2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
linux-next/tools/perf/Documentation/perf-list.txt
Jiri Olsa 3c1763115b perf tools: Add 'S' event/group modifier to read sample value
Adding 'S' event/group modifier to specify that the event value/s are
read by PERF_SAMPLE_READ sample type processing, instead of the period
value offered by lower layers.

There's additional behaviour change for 'S' modifier being specified on
event group:

Currently all the events within a group makes samples. If user now
specifies 'S' within group modifier, only the leader will trigger
samples. The rest of events in the group will have sampling disabled.

And same as for single events, values of all events within the group
(including leader) are read by PERF_SAMPLE_READ sample type processing.

Following example will create event group with cycles and cache-misses
events, setting the cycles as group leader and the only event to
actually sample. Both cycles and cache-misses event period values are
read by PERF_SAMPLE_READ sample type processing with PERF_FORMAT_GROUP
read format.

Example:

  $ perf record -e '{cycles,cache-misses}:S' ls
  ...
  $ perf report --group --show-total-period --stdio
  ...
  # Samples: 36  of event 'anon group { cycles, cache-misses }'
  # Event count (approx.): 12585593
  #
  #       Overhead          Period  Command      Shared Object                      Symbol
  # ..............  ..............  .......  .................  ..........................
  #
    19.92%   1.20%  2505936     31       ls  [kernel.kallsyms]  [k] mark_held_locks
    13.74%   0.47%  1729327     12       ls  [kernel.kallsyms]  [k] sched_clock_local
    13.64%  23.72%  1716147    612       ls  ld-2.14.90.so      [.] check_match.10805
    13.12%  23.22%  1650778    599       ls  libc-2.14.90.so    [.] _nl_intern_locale_data
    11.24%  29.19%  1414554    753       ls  [kernel.kallsyms]  [k] sched_clock_cpu
     8.50%   0.35%  1070150      9       ls  [kernel.kallsyms]  [k] check_chain_key
  ...

Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-iyoinu3axi11mymwnh2b7fxj@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2013-08-07 17:35:22 -03:00

122 lines
4.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

perf-list(1)
============
NAME
----
perf-list - List all symbolic event types
SYNOPSIS
--------
[verse]
'perf list' [hw|sw|cache|tracepoint|pmu|event_glob]
DESCRIPTION
-----------
This command displays the symbolic event types which can be selected in the
various perf commands with the -e option.
[[EVENT_MODIFIERS]]
EVENT MODIFIERS
---------------
Events can optionally have a modifer by appending a colon and one or
more modifiers. Modifiers allow the user to restrict the events to be
counted. The following modifiers exist:
u - user-space counting
k - kernel counting
h - hypervisor counting
G - guest counting (in KVM guests)
H - host counting (not in KVM guests)
p - precise level
S - read sample value (PERF_SAMPLE_READ)
The 'p' modifier can be used for specifying how precise the instruction
address should be. The 'p' modifier can be specified multiple times:
0 - SAMPLE_IP can have arbitrary skid
1 - SAMPLE_IP must have constant skid
2 - SAMPLE_IP requested to have 0 skid
3 - SAMPLE_IP must have 0 skid
For Intel systems precise event sampling is implemented with PEBS
which supports up to precise-level 2.
On AMD systems it is implemented using IBS (up to precise-level 2).
The precise modifier works with event types 0x76 (cpu-cycles, CPU
clocks not halted) and 0xC1 (micro-ops retired). Both events map to
IBS execution sampling (IBS op) with the IBS Op Counter Control bit
(IbsOpCntCtl) set respectively (see AMD64 Architecture Programmers
Manual Volume 2: System Programming, 13.3 Instruction-Based
Sampling). Examples to use IBS:
perf record -a -e cpu-cycles:p ... # use ibs op counting cycles
perf record -a -e r076:p ... # same as -e cpu-cycles:p
perf record -a -e r0C1:p ... # use ibs op counting micro-ops
RAW HARDWARE EVENT DESCRIPTOR
-----------------------------
Even when an event is not available in a symbolic form within perf right now,
it can be encoded in a per processor specific way.
For instance For x86 CPUs NNN represents the raw register encoding with the
layout of IA32_PERFEVTSELx MSRs (see [Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3B: System Programming Guide] Figure 30-1 Layout
of IA32_PERFEVTSELx MSRs) or AMD's PerfEvtSeln (see [AMD64 Architecture Programmers Manual Volume 2: System Programming], Page 344,
Figure 13-7 Performance Event-Select Register (PerfEvtSeln)).
Note: Only the following bit fields can be set in x86 counter
registers: event, umask, edge, inv, cmask. Esp. guest/host only and
OS/user mode flags must be setup using <<EVENT_MODIFIERS, EVENT
MODIFIERS>>.
Example:
If the Intel docs for a QM720 Core i7 describe an event as:
Event Umask Event Mask
Num. Value Mnemonic Description Comment
A8H 01H LSD.UOPS Counts the number of micro-ops Use cmask=1 and
delivered by loop stream detector invert to count
cycles
raw encoding of 0x1A8 can be used:
perf stat -e r1a8 -a sleep 1
perf record -e r1a8 ...
You should refer to the processor specific documentation for getting these
details. Some of them are referenced in the SEE ALSO section below.
OPTIONS
-------
Without options all known events will be listed.
To limit the list use:
. 'hw' or 'hardware' to list hardware events such as cache-misses, etc.
. 'sw' or 'software' to list software events such as context switches, etc.
. 'cache' or 'hwcache' to list hardware cache events such as L1-dcache-loads, etc.
. 'tracepoint' to list all tracepoint events, alternatively use
'subsys_glob:event_glob' to filter by tracepoint subsystems such as sched,
block, etc.
. 'pmu' to print the kernel supplied PMU events.
. If none of the above is matched, it will apply the supplied glob to all
events, printing the ones that match.
One or more types can be used at the same time, listing the events for the
types specified.
SEE ALSO
--------
linkperf:perf-stat[1], linkperf:perf-top[1],
linkperf:perf-record[1],
http://www.intel.com/Assets/PDF/manual/253669.pdf[Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3B: System Programming Guide],
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf[AMD64 Architecture Programmers Manual Volume 2: System Programming]