
|
.octa 0x0000000036fce78c000000017c460c12
|
|
|
|
/* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
|
|
.octa 0x000000009037dc10000000015be4da7e
|
|
|
|
/* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
|
|
.octa 0x00000000d3298582000000010f38f668
|
|
|
|
/* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
|
|
.octa 0x00000001b42e8ad60000000039f40a00
|
|
|
|
/* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
|
|
.octa 0x00000000142a983800000000bd4c10c4
|
|
|
|
/* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
|
|
.octa 0x0000000109c7f1900000000042db1d98
|
|
|
|
/* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
|
|
.octa 0x0000000056ff931000000001c905bae6
|
|
|
|
/* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
|
|
.octa 0x00000001594513aa00000000069d40ea
|
|
|
|
/* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
|
|
.octa 0x00000001e3b5b1e8000000008e4fbad0
|
|
|
|
/* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
|
|
.octa 0x000000011dd5fc080000000047bedd46
|
|
|
|
/* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
|
|
.octa 0x00000001675f0cc20000000026396bf8
|
|
|
|
/* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
|
|
.octa 0x00000000d1c8dd4400000000379beb92
|
|
|
|
/* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
|
|
.octa 0x0000000115ebd3d8000000000abae54a
|
|
|
|
/* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
|
|
.octa 0x00000001ecbd0dac0000000007e6a128
|
|
|
|
/* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
|
|
.octa 0x00000000cdf67af2000000000ade29d2
|
|
|
|
/* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
|
|
.octa 0x000000004c01ff4c00000000f974c45c
|
|
|
|
/* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
|
|
.octa 0x00000000f2d8657e00000000e77ac60a
|
|
|
|
/* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
|
|
.octa 0x000000006bae74c40000000145895816
|
|
|
|
/* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
|
|
.octa 0x0000000152af8aa00000000038e362be
|
|
|
|
/* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
|
|
.octa 0x0000000004663802000000007f991a64
|
|
|
|
/* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
|
|
.octa 0x00000001ab2f5afc00000000fa366d3a
|
|
|
|
/* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
|
|
.octa 0x0000000074a4ebd400000001a2bb34f0
|
|
|
|
/* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
|
|
.octa 0x00000001d7ab3a4c0000000028a9981e
|
|
|
|
/* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
|
|
.octa 0x00000001a8da60c600000001dbc672be
|
|
|
|
/* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
|
|
.octa 0x000000013cf6382000000000b04d77f6
|
|
|
|
/* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
|
|
.octa 0x00000000bec12e1e0000000124400d96
|
|
|
|
/* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
|
|
.octa 0x00000001c6368010000000014ca4b414
|
|
|
|
/* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
|
|
.octa 0x00000001e6e78758000000012fe2c938
|
|
|
|
/* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
|
|
.octa 0x000000008d7f2b3c00000001faed01e6
|
|
|
|
/* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
|
|
.octa 0x000000016b4a156e000000007e80ecfe
|
|
|
|
/* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
|
|
.octa 0x00000001c63cfeb60000000098daee94
|
|
|
|
/* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
|
|
.octa 0x000000015f902670000000010a04edea
|
|
|
|
/* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
|
|
.octa 0x00000001cd5de11e00000001c00b4524
|
|
|
|
/* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
|
|
.octa 0x000000001acaec540000000170296550
|
|
|
|
/* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
|
|
.octa 0x000000002bd0ca780000000181afaa48
|
|
|
|
/* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
|
|
.octa 0x0000000032d63d5c0000000185a31ffa
|
|
|
|
/* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
|
|
.octa 0x000000001c6d4e4c000000002469f608
|
|
|
|
/* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
|
|
.octa 0x0000000106a60b92000000006980102a
|
|
|
|
/* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
|
|
.octa 0x00000000d3855e120000000111ea9ca8
|
|
|
|
/* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
|
|
.octa 0x00000000e312563600000001bd1d29ce
|
|
|
|
/* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
|
|
.octa 0x000000009e8f7ea400000001b34b9580
|
|
|
|
/* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
|
|
.octa 0x00000001c82e562c000000003076054e
|
|
|
|
/* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
|
|
.octa 0x00000000ca9f09ce000000012a608ea4
|
|
|
|
/* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
|
|
.octa 0x00000000c63764e600000000784d05fe
|
|
|
|
/* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
|
|
.octa 0x0000000168d2e49e000000016ef0d82a
|
|
|
|
/* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
|
|
.octa 0x00000000e986c1480000000075bda454
|
|
|
|
/* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
|
|
.octa 0x00000000cfb65894000000003dc0a1c4
|
|
|
|
/* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
|
|
.octa 0x0000000111cadee400000000e9a5d8be
|
|
|
|
/* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
|
|
.octa 0x0000000171fb63ce00000001609bc4b4
|
|
|
|
.short_constants:
|
|
|
|
/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
|
|
/* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
|
|
.octa 0x7fec2963e5bf80485cf015c388e56f72
|
|
|
|
/* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
|
|
.octa 0x38e888d4844752a9963a18920246e2e6
|
|
|
|
/* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
|
|
.octa 0x42316c00730206ad419a441956993a31
|
|
|
|
/* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
|
|
.octa 0x543d5c543e65ddf9924752ba2b830011
|
|
|
|
/* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
|
|
.octa 0x78e87aaf56767c9255bd7f9518e4a304
|
|
|
|
/* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
|
|
.octa 0x8f68fcec1903da7f6d76739fe0553f1e
|
|
|
|
/* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
|
|
.octa 0x3f4840246791d588c133722b1fe0b5c3
|
|
|
|
/* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
|
|
.octa 0x34c96751b04de25a64b67ee0e55ef1f3
|
|
|
|
/* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
|
|
.octa 0x156c8e180b4a395b069db049b8fdb1e7
|
|
|
|
/* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
|
|
.octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
|
|
|
|
/* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
|
|
.octa 0x041d37768cd75659817cdc5119b29a35
|
|
|
|
/* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
|
|
.octa 0x3a0777818cfaa9651ce9d94b36c41f1c
|
|
|
|
/* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
|
|
.octa 0x0e148e8252377a554f256efcb82be955
|
|
|
|
/* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
|
|
.octa 0x9c25531d19e65ddeec1631edb2dea967
|
|
|
|
/* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
|
|
.octa 0x790606ff9957c0a65d27e147510ac59a
|
|
|
|
/* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
|
|
.octa 0x82f63b786ea2d55ca66805eb18b8ea18
|
|
|
|
|
|
.barrett_constants:
|
|
/* 33 bit reflected Barrett constant m - (4^32)/n */
|
|
.octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
|
|
/* 33 bit reflected Barrett constant n */
|
|
.octa 0x00000000000000000000000105ec76f1
|
|
|
|
.text
|
|
|
|
#if defined(__BIG_ENDIAN__)
|
|
#define BYTESWAP_DATA
|
|
#else
|
|
#undef BYTESWAP_DATA
|
|
#endif
|
|
|
|
#define off16 r25
|
|
#define off32 r26
|
|
#define off48 r27
|
|
#define off64 r28
|
|
#define off80 r29
|
|
#define off96 r30
|
|
#define off112 r31
|
|
|
|
#define const1 v24
|
|
#define const2 v25
|
|
|
|
#define byteswap v26
|
|
#define mask_32bit v27
|
|
#define mask_64bit v28
|
|
#define zeroes v29
|
|
|
|
#ifdef BYTESWAP_DATA
|
|
#define VPERM(A, B, C, D) vperm A, B, C, D
|
|
#else
|
|
#define VPERM(A, B, C, D)
|
|
#endif
|
|
|
|
/* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */
|
|
FUNC_START(__crc32c_vpmsum)
|
|
std r31,-8(r1)
|
|
std r30,-16(r1)
|
|
std r29,-24(r1)
|
|
std r28,-32(r1)
|
|
std r27,-40(r1)
|
|
std r26,-48(r1)
|
|
std r25,-56(r1)
|
|
|
|
li off16,16
|
|
li off32,32
|
|
li off48,48
|
|
li off64,64
|
|
li off80,80
|
|
li off96,96
|
|
li off112,112
|
|
li r0,0
|
|
|
|
/* Enough room for saving 10 non volatile VMX registers */
|
|
subi r6,r1,56+10*16
|
|
subi r7,r1,56+2*16
|
|
|
|
stvx v20,0,r6
|
|
stvx v21,off16,r6
|
|
stvx v22,off32,r6
|
|
stvx v23,off48,r6
|
|
stvx v24,off64,r6
|
|
stvx v25,off80,r6
|
|
stvx v26,off96,r6
|
|
stvx v27,off112,r6
|
|
stvx v28,0,r7
|
|
stvx v29,off16,r7
|
|
|
|
mr r10,r3
|
|
|
|
vxor zeroes,zeroes,zeroes
|
|
vspltisw v0,-1
|
|
|
|
vsldoi mask_32bit,zeroes,v0,4
|
|
vsldoi mask_64bit,zeroes,v0,8
|
|
|
|
/* Get the initial value into v8 */
|
|
vxor v8,v8,v8
|
|
MTVRD(v8, R3)
|
|
vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
|
|
|
|
#ifdef BYTESWAP_DATA
|
|
addis r3,r2,.byteswap_constant@toc@ha
|
|
addi r3,r3,.byteswap_constant@toc@l
|
|
|
|
lvx byteswap,0,r3
|
|
addi r3,r3,16
|
|
#endif
|
|
|
|
cmpdi r5,256
|
|
blt .Lshort
|
|
|
|
rldicr r6,r5,0,56
|
|
|
|
/* Checksum in blocks of MAX_SIZE */
|
|
1: lis r7,MAX_SIZE@h
|
|
ori r7,r7,MAX_SIZE@l
|
|
mr r9,r7
|
|
cmpd r6,r7
|
|
bgt 2f
|
|
mr r7,r6
|
|
2: subf r6,r7,r6
|
|
|
|
/* our main loop does 128 bytes at a time */
|
|
srdi r7,r7,7
|
|
|
|
/*
|
|
* Work out the offset into the constants table to start at. Each
|
|
* constant is 16 bytes, and it is used against 128 bytes of input
|
|
* data - 128 / 16 = 8
|
|
*/
|
|
sldi r8,r7,4
|
|
srdi r9,r9,3
|
|
subf r8,r8,r9
|
|
|
|
/* We reduce our final 128 bytes in a separate step */
|
|
addi r7,r7,-1
|
|
mtctr r7
|
|
|
|
addis r3,r2,.constants@toc@ha
|
|
addi r3,r3,.constants@toc@l
|
|
|
|
/* Find the start of our constants */
|
|
add r3,r3,r8
|
|
|
|
/* zero v0-v7 which will contain our checksums */
|
|
vxor v0,v0,v0
|
|
vxor v1,v1,v1
|
|
vxor v2,v2,v2
|
|
vxor v3,v3,v3
|
|
vxor v4,v4,v4
|
|
vxor v5,v5,v5
|
|
vxor v6,v6,v6
|
|
vxor v7,v7,v7
|
|
|
|
lvx const1,0,r3
|
|
|
|
/*
|
|
* If we are looping back to consume more data we use the values
|
|
* already in v16-v23.
|
|
*/
|
|
cmpdi r0,1
|
|
beq 2f
|
|
|
|
/* First warm up pass */
|
|
lvx v16,0,r4
|
|
lvx v17,off16,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPERM(v17,v17,v17,byteswap)
|
|
lvx v18,off32,r4
|
|
lvx v19,off48,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
VPERM(v19,v19,v19,byteswap)
|
|
lvx v20,off64,r4
|
|
lvx v21,off80,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
VPERM(v21,v21,v21,byteswap)
|
|
lvx v22,off96,r4
|
|
lvx v23,off112,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
VPERM(v23,v23,v23,byteswap)
|
|
addi r4,r4,8*16
|
|
|
|
/* xor in initial value */
|
|
vxor v16,v16,v8
|
|
|
|
2: bdz .Lfirst_warm_up_done
|
|
|
|
addi r3,r3,16
|
|
lvx const2,0,r3
|
|
|
|
/* Second warm up pass */
|
|
VPMSUMD(v8,v16,const1)
|
|
lvx v16,0,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v9,v17,const1)
|
|
lvx v17,off16,r4
|
|
VPERM(v17,v17,v17,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v10,v18,const1)
|
|
lvx v18,off32,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v11,v19,const1)
|
|
lvx v19,off48,r4
|
|
VPERM(v19,v19,v19,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v12,v20,const1)
|
|
lvx v20,off64,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v13,v21,const1)
|
|
lvx v21,off80,r4
|
|
VPERM(v21,v21,v21,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v14,v22,const1)
|
|
lvx v22,off96,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v15,v23,const1)
|
|
lvx v23,off112,r4
|
|
VPERM(v23,v23,v23,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
bdz .Lfirst_cool_down
|
|
|
|
/*
|
|
* main loop. We modulo schedule it such that it takes three iterations
|
|
* to complete - first iteration load, second iteration vpmsum, third
|
|
* iteration xor.
|
|
*/
|
|
.balign 16
|
|
4: lvx const1,0,r3
|
|
addi r3,r3,16
|
|
ori r2,r2,0
|
|
|
|
vxor v0,v0,v8
|
|
VPMSUMD(v8,v16,const2)
|
|
lvx v16,0,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v1,v1,v9
|
|
VPMSUMD(v9,v17,const2)
|
|
lvx v17,off16,r4
|
|
VPERM(v17,v17,v17,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v2,v2,v10
|
|
VPMSUMD(v10,v18,const2)
|
|
lvx v18,off32,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v3,v3,v11
|
|
VPMSUMD(v11,v19,const2)
|
|
lvx v19,off48,r4
|
|
VPERM(v19,v19,v19,byteswap)
|
|
lvx const2,0,r3
|
|
ori r2,r2,0
|
|
|
|
vxor v4,v4,v12
|
|
VPMSUMD(v12,v20,const1)
|
|
lvx v20,off64,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v5,v5,v13
|
|
VPMSUMD(v13,v21,const1)
|
|
lvx v21,off80,r4
|
|
VPERM(v21,v21,v21,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v6,v6,v14
|
|
VPMSUMD(v14,v22,const1)
|
|
lvx v22,off96,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v7,v7,v15
|
|
VPMSUMD(v15,v23,const1)
|
|
lvx v23,off112,r4
|
|
VPERM(v23,v23,v23,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
bdnz 4b
|
|
|
|
.Lfirst_cool_down:
|
|
/* First cool down pass */
|
|
lvx const1,0,r3
|
|
addi r3,r3,16
|
|
|
|
vxor v0,v0,v8
|
|
VPMSUMD(v8,v16,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v1,v1,v9
|
|
VPMSUMD(v9,v17,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v2,v2,v10
|
|
VPMSUMD(v10,v18,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v3,v3,v11
|
|
VPMSUMD(v11,v19,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v4,v4,v12
|
|
VPMSUMD(v12,v20,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v5,v5,v13
|
|
VPMSUMD(v13,v21,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v6,v6,v14
|
|
VPMSUMD(v14,v22,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v7,v7,v15
|
|
VPMSUMD(v15,v23,const1)
|
|
ori r2,r2,0
|
|
|
|
.Lsecond_cool_down:
|
|
/* Second cool down pass */
|
|
vxor v0,v0,v8
|
|
vxor v1,v1,v9
|
|
vxor v2,v2,v10
|
|
vxor v3,v3,v11
|
|
vxor v4,v4,v12
|
|
vxor v5,v5,v13
|
|
vxor v6,v6,v14
|
|
vxor v7,v7,v15
|
|
|
|
/*
|
|
* vpmsumd produces a 96 bit result in the least significant bits
|
|
* of the register. Since we are bit reflected we have to shift it
|
|
* left 32 bits so it occupies the least significant bits in the
|
|
* bit reflected domain.
|
|
*/
|
|
vsldoi v0,v0,zeroes,4
|
|
vsldoi v1,v1,zeroes,4
|
|
vsldoi v2,v2,zeroes,4
|
|
vsldoi v3,v3,zeroes,4
|
|
vsldoi v4,v4,zeroes,4
|
|
vsldoi v5,v5,zeroes,4
|
|
vsldoi v6,v6,zeroes,4
|
|
vsldoi v7,v7,zeroes,4
|
|
|
|
/* xor with last 1024 bits */
|
|
lvx v8,0,r4
|
|
lvx v9,off16,r4
|
|
VPERM(v8,v8,v8,byteswap)
|
|
VPERM(v9,v9,v9,byteswap)
|
|
lvx v10,off32,r4
|
|
lvx v11,off48,r4
|
|
VPERM(v10,v10,v10,byteswap)
|
|
VPERM(v11,v11,v11,byteswap)
|
|
lvx v12,off64,r4
|
|
lvx v13,off80,r4
|
|
VPERM(v12,v12,v12,byteswap)
|
|
VPERM(v13,v13,v13,byteswap)
|
|
lvx v14,off96,r4
|
|
lvx v15,off112,r4
|
|
VPERM(v14,v14,v14,byteswap)
|
|
VPERM(v15,v15,v15,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
vxor v16,v0,v8
|
|
vxor v17,v1,v9
|
|
vxor v18,v2,v10
|
|
vxor v19,v3,v11
|
|
vxor v20,v4,v12
|
|
vxor v21,v5,v13
|
|
vxor v22,v6,v14
|
|
vxor v23,v7,v15
|
|
|
|
li r0,1
|
|
cmpdi r6,0
|
|
addi r6,r6,128
|
|
bne 1b
|
|
|
|
/* Work out how many bytes we have left */
|
|
andi. r5,r5,127
|
|
|
|
/* Calculate where in the constant table we need to start */
|
|
subfic r6,r5,128
|
|
add r3,r3,r6
|
|
|
|
/* How many 16 byte chunks are in the tail */
|
|
srdi r7,r5,4
|
|
mtctr r7
|
|
|
|
/*
|
|
* Reduce the previously calculated 1024 bits to 64 bits, shifting
|
|
* 32 bits to include the trailing 32 bits of zeros
|
|
*/
|
|
lvx v0,0,r3
|
|
lvx v1,off16,r3
|
|
lvx v2,off32,r3
|
|
lvx v3,off48,r3
|
|
lvx v4,off64,r3
|
|
lvx v5,off80,r3
|
|
lvx v6,off96,r3
|
|
lvx v7,off112,r3
|
|
addi r3,r3,8*16
|
|
|
|
VPMSUMW(v0,v16,v0)
|
|
VPMSUMW(v1,v17,v1)
|
|
VPMSUMW(v2,v18,v2)
|
|
VPMSUMW(v3,v19,v3)
|
|
VPMSUMW(v4,v20,v4)
|
|
VPMSUMW(v5,v21,v5)
|
|
VPMSUMW(v6,v22,v6)
|
|
VPMSUMW(v7,v23,v7)
|
|
|
|
/* Now reduce the tail (0 - 112 bytes) */
|
|
cmpdi r7,0
|
|
beq 1f
|
|
|
|
lvx v16,0,r4
|
|
lvx v17,0,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off32,r4
|
|
lvx v17,off32,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off64,r4
|
|
lvx v17,off64,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off96,r4
|
|
lvx v17,off96,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
|
|
/* Now xor all the parallel chunks together */
|
|
1: vxor v0,v0,v1
|
|
vxor v2,v2,v3
|
|
vxor v4,v4,v5
|
|
vxor v6,v6,v7
|
|
|
|
vxor v0,v0,v2
|
|
vxor v4,v4,v6
|
|
|
|
vxor v0,v0,v4
|
|
|
|
.Lbarrett_reduction:
|
|
/* Barrett constants */
|
|
addis r3,r2,.barrett_constants@toc@ha
|
|
addi r3,r3,.barrett_constants@toc@l
|
|
|
|
lvx const1,0,r3
|
|
lvx const2,off16,r3
|
|
|
|
vsldoi v1,v0,v0,8
|
|
vxor v0,v0,v1 /* xor two 64 bit results together */
|
|
|
|
/* shift left one bit */
|
|
vspltisb v1,1
|
|
vsl v0,v0,v1
|
|
|
|
vand v0,v0,mask_64bit
|
|
|
|
/*
|
|
* The reflected version of Barrett reduction. Instead of bit
|
|
* reflecting our data (which is expensive to do), we bit reflect our
|
|
* constants and our algorithm, which means the intermediate data in
|
|
* our vector registers goes from 0-63 instead of 63-0. We can reflect
|
|
* the algorithm because we don't carry in mod 2 arithmetic.
|
|
*/
|
|
vand v1,v0,mask_32bit /* bottom 32 bits of a */
|
|
VPMSUMD(v1,v1,const1) /* ma */
|
|
vand v1,v1,mask_32bit /* bottom 32bits of ma */
|
|
VPMSUMD(v1,v1,const2) /* qn */
|
|
vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
|
|
|
|
/*
|
|
* Since we are bit reflected, the result (ie the low 32 bits) is in
|
|
* the high 32 bits. We just need to shift it left 4 bytes
|
|
* V0 [ 0 1 X 3 ]
|
|
* V0 [ 0 X 2 3 ]
|
|
*/
|
|
vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
|
|
|
|
/* Get it into r3 */
|
|
MFVRD(R3, v0)
|
|
|
|
.Lout:
|
|
subi r6,r1,56+10*16
|
|
subi r7,r1,56+2*16
|
|
|
|
lvx v20,0,r6
|
|
lvx v21,off16,r6
|
|
lvx v22,off32,r6
|
|
lvx v23,off48,r6
|
|
lvx v24,off64,r6
|
|
lvx v25,off80,r6
|
|
lvx v26,off96,r6
|
|
lvx v27,off112,r6
|
|
lvx v28,0,r7
|
|
lvx v29,off16,r7
|
|
|
|
ld r31,-8(r1)
|
|
ld r30,-16(r1)
|
|
ld r29,-24(r1)
|
|
ld r28,-32(r1)
|
|
ld r27,-40(r1)
|
|
ld r26,-48(r1)
|
|
ld r25,-56(r1)
|
|
|
|
blr
|
|
|
|
.Lfirst_warm_up_done:
|
|
lvx const1,0,r3
|
|
addi r3,r3,16
|
|
|
|
VPMSUMD(v8,v16,const1)
|
|
VPMSUMD(v9,v17,const1)
|
|
VPMSUMD(v10,v18,const1)
|
|
VPMSUMD(v11,v19,const1)
|
|
VPMSUMD(v12,v20,const1)
|
|
VPMSUMD(v13,v21,const1)
|
|
VPMSUMD(v14,v22,const1)
|
|
VPMSUMD(v15,v23,const1)
|
|
|
|
b .Lsecond_cool_down
|
|
|
|
.Lshort:
|
|
cmpdi r5,0
|
|
beq .Lzero
|
|
|
|
addis r3,r2,.short_constants@toc@ha
|
|
addi r3,r3,.short_constants@toc@l
|
|
|
|
/* Calculate where in the constant table we need to start */
|
|
subfic r6,r5,256
|
|
add r3,r3,r6
|
|
|
|
/* How many 16 byte chunks? */
|
|
srdi r7,r5,4
|
|
mtctr r7
|
|
|
|
vxor v19,v19,v19
|
|
vxor v20,v20,v20
|
|
|
|
lvx v0,0,r4
|
|
lvx v16,0,r3
|
|
VPERM(v0,v0,v16,byteswap)
|
|
vxor v0,v0,v8 /* xor in initial value */
|
|
VPMSUMW(v0,v0,v16)
|
|
bdz .Lv0
|
|
|
|
lvx v1,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v1,v1,v17,byteswap)
|
|
VPMSUMW(v1,v1,v17)
|
|
bdz .Lv1
|
|
|
|
lvx v2,off32,r4
|
|
lvx v16,off32,r3
|
|
VPERM(v2,v2,v16,byteswap)
|
|
VPMSUMW(v2,v2,v16)
|
|
bdz .Lv2
|
|
|
|
lvx v3,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v3,v3,v17,byteswap)
|
|
VPMSUMW(v3,v3,v17)
|
|
bdz .Lv3
|
|
|
|
lvx v4,off64,r4
|
|
lvx v16,off64,r3
|
|
VPERM(v4,v4,v16,byteswap)
|
|
VPMSUMW(v4,v4,v16)
|
|
bdz .Lv4
|
|
|
|
lvx v5,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v5,v5,v17,byteswap)
|
|
VPMSUMW(v5,v5,v17)
|
|
bdz .Lv5
|
|
|
|
lvx v6,off96,r4
|
|
lvx v16,off96,r3
|
|
VPERM(v6,v6,v16,byteswap)
|
|
VPMSUMW(v6,v6,v16)
|
|
bdz .Lv6
|
|
|
|
lvx v7,off112,r4
|
|
lvx v17,off112,r3
|
|
VPERM(v7,v7,v17,byteswap)
|
|
VPMSUMW(v7,v7,v17)
|
|
bdz .Lv7
|
|
|
|
addi r3,r3,128
|
|
addi r4,r4,128
|
|
|
|
lvx v8,0,r4
|
|
lvx v16,0,r3
|
|
VPERM(v8,v8,v16,byteswap)
|
|
VPMSUMW(v8,v8,v16)
|
|
bdz .Lv8
|
|
|
|
lvx v9,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v9,v9,v17,byteswap)
|
|
VPMSUMW(v9,v9,v17)
|
|
bdz .Lv9
|
|
|
|
lvx v10,off32,r4
|
|
lvx v16,off32,r3
|
|
VPERM(v10,v10,v16,byteswap)
|
|
VPMSUMW(v10,v10,v16)
|
|
bdz .Lv10
|
|
|
|
lvx v11,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v11,v11,v17,byteswap)
|
|
VPMSUMW(v11,v11,v17)
|
|
bdz .Lv11
|
|
|
|
lvx v12,off64,r4
|
|
lvx v16,off64,r3
|
|
VPERM(v12,v12,v16,byteswap)
|
|
VPMSUMW(v12,v12,v16)
|
|
bdz .Lv12
|
|
|
|
lvx v13,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v13,v13,v17,byteswap)
|
|
VPMSUMW(v13,v13,v17)
|
|
bdz .Lv13
|
|
|
|
lvx v14,off96,r4
|
|
lvx v16,off96,r3
|
|
VPERM(v14,v14,v16,byteswap)
|
|
VPMSUMW(v14,v14,v16)
|
|
bdz .Lv14
|
|
|
|
lvx v15,off112,r4
|
|
lvx v17,off112,r3
|
|
VPERM(v15,v15,v17,byteswap)
|
|
VPMSUMW(v15,v15,v17)
|
|
|
|
.Lv15: vxor v19,v19,v15
|
|
.Lv14: vxor v20,v20,v14
|
|
.Lv13: vxor v19,v19,v13
|
|
.Lv12: vxor v20,v20,v12
|
|
.Lv11: vxor v19,v19,v11
|
|
.Lv10: vxor v20,v20,v10
|
|
.Lv9: vxor v19,v19,v9
|
|
.Lv8: vxor v20,v20,v8
|
|
.Lv7: vxor v19,v19,v7
|
|
.Lv6: vxor v20,v20,v6
|
|
.Lv5: vxor v19,v19,v5
|
|
.Lv4: vxor v20,v20,v4
|
|
.Lv3: vxor v19,v19,v3
|
|
.Lv2: vxor v20,v20,v2
|
|
.Lv1: vxor v19,v19,v1
|
|
.Lv0: vxor v20,v20,v0
|
|
|
|
vxor v0,v19,v20
|
|
|
|
b .Lbarrett_reduction
|
|
|
|
.Lzero:
|
|
mr r3,r10
|
|
b .Lout
|
|
|
|
FUNC_END(__crc32_vpmsum)
|