2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/arch/mn10300/include/asm/io.h
Michael S. Tsirkin 34f1bdee19 mn10300: switch to GENERIC_PCI_IOMAP
The pci_iomap variant that arch/mn10300/unit-asb2305/pci-iomap.c
uses differs from the generic one in that it does
not use ioremap_nocache for PCI addresses.
However, it turns out that PCI addresses are
automatically noncached, so switching to ioremap_nocache
and to the generic implementation is safe.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2011-12-04 16:00:17 +02:00

314 lines
7.2 KiB
C

/* MN10300 I/O port emulation and memory-mapped I/O
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#ifndef _ASM_IO_H
#define _ASM_IO_H
#include <asm/page.h> /* I/O is all done through memory accesses */
#include <asm/cpu-regs.h>
#include <asm/cacheflush.h>
#define mmiowb() do {} while (0)
/*****************************************************************************/
/*
* readX/writeX() are used to access memory mapped devices. On some
* architectures the memory mapped IO stuff needs to be accessed
* differently. On the x86 architecture, we just read/write the
* memory location directly.
*/
static inline u8 readb(const volatile void __iomem *addr)
{
return *(const volatile u8 *) addr;
}
static inline u16 readw(const volatile void __iomem *addr)
{
return *(const volatile u16 *) addr;
}
static inline u32 readl(const volatile void __iomem *addr)
{
return *(const volatile u32 *) addr;
}
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define readb_relaxed readb
#define readw_relaxed readw
#define readl_relaxed readl
static inline void writeb(u8 b, volatile void __iomem *addr)
{
*(volatile u8 *) addr = b;
}
static inline void writew(u16 b, volatile void __iomem *addr)
{
*(volatile u16 *) addr = b;
}
static inline void writel(u32 b, volatile void __iomem *addr)
{
*(volatile u32 *) addr = b;
}
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
/*****************************************************************************/
/*
* traditional input/output functions
*/
static inline u8 inb_local(unsigned long addr)
{
return readb((volatile void __iomem *) addr);
}
static inline void outb_local(u8 b, unsigned long addr)
{
return writeb(b, (volatile void __iomem *) addr);
}
static inline u8 inb(unsigned long addr)
{
return readb((volatile void __iomem *) addr);
}
static inline u16 inw(unsigned long addr)
{
return readw((volatile void __iomem *) addr);
}
static inline u32 inl(unsigned long addr)
{
return readl((volatile void __iomem *) addr);
}
static inline void outb(u8 b, unsigned long addr)
{
return writeb(b, (volatile void __iomem *) addr);
}
static inline void outw(u16 b, unsigned long addr)
{
return writew(b, (volatile void __iomem *) addr);
}
static inline void outl(u32 b, unsigned long addr)
{
return writel(b, (volatile void __iomem *) addr);
}
#define inb_p(addr) inb(addr)
#define inw_p(addr) inw(addr)
#define inl_p(addr) inl(addr)
#define outb_p(x, addr) outb((x), (addr))
#define outw_p(x, addr) outw((x), (addr))
#define outl_p(x, addr) outl((x), (addr))
static inline void insb(unsigned long addr, void *buffer, int count)
{
if (count) {
u8 *buf = buffer;
do {
u8 x = inb(addr);
*buf++ = x;
} while (--count);
}
}
static inline void insw(unsigned long addr, void *buffer, int count)
{
if (count) {
u16 *buf = buffer;
do {
u16 x = inw(addr);
*buf++ = x;
} while (--count);
}
}
static inline void insl(unsigned long addr, void *buffer, int count)
{
if (count) {
u32 *buf = buffer;
do {
u32 x = inl(addr);
*buf++ = x;
} while (--count);
}
}
static inline void outsb(unsigned long addr, const void *buffer, int count)
{
if (count) {
const u8 *buf = buffer;
do {
outb(*buf++, addr);
} while (--count);
}
}
static inline void outsw(unsigned long addr, const void *buffer, int count)
{
if (count) {
const u16 *buf = buffer;
do {
outw(*buf++, addr);
} while (--count);
}
}
extern void __outsl(unsigned long addr, const void *buffer, int count);
static inline void outsl(unsigned long addr, const void *buffer, int count)
{
if ((unsigned long) buffer & 0x3)
return __outsl(addr, buffer, count);
if (count) {
const u32 *buf = buffer;
do {
outl(*buf++, addr);
} while (--count);
}
}
#define ioread8(addr) readb(addr)
#define ioread16(addr) readw(addr)
#define ioread32(addr) readl(addr)
#define iowrite8(v, addr) writeb((v), (addr))
#define iowrite16(v, addr) writew((v), (addr))
#define iowrite32(v, addr) writel((v), (addr))
#define ioread8_rep(p, dst, count) \
insb((unsigned long) (p), (dst), (count))
#define ioread16_rep(p, dst, count) \
insw((unsigned long) (p), (dst), (count))
#define ioread32_rep(p, dst, count) \
insl((unsigned long) (p), (dst), (count))
#define iowrite8_rep(p, src, count) \
outsb((unsigned long) (p), (src), (count))
#define iowrite16_rep(p, src, count) \
outsw((unsigned long) (p), (src), (count))
#define iowrite32_rep(p, src, count) \
outsl((unsigned long) (p), (src), (count))
#define readsb(p, dst, count) \
insb((unsigned long) (p), (dst), (count))
#define readsw(p, dst, count) \
insw((unsigned long) (p), (dst), (count))
#define readsl(p, dst, count) \
insl((unsigned long) (p), (dst), (count))
#define writesb(p, src, count) \
outsb((unsigned long) (p), (src), (count))
#define writesw(p, src, count) \
outsw((unsigned long) (p), (src), (count))
#define writesl(p, src, count) \
outsl((unsigned long) (p), (src), (count))
#define IO_SPACE_LIMIT 0xffffffff
#ifdef __KERNEL__
#include <linux/vmalloc.h>
#define __io_virt(x) ((void *) (x))
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
struct pci_dev;
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *p)
{
}
/*
* Change virtual addresses to physical addresses and vv.
* These are pretty trivial
*/
static inline unsigned long virt_to_phys(volatile void *address)
{
return __pa(address);
}
static inline void *phys_to_virt(unsigned long address)
{
return __va(address);
}
/*
* Change "struct page" to physical address.
*/
static inline void __iomem *__ioremap(unsigned long offset, unsigned long size,
unsigned long flags)
{
return (void __iomem *) offset;
}
static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
{
return (void __iomem *) offset;
}
/*
* This one maps high address device memory and turns off caching for that
* area. it's useful if some control registers are in such an area and write
* combining or read caching is not desirable:
*/
static inline void __iomem *ioremap_nocache(unsigned long offset, unsigned long size)
{
return (void __iomem *) (offset | 0x20000000);
}
#define ioremap_wc ioremap_nocache
static inline void iounmap(void __iomem *addr)
{
}
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
return (void __iomem *) port;
}
static inline void ioport_unmap(void __iomem *p)
{
}
#define xlate_dev_kmem_ptr(p) ((void *) (p))
#define xlate_dev_mem_ptr(p) ((void *) (p))
/*
* PCI bus iomem addresses must be in the region 0x80000000-0x9fffffff
*/
static inline unsigned long virt_to_bus(volatile void *address)
{
return ((unsigned long) address) & ~0x20000000;
}
static inline void *bus_to_virt(unsigned long address)
{
return (void *) address;
}
#define page_to_bus page_to_phys
#define memset_io(a, b, c) memset(__io_virt(a), (b), (c))
#define memcpy_fromio(a, b, c) memcpy((a), __io_virt(b), (c))
#define memcpy_toio(a, b, c) memcpy(__io_virt(a), (b), (c))
#endif /* __KERNEL__ */
#endif /* _ASM_IO_H */