2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/drivers/hwmon/adm9240.c
Jean Delvare 303760b44a [PATCH] hwmon: hwmon vs i2c, second round (07/11)
The only part left in i2c-sensor is the VRM/VRD/VID handling code.
This is in no way related to i2c, so it doesn't belong there. Move
the code to hwmon, where it belongs.

Note that not all hardware monitoring drivers do VRM/VRD/VID
operations, so less drivers depend on hwmon-vid than there were
depending on i2c-sensor.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-09-05 09:14:22 -07:00

801 lines
24 KiB
C

/*
* adm9240.c Part of lm_sensors, Linux kernel modules for hardware
* monitoring
*
* Copyright (C) 1999 Frodo Looijaard <frodol@dds.nl>
* Philip Edelbrock <phil@netroedge.com>
* Copyright (C) 2003 Michiel Rook <michiel@grendelproject.nl>
* Copyright (C) 2005 Grant Coady <gcoady@gmail.com> with valuable
* guidance from Jean Delvare
*
* Driver supports Analog Devices ADM9240
* Dallas Semiconductor DS1780
* National Semiconductor LM81
*
* ADM9240 is the reference, DS1780 and LM81 are register compatibles
*
* Voltage Six inputs are scaled by chip, VID also reported
* Temperature Chip temperature to 0.5'C, maximum and max_hysteris
* Fans 2 fans, low speed alarm, automatic fan clock divider
* Alarms 16-bit map of active alarms
* Analog Out 0..1250 mV output
*
* Chassis Intrusion: clear CI latch with 'echo 1 > chassis_clear'
*
* Test hardware: Intel SE440BX-2 desktop motherboard --Grant
*
* LM81 extended temp reading not implemented
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_3(adm9240, ds1780, lm81);
/* ADM9240 registers */
#define ADM9240_REG_MAN_ID 0x3e
#define ADM9240_REG_DIE_REV 0x3f
#define ADM9240_REG_CONFIG 0x40
#define ADM9240_REG_IN(nr) (0x20 + (nr)) /* 0..5 */
#define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define ADM9240_REG_FAN(nr) (0x28 + (nr)) /* 0..1 */
#define ADM9240_REG_FAN_MIN(nr) (0x3b + (nr))
#define ADM9240_REG_INT(nr) (0x41 + (nr))
#define ADM9240_REG_INT_MASK(nr) (0x43 + (nr))
#define ADM9240_REG_TEMP 0x27
#define ADM9240_REG_TEMP_HIGH 0x39
#define ADM9240_REG_TEMP_HYST 0x3a
#define ADM9240_REG_ANALOG_OUT 0x19
#define ADM9240_REG_CHASSIS_CLEAR 0x46
#define ADM9240_REG_VID_FAN_DIV 0x47
#define ADM9240_REG_I2C_ADDR 0x48
#define ADM9240_REG_VID4 0x49
#define ADM9240_REG_TEMP_CONF 0x4b
/* generalised scaling with integer rounding */
static inline int SCALE(long val, int mul, int div)
{
if (val < 0)
return (val * mul - div / 2) / div;
else
return (val * mul + div / 2) / div;
}
/* adm9240 internally scales voltage measurements */
static const u16 nom_mv[] = { 2500, 2700, 3300, 5000, 12000, 2700 };
static inline unsigned int IN_FROM_REG(u8 reg, int n)
{
return SCALE(reg, nom_mv[n], 192);
}
static inline u8 IN_TO_REG(unsigned long val, int n)
{
return SENSORS_LIMIT(SCALE(val, 192, nom_mv[n]), 0, 255);
}
/* temperature range: -40..125, 127 disables temperature alarm */
static inline s8 TEMP_TO_REG(long val)
{
return SENSORS_LIMIT(SCALE(val, 1, 1000), -40, 127);
}
/* two fans, each with low fan speed limit */
static inline unsigned int FAN_FROM_REG(u8 reg, u8 div)
{
if (!reg) /* error */
return -1;
if (reg == 255)
return 0;
return SCALE(1350000, 1, reg * div);
}
/* analog out 0..1250mV */
static inline u8 AOUT_TO_REG(unsigned long val)
{
return SENSORS_LIMIT(SCALE(val, 255, 1250), 0, 255);
}
static inline unsigned int AOUT_FROM_REG(u8 reg)
{
return SCALE(reg, 1250, 255);
}
static int adm9240_attach_adapter(struct i2c_adapter *adapter);
static int adm9240_detect(struct i2c_adapter *adapter, int address, int kind);
static void adm9240_init_client(struct i2c_client *client);
static int adm9240_detach_client(struct i2c_client *client);
static struct adm9240_data *adm9240_update_device(struct device *dev);
/* driver data */
static struct i2c_driver adm9240_driver = {
.owner = THIS_MODULE,
.name = "adm9240",
.id = I2C_DRIVERID_ADM9240,
.flags = I2C_DF_NOTIFY,
.attach_adapter = adm9240_attach_adapter,
.detach_client = adm9240_detach_client,
};
/* per client data */
struct adm9240_data {
enum chips type;
struct i2c_client client;
struct class_device *class_dev;
struct semaphore update_lock;
char valid;
unsigned long last_updated_measure;
unsigned long last_updated_config;
u8 in[6]; /* ro in0_input */
u8 in_max[6]; /* rw in0_max */
u8 in_min[6]; /* rw in0_min */
u8 fan[2]; /* ro fan1_input */
u8 fan_min[2]; /* rw fan1_min */
u8 fan_div[2]; /* rw fan1_div, read-only accessor */
s16 temp; /* ro temp1_input, 9-bit sign-extended */
s8 temp_high; /* rw temp1_max */
s8 temp_hyst; /* rw temp1_max_hyst */
u16 alarms; /* ro alarms */
u8 aout; /* rw aout_output */
u8 vid; /* ro vid */
u8 vrm; /* -- vrm set on startup, no accessor */
};
/* i2c byte read/write interface */
static int adm9240_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int adm9240_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/*** sysfs accessors ***/
/* temperature */
#define show_temp(value, scale) \
static ssize_t show_##value(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct adm9240_data *data = adm9240_update_device(dev); \
return sprintf(buf, "%d\n", data->value * scale); \
}
show_temp(temp_high, 1000);
show_temp(temp_hyst, 1000);
show_temp(temp, 500); /* 0.5'C per bit */
#define set_temp(value, reg) \
static ssize_t set_##value(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct adm9240_data *data = adm9240_update_device(dev); \
long temp = simple_strtoul(buf, NULL, 10); \
\
down(&data->update_lock); \
data->value = TEMP_TO_REG(temp); \
adm9240_write_value(client, reg, data->value); \
up(&data->update_lock); \
return count; \
}
set_temp(temp_high, ADM9240_REG_TEMP_HIGH);
set_temp(temp_hyst, ADM9240_REG_TEMP_HYST);
static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO,
show_temp_high, set_temp_high);
static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO,
show_temp_hyst, set_temp_hyst);
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL);
/* voltage */
static ssize_t show_in(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr], nr));
}
static ssize_t show_in_min(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[nr], nr));
}
static ssize_t show_in_max(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[nr], nr));
}
static ssize_t set_in_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
down(&data->update_lock);
data->in_min[nr] = IN_TO_REG(val, nr);
adm9240_write_value(client, ADM9240_REG_IN_MIN(nr), data->in_min[nr]);
up(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
down(&data->update_lock);
data->in_max[nr] = IN_TO_REG(val, nr);
adm9240_write_value(client, ADM9240_REG_IN_MAX(nr), data->in_max[nr]);
up(&data->update_lock);
return count;
}
#define show_in_offset(offset) \
static ssize_t show_in##offset(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_in(dev, buf, offset); \
} \
static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL); \
static ssize_t show_in##offset##_min(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_in_min(dev, buf, offset); \
} \
static ssize_t show_in##offset##_max(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_in_max(dev, buf, offset); \
} \
static ssize_t \
set_in##offset##_min(struct device *dev, \
struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
return set_in_min(dev, buf, count, offset); \
} \
static ssize_t \
set_in##offset##_max(struct device *dev, \
struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
return set_in_max(dev, buf, count, offset); \
} \
static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in##offset##_min, set_in##offset##_min); \
static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in##offset##_max, set_in##offset##_max);
show_in_offset(0);
show_in_offset(1);
show_in_offset(2);
show_in_offset(3);
show_in_offset(4);
show_in_offset(5);
/* fans */
static ssize_t show_fan(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
1 << data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
1 << data->fan_div[nr]));
}
static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", 1 << data->fan_div[nr]);
}
/* write new fan div, callers must hold data->update_lock */
static void adm9240_write_fan_div(struct i2c_client *client, int nr,
u8 fan_div)
{
u8 reg, old, shift = (nr + 2) * 2;
reg = adm9240_read_value(client, ADM9240_REG_VID_FAN_DIV);
old = (reg >> shift) & 3;
reg &= ~(3 << shift);
reg |= (fan_div << shift);
adm9240_write_value(client, ADM9240_REG_VID_FAN_DIV, reg);
dev_dbg(&client->dev, "fan%d clock divider changed from %u "
"to %u\n", nr + 1, 1 << old, 1 << fan_div);
}
/*
* set fan speed low limit:
*
* - value is zero: disable fan speed low limit alarm
*
* - value is below fan speed measurement range: enable fan speed low
* limit alarm to be asserted while fan speed too slow to measure
*
* - otherwise: select fan clock divider to suit fan speed low limit,
* measurement code may adjust registers to ensure fan speed reading
*/
static ssize_t set_fan_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
u8 new_div;
down(&data->update_lock);
if (!val) {
data->fan_min[nr] = 255;
new_div = data->fan_div[nr];
dev_dbg(&client->dev, "fan%u low limit set disabled\n",
nr + 1);
} else if (val < 1350000 / (8 * 254)) {
new_div = 3;
data->fan_min[nr] = 254;
dev_dbg(&client->dev, "fan%u low limit set minimum %u\n",
nr + 1, FAN_FROM_REG(254, 1 << new_div));
} else {
unsigned int new_min = 1350000 / val;
new_div = 0;
while (new_min > 192 && new_div < 3) {
new_div++;
new_min /= 2;
}
if (!new_min) /* keep > 0 */
new_min++;
data->fan_min[nr] = new_min;
dev_dbg(&client->dev, "fan%u low limit set fan speed %u\n",
nr + 1, FAN_FROM_REG(new_min, 1 << new_div));
}
if (new_div != data->fan_div[nr]) {
data->fan_div[nr] = new_div;
adm9240_write_fan_div(client, nr, new_div);
}
adm9240_write_value(client, ADM9240_REG_FAN_MIN(nr),
data->fan_min[nr]);
up(&data->update_lock);
return count;
}
#define show_fan_offset(offset) \
static ssize_t show_fan_##offset (struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_fan(dev, buf, offset - 1); \
} \
static ssize_t show_fan_##offset##_div (struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_fan_div(dev, buf, offset - 1); \
} \
static ssize_t show_fan_##offset##_min (struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_fan_min(dev, buf, offset - 1); \
} \
static ssize_t set_fan_##offset##_min (struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_fan_min(dev, buf, count, offset - 1); \
} \
static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan_##offset, NULL); \
static DEVICE_ATTR(fan##offset##_div, S_IRUGO, \
show_fan_##offset##_div, NULL); \
static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_##offset##_min, set_fan_##offset##_min);
show_fan_offset(1);
show_fan_offset(2);
/* alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
/* vid */
static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
/* analog output */
static ssize_t show_aout(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", AOUT_FROM_REG(data->aout));
}
static ssize_t set_aout(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtol(buf, NULL, 10);
down(&data->update_lock);
data->aout = AOUT_TO_REG(val);
adm9240_write_value(client, ADM9240_REG_ANALOG_OUT, data->aout);
up(&data->update_lock);
return count;
}
static DEVICE_ATTR(aout_output, S_IRUGO | S_IWUSR, show_aout, set_aout);
/* chassis_clear */
static ssize_t chassis_clear(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned long val = simple_strtol(buf, NULL, 10);
if (val == 1) {
adm9240_write_value(client, ADM9240_REG_CHASSIS_CLEAR, 0x80);
dev_dbg(&client->dev, "chassis intrusion latch cleared\n");
}
return count;
}
static DEVICE_ATTR(chassis_clear, S_IWUSR, NULL, chassis_clear);
/*** sensor chip detect and driver install ***/
static int adm9240_detect(struct i2c_adapter *adapter, int address, int kind)
{
struct i2c_client *new_client;
struct adm9240_data *data;
int err = 0;
const char *name = "";
u8 man_id, die_rev;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
goto exit;
if (!(data = kmalloc(sizeof(struct adm9240_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
memset(data, 0, sizeof(struct adm9240_data));
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &adm9240_driver;
new_client->flags = 0;
if (kind == 0) {
kind = adm9240;
}
if (kind < 0) {
/* verify chip: reg address should match i2c address */
if (adm9240_read_value(new_client, ADM9240_REG_I2C_ADDR)
!= address) {
dev_err(&adapter->dev, "detect fail: address match, "
"0x%02x\n", address);
goto exit_free;
}
/* check known chip manufacturer */
man_id = adm9240_read_value(new_client, ADM9240_REG_MAN_ID);
if (man_id == 0x23) {
kind = adm9240;
} else if (man_id == 0xda) {
kind = ds1780;
} else if (man_id == 0x01) {
kind = lm81;
} else {
dev_err(&adapter->dev, "detect fail: unknown manuf, "
"0x%02x\n", man_id);
goto exit_free;
}
/* successful detect, print chip info */
die_rev = adm9240_read_value(new_client, ADM9240_REG_DIE_REV);
dev_info(&adapter->dev, "found %s revision %u\n",
man_id == 0x23 ? "ADM9240" :
man_id == 0xda ? "DS1780" : "LM81", die_rev);
}
/* either forced or detected chip kind */
if (kind == adm9240) {
name = "adm9240";
} else if (kind == ds1780) {
name = "ds1780";
} else if (kind == lm81) {
name = "lm81";
}
/* fill in the remaining client fields and attach */
strlcpy(new_client->name, name, I2C_NAME_SIZE);
data->type = kind;
init_MUTEX(&data->update_lock);
if ((err = i2c_attach_client(new_client)))
goto exit_free;
adm9240_init_client(new_client);
/* populate sysfs filesystem */
data->class_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto exit_detach;
}
device_create_file(&new_client->dev, &dev_attr_in0_input);
device_create_file(&new_client->dev, &dev_attr_in0_min);
device_create_file(&new_client->dev, &dev_attr_in0_max);
device_create_file(&new_client->dev, &dev_attr_in1_input);
device_create_file(&new_client->dev, &dev_attr_in1_min);
device_create_file(&new_client->dev, &dev_attr_in1_max);
device_create_file(&new_client->dev, &dev_attr_in2_input);
device_create_file(&new_client->dev, &dev_attr_in2_min);
device_create_file(&new_client->dev, &dev_attr_in2_max);
device_create_file(&new_client->dev, &dev_attr_in3_input);
device_create_file(&new_client->dev, &dev_attr_in3_min);
device_create_file(&new_client->dev, &dev_attr_in3_max);
device_create_file(&new_client->dev, &dev_attr_in4_input);
device_create_file(&new_client->dev, &dev_attr_in4_min);
device_create_file(&new_client->dev, &dev_attr_in4_max);
device_create_file(&new_client->dev, &dev_attr_in5_input);
device_create_file(&new_client->dev, &dev_attr_in5_min);
device_create_file(&new_client->dev, &dev_attr_in5_max);
device_create_file(&new_client->dev, &dev_attr_temp1_max);
device_create_file(&new_client->dev, &dev_attr_temp1_max_hyst);
device_create_file(&new_client->dev, &dev_attr_temp1_input);
device_create_file(&new_client->dev, &dev_attr_fan1_input);
device_create_file(&new_client->dev, &dev_attr_fan1_div);
device_create_file(&new_client->dev, &dev_attr_fan1_min);
device_create_file(&new_client->dev, &dev_attr_fan2_input);
device_create_file(&new_client->dev, &dev_attr_fan2_div);
device_create_file(&new_client->dev, &dev_attr_fan2_min);
device_create_file(&new_client->dev, &dev_attr_alarms);
device_create_file(&new_client->dev, &dev_attr_aout_output);
device_create_file(&new_client->dev, &dev_attr_chassis_clear);
device_create_file(&new_client->dev, &dev_attr_cpu0_vid);
return 0;
exit_detach:
i2c_detach_client(new_client);
exit_free:
kfree(data);
exit:
return err;
}
static int adm9240_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, adm9240_detect);
}
static int adm9240_detach_client(struct i2c_client *client)
{
struct adm9240_data *data = i2c_get_clientdata(client);
int err;
hwmon_device_unregister(data->class_dev);
if ((err = i2c_detach_client(client)))
return err;
kfree(data);
return 0;
}
static void adm9240_init_client(struct i2c_client *client)
{
struct adm9240_data *data = i2c_get_clientdata(client);
u8 conf = adm9240_read_value(client, ADM9240_REG_CONFIG);
u8 mode = adm9240_read_value(client, ADM9240_REG_TEMP_CONF) & 3;
data->vrm = vid_which_vrm(); /* need this to report vid as mV */
dev_info(&client->dev, "Using VRM: %d.%d\n", data->vrm / 10,
data->vrm % 10);
if (conf & 1) { /* measurement cycle running: report state */
dev_info(&client->dev, "status: config 0x%02x mode %u\n",
conf, mode);
} else { /* cold start: open limits before starting chip */
int i;
for (i = 0; i < 6; i++)
{
adm9240_write_value(client,
ADM9240_REG_IN_MIN(i), 0);
adm9240_write_value(client,
ADM9240_REG_IN_MAX(i), 255);
}
adm9240_write_value(client, ADM9240_REG_FAN_MIN(0), 255);
adm9240_write_value(client, ADM9240_REG_FAN_MIN(1), 255);
adm9240_write_value(client, ADM9240_REG_TEMP_HIGH, 127);
adm9240_write_value(client, ADM9240_REG_TEMP_HYST, 127);
/* start measurement cycle */
adm9240_write_value(client, ADM9240_REG_CONFIG, 1);
dev_info(&client->dev, "cold start: config was 0x%02x "
"mode %u\n", conf, mode);
}
}
static struct adm9240_data *adm9240_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
int i;
down(&data->update_lock);
/* minimum measurement cycle: 1.75 seconds */
if (time_after(jiffies, data->last_updated_measure + (HZ * 7 / 4))
|| !data->valid) {
for (i = 0; i < 6; i++) /* read voltages */
{
data->in[i] = adm9240_read_value(client,
ADM9240_REG_IN(i));
}
data->alarms = adm9240_read_value(client,
ADM9240_REG_INT(0)) |
adm9240_read_value(client,
ADM9240_REG_INT(1)) << 8;
/* read temperature: assume temperature changes less than
* 0.5'C per two measurement cycles thus ignore possible
* but unlikely aliasing error on lsb reading. --Grant */
data->temp = ((adm9240_read_value(client,
ADM9240_REG_TEMP) << 8) |
adm9240_read_value(client,
ADM9240_REG_TEMP_CONF)) / 128;
for (i = 0; i < 2; i++) /* read fans */
{
data->fan[i] = adm9240_read_value(client,
ADM9240_REG_FAN(i));
/* adjust fan clock divider on overflow */
if (data->valid && data->fan[i] == 255 &&
data->fan_div[i] < 3) {
adm9240_write_fan_div(client, i,
++data->fan_div[i]);
/* adjust fan_min if active, but not to 0 */
if (data->fan_min[i] < 255 &&
data->fan_min[i] >= 2)
data->fan_min[i] /= 2;
}
}
data->last_updated_measure = jiffies;
}
/* minimum config reading cycle: 300 seconds */
if (time_after(jiffies, data->last_updated_config + (HZ * 300))
|| !data->valid) {
for (i = 0; i < 6; i++)
{
data->in_min[i] = adm9240_read_value(client,
ADM9240_REG_IN_MIN(i));
data->in_max[i] = adm9240_read_value(client,
ADM9240_REG_IN_MAX(i));
}
for (i = 0; i < 2; i++)
{
data->fan_min[i] = adm9240_read_value(client,
ADM9240_REG_FAN_MIN(i));
}
data->temp_high = adm9240_read_value(client,
ADM9240_REG_TEMP_HIGH);
data->temp_hyst = adm9240_read_value(client,
ADM9240_REG_TEMP_HYST);
/* read fan divs and 5-bit VID */
i = adm9240_read_value(client, ADM9240_REG_VID_FAN_DIV);
data->fan_div[0] = (i >> 4) & 3;
data->fan_div[1] = (i >> 6) & 3;
data->vid = i & 0x0f;
data->vid |= (adm9240_read_value(client,
ADM9240_REG_VID4) & 1) << 4;
/* read analog out */
data->aout = adm9240_read_value(client,
ADM9240_REG_ANALOG_OUT);
data->last_updated_config = jiffies;
data->valid = 1;
}
up(&data->update_lock);
return data;
}
static int __init sensors_adm9240_init(void)
{
return i2c_add_driver(&adm9240_driver);
}
static void __exit sensors_adm9240_exit(void)
{
i2c_del_driver(&adm9240_driver);
}
MODULE_AUTHOR("Michiel Rook <michiel@grendelproject.nl>, "
"Grant Coady <gcoady@gmail.com> and others");
MODULE_DESCRIPTION("ADM9240/DS1780/LM81 driver");
MODULE_LICENSE("GPL");
module_init(sensors_adm9240_init);
module_exit(sensors_adm9240_exit);