2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/drivers/net/wireless/rt2x00/rt2x00debug.c
Ivo van Doorn 7dab73b37f rt2x00: Split rt2x00dev->flags
The number of flags defined for the rt2x00dev->flags field,
has been growing over the years. Currently we are approaching
the maximum number of bits which are available in the field.

A secondary problem, is that one part of the field are initialized only
during boot, because the driver requirements are initialized or device
requirements are loaded from the EEPROM. In both cases, the flags are
fixed and will not change during device operation. The other flags are
the device state, and will change frequently. So far this resulted in the fact
that for some flags, the atomic bit accessors are used, while for the others
the non-atomic variants are used.

By splitting the flags up into a "flags" and "cap_flags" we can put all flags
which are fixed inside "cap_flags". This field can then be read non-atomically.
In the "flags" field we keep the device state, which is going to be read atomically.

This adds more room for more flags in the future, and sanitizes the field access methods.

Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
Acked-by: Helmut Schaa <helmut.schaa@googlemail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-04-19 15:39:11 -04:00

793 lines
21 KiB
C

/*
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 debugfs specific routines.
*/
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00dump.h"
#define MAX_LINE_LENGTH 64
struct rt2x00debug_crypto {
unsigned long success;
unsigned long icv_error;
unsigned long mic_error;
unsigned long key_error;
};
struct rt2x00debug_intf {
/*
* Pointer to driver structure where
* this debugfs entry belongs to.
*/
struct rt2x00_dev *rt2x00dev;
/*
* Reference to the rt2x00debug structure
* which can be used to communicate with
* the registers.
*/
const struct rt2x00debug *debug;
/*
* Debugfs entries for:
* - driver folder
* - driver file
* - chipset file
* - device state flags file
* - device capability flags file
* - register folder
* - csr offset/value files
* - eeprom offset/value files
* - bbp offset/value files
* - rf offset/value files
* - queue folder
* - frame dump file
* - queue stats file
* - crypto stats file
*/
struct dentry *driver_folder;
struct dentry *driver_entry;
struct dentry *chipset_entry;
struct dentry *dev_flags;
struct dentry *cap_flags;
struct dentry *register_folder;
struct dentry *csr_off_entry;
struct dentry *csr_val_entry;
struct dentry *eeprom_off_entry;
struct dentry *eeprom_val_entry;
struct dentry *bbp_off_entry;
struct dentry *bbp_val_entry;
struct dentry *rf_off_entry;
struct dentry *rf_val_entry;
struct dentry *queue_folder;
struct dentry *queue_frame_dump_entry;
struct dentry *queue_stats_entry;
struct dentry *crypto_stats_entry;
/*
* The frame dump file only allows a single reader,
* so we need to store the current state here.
*/
unsigned long frame_dump_flags;
#define FRAME_DUMP_FILE_OPEN 1
/*
* We queue each frame before dumping it to the user,
* per read command we will pass a single skb structure
* so we should be prepared to queue multiple sk buffers
* before sending it to userspace.
*/
struct sk_buff_head frame_dump_skbqueue;
wait_queue_head_t frame_dump_waitqueue;
/*
* HW crypto statistics.
* All statistics are stored separately per cipher type.
*/
struct rt2x00debug_crypto crypto_stats[CIPHER_MAX];
/*
* Driver and chipset files will use a data buffer
* that has been created in advance. This will simplify
* the code since we can use the debugfs functions.
*/
struct debugfs_blob_wrapper driver_blob;
struct debugfs_blob_wrapper chipset_blob;
/*
* Requested offset for each register type.
*/
unsigned int offset_csr;
unsigned int offset_eeprom;
unsigned int offset_bbp;
unsigned int offset_rf;
};
void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
enum cipher cipher = rxdesc->cipher;
enum rx_crypto status = rxdesc->cipher_status;
if (cipher == CIPHER_TKIP_NO_MIC)
cipher = CIPHER_TKIP;
if (cipher == CIPHER_NONE || cipher >= CIPHER_MAX)
return;
/* Remove CIPHER_NONE index */
cipher--;
intf->crypto_stats[cipher].success += (status == RX_CRYPTO_SUCCESS);
intf->crypto_stats[cipher].icv_error += (status == RX_CRYPTO_FAIL_ICV);
intf->crypto_stats[cipher].mic_error += (status == RX_CRYPTO_FAIL_MIC);
intf->crypto_stats[cipher].key_error += (status == RX_CRYPTO_FAIL_KEY);
}
void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
enum rt2x00_dump_type type, struct sk_buff *skb)
{
struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
struct sk_buff *skbcopy;
struct rt2x00dump_hdr *dump_hdr;
struct timeval timestamp;
u32 data_len;
if (likely(!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)))
return;
do_gettimeofday(&timestamp);
if (skb_queue_len(&intf->frame_dump_skbqueue) > 20) {
DEBUG(rt2x00dev, "txrx dump queue length exceeded.\n");
return;
}
data_len = skb->len;
if (skbdesc->flags & SKBDESC_DESC_IN_SKB)
data_len -= skbdesc->desc_len;
skbcopy = alloc_skb(sizeof(*dump_hdr) + skbdesc->desc_len + data_len,
GFP_ATOMIC);
if (!skbcopy) {
DEBUG(rt2x00dev, "Failed to copy skb for dump.\n");
return;
}
dump_hdr = (struct rt2x00dump_hdr *)skb_put(skbcopy, sizeof(*dump_hdr));
dump_hdr->version = cpu_to_le32(DUMP_HEADER_VERSION);
dump_hdr->header_length = cpu_to_le32(sizeof(*dump_hdr));
dump_hdr->desc_length = cpu_to_le32(skbdesc->desc_len);
dump_hdr->data_length = cpu_to_le32(data_len);
dump_hdr->chip_rt = cpu_to_le16(rt2x00dev->chip.rt);
dump_hdr->chip_rf = cpu_to_le16(rt2x00dev->chip.rf);
dump_hdr->chip_rev = cpu_to_le16(rt2x00dev->chip.rev);
dump_hdr->type = cpu_to_le16(type);
dump_hdr->queue_index = skbdesc->entry->queue->qid;
dump_hdr->entry_index = skbdesc->entry->entry_idx;
dump_hdr->timestamp_sec = cpu_to_le32(timestamp.tv_sec);
dump_hdr->timestamp_usec = cpu_to_le32(timestamp.tv_usec);
if (!(skbdesc->flags & SKBDESC_DESC_IN_SKB))
memcpy(skb_put(skbcopy, skbdesc->desc_len), skbdesc->desc,
skbdesc->desc_len);
memcpy(skb_put(skbcopy, skb->len), skb->data, skb->len);
skb_queue_tail(&intf->frame_dump_skbqueue, skbcopy);
wake_up_interruptible(&intf->frame_dump_waitqueue);
/*
* Verify that the file has not been closed while we were working.
*/
if (!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags))
skb_queue_purge(&intf->frame_dump_skbqueue);
}
EXPORT_SYMBOL_GPL(rt2x00debug_dump_frame);
static int rt2x00debug_file_open(struct inode *inode, struct file *file)
{
struct rt2x00debug_intf *intf = inode->i_private;
file->private_data = inode->i_private;
if (!try_module_get(intf->debug->owner))
return -EBUSY;
return 0;
}
static int rt2x00debug_file_release(struct inode *inode, struct file *file)
{
struct rt2x00debug_intf *intf = file->private_data;
module_put(intf->debug->owner);
return 0;
}
static int rt2x00debug_open_queue_dump(struct inode *inode, struct file *file)
{
struct rt2x00debug_intf *intf = inode->i_private;
int retval;
retval = rt2x00debug_file_open(inode, file);
if (retval)
return retval;
if (test_and_set_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)) {
rt2x00debug_file_release(inode, file);
return -EBUSY;
}
return 0;
}
static int rt2x00debug_release_queue_dump(struct inode *inode, struct file *file)
{
struct rt2x00debug_intf *intf = inode->i_private;
skb_queue_purge(&intf->frame_dump_skbqueue);
clear_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags);
return rt2x00debug_file_release(inode, file);
}
static ssize_t rt2x00debug_read_queue_dump(struct file *file,
char __user *buf,
size_t length,
loff_t *offset)
{
struct rt2x00debug_intf *intf = file->private_data;
struct sk_buff *skb;
size_t status;
int retval;
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
retval =
wait_event_interruptible(intf->frame_dump_waitqueue,
(skb =
skb_dequeue(&intf->frame_dump_skbqueue)));
if (retval)
return retval;
status = min((size_t)skb->len, length);
if (copy_to_user(buf, skb->data, status)) {
status = -EFAULT;
goto exit;
}
*offset += status;
exit:
kfree_skb(skb);
return status;
}
static unsigned int rt2x00debug_poll_queue_dump(struct file *file,
poll_table *wait)
{
struct rt2x00debug_intf *intf = file->private_data;
poll_wait(file, &intf->frame_dump_waitqueue, wait);
if (!skb_queue_empty(&intf->frame_dump_skbqueue))
return POLLOUT | POLLWRNORM;
return 0;
}
static const struct file_operations rt2x00debug_fop_queue_dump = {
.owner = THIS_MODULE,
.read = rt2x00debug_read_queue_dump,
.poll = rt2x00debug_poll_queue_dump,
.open = rt2x00debug_open_queue_dump,
.release = rt2x00debug_release_queue_dump,
.llseek = default_llseek,
};
static ssize_t rt2x00debug_read_queue_stats(struct file *file,
char __user *buf,
size_t length,
loff_t *offset)
{
struct rt2x00debug_intf *intf = file->private_data;
struct data_queue *queue;
unsigned long irqflags;
unsigned int lines = 1 + intf->rt2x00dev->data_queues;
size_t size;
char *data;
char *temp;
if (*offset)
return 0;
data = kcalloc(lines, MAX_LINE_LENGTH, GFP_KERNEL);
if (!data)
return -ENOMEM;
temp = data +
sprintf(data, "qid\tflags\t\tcount\tlimit\tlength\tindex\tdma done\tdone\n");
queue_for_each(intf->rt2x00dev, queue) {
spin_lock_irqsave(&queue->index_lock, irqflags);
temp += sprintf(temp, "%d\t0x%.8x\t%d\t%d\t%d\t%d\t%d\t\t%d\n",
queue->qid, (unsigned int)queue->flags,
queue->count, queue->limit, queue->length,
queue->index[Q_INDEX],
queue->index[Q_INDEX_DMA_DONE],
queue->index[Q_INDEX_DONE]);
spin_unlock_irqrestore(&queue->index_lock, irqflags);
}
size = strlen(data);
size = min(size, length);
if (copy_to_user(buf, data, size)) {
kfree(data);
return -EFAULT;
}
kfree(data);
*offset += size;
return size;
}
static const struct file_operations rt2x00debug_fop_queue_stats = {
.owner = THIS_MODULE,
.read = rt2x00debug_read_queue_stats,
.open = rt2x00debug_file_open,
.release = rt2x00debug_file_release,
.llseek = default_llseek,
};
#ifdef CONFIG_RT2X00_LIB_CRYPTO
static ssize_t rt2x00debug_read_crypto_stats(struct file *file,
char __user *buf,
size_t length,
loff_t *offset)
{
struct rt2x00debug_intf *intf = file->private_data;
static const char * const name[] = { "WEP64", "WEP128", "TKIP", "AES" };
char *data;
char *temp;
size_t size;
unsigned int i;
if (*offset)
return 0;
data = kzalloc((1 + CIPHER_MAX) * MAX_LINE_LENGTH, GFP_KERNEL);
if (!data)
return -ENOMEM;
temp = data;
temp += sprintf(data, "cipher\tsuccess\ticv err\tmic err\tkey err\n");
for (i = 0; i < CIPHER_MAX; i++) {
temp += sprintf(temp, "%s\t%lu\t%lu\t%lu\t%lu\n", name[i],
intf->crypto_stats[i].success,
intf->crypto_stats[i].icv_error,
intf->crypto_stats[i].mic_error,
intf->crypto_stats[i].key_error);
}
size = strlen(data);
size = min(size, length);
if (copy_to_user(buf, data, size)) {
kfree(data);
return -EFAULT;
}
kfree(data);
*offset += size;
return size;
}
static const struct file_operations rt2x00debug_fop_crypto_stats = {
.owner = THIS_MODULE,
.read = rt2x00debug_read_crypto_stats,
.open = rt2x00debug_file_open,
.release = rt2x00debug_file_release,
.llseek = default_llseek,
};
#endif
#define RT2X00DEBUGFS_OPS_READ(__name, __format, __type) \
static ssize_t rt2x00debug_read_##__name(struct file *file, \
char __user *buf, \
size_t length, \
loff_t *offset) \
{ \
struct rt2x00debug_intf *intf = file->private_data; \
const struct rt2x00debug *debug = intf->debug; \
char line[16]; \
size_t size; \
unsigned int index = intf->offset_##__name; \
__type value; \
\
if (*offset) \
return 0; \
\
if (index >= debug->__name.word_count) \
return -EINVAL; \
\
index += (debug->__name.word_base / \
debug->__name.word_size); \
\
if (debug->__name.flags & RT2X00DEBUGFS_OFFSET) \
index *= debug->__name.word_size; \
\
debug->__name.read(intf->rt2x00dev, index, &value); \
\
size = sprintf(line, __format, value); \
\
if (copy_to_user(buf, line, size)) \
return -EFAULT; \
\
*offset += size; \
return size; \
}
#define RT2X00DEBUGFS_OPS_WRITE(__name, __type) \
static ssize_t rt2x00debug_write_##__name(struct file *file, \
const char __user *buf,\
size_t length, \
loff_t *offset) \
{ \
struct rt2x00debug_intf *intf = file->private_data; \
const struct rt2x00debug *debug = intf->debug; \
char line[16]; \
size_t size; \
unsigned int index = intf->offset_##__name; \
__type value; \
\
if (*offset) \
return 0; \
\
if (index >= debug->__name.word_count) \
return -EINVAL; \
\
if (length > sizeof(line)) \
return -EINVAL; \
\
if (copy_from_user(line, buf, length)) \
return -EFAULT; \
\
size = strlen(line); \
value = simple_strtoul(line, NULL, 0); \
\
index += (debug->__name.word_base / \
debug->__name.word_size); \
\
if (debug->__name.flags & RT2X00DEBUGFS_OFFSET) \
index *= debug->__name.word_size; \
\
debug->__name.write(intf->rt2x00dev, index, value); \
\
*offset += size; \
return size; \
}
#define RT2X00DEBUGFS_OPS(__name, __format, __type) \
RT2X00DEBUGFS_OPS_READ(__name, __format, __type); \
RT2X00DEBUGFS_OPS_WRITE(__name, __type); \
\
static const struct file_operations rt2x00debug_fop_##__name = {\
.owner = THIS_MODULE, \
.read = rt2x00debug_read_##__name, \
.write = rt2x00debug_write_##__name, \
.open = rt2x00debug_file_open, \
.release = rt2x00debug_file_release, \
.llseek = generic_file_llseek, \
};
RT2X00DEBUGFS_OPS(csr, "0x%.8x\n", u32);
RT2X00DEBUGFS_OPS(eeprom, "0x%.4x\n", u16);
RT2X00DEBUGFS_OPS(bbp, "0x%.2x\n", u8);
RT2X00DEBUGFS_OPS(rf, "0x%.8x\n", u32);
static ssize_t rt2x00debug_read_dev_flags(struct file *file,
char __user *buf,
size_t length,
loff_t *offset)
{
struct rt2x00debug_intf *intf = file->private_data;
char line[16];
size_t size;
if (*offset)
return 0;
size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->flags);
if (copy_to_user(buf, line, size))
return -EFAULT;
*offset += size;
return size;
}
static const struct file_operations rt2x00debug_fop_dev_flags = {
.owner = THIS_MODULE,
.read = rt2x00debug_read_dev_flags,
.open = rt2x00debug_file_open,
.release = rt2x00debug_file_release,
.llseek = default_llseek,
};
static ssize_t rt2x00debug_read_cap_flags(struct file *file,
char __user *buf,
size_t length,
loff_t *offset)
{
struct rt2x00debug_intf *intf = file->private_data;
char line[16];
size_t size;
if (*offset)
return 0;
size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->cap_flags);
if (copy_to_user(buf, line, size))
return -EFAULT;
*offset += size;
return size;
}
static const struct file_operations rt2x00debug_fop_cap_flags = {
.owner = THIS_MODULE,
.read = rt2x00debug_read_cap_flags,
.open = rt2x00debug_file_open,
.release = rt2x00debug_file_release,
.llseek = default_llseek,
};
static struct dentry *rt2x00debug_create_file_driver(const char *name,
struct rt2x00debug_intf
*intf,
struct debugfs_blob_wrapper
*blob)
{
char *data;
data = kzalloc(3 * MAX_LINE_LENGTH, GFP_KERNEL);
if (!data)
return NULL;
blob->data = data;
data += sprintf(data, "driver:\t%s\n", intf->rt2x00dev->ops->name);
data += sprintf(data, "version:\t%s\n", DRV_VERSION);
blob->size = strlen(blob->data);
return debugfs_create_blob(name, S_IRUSR, intf->driver_folder, blob);
}
static struct dentry *rt2x00debug_create_file_chipset(const char *name,
struct rt2x00debug_intf
*intf,
struct
debugfs_blob_wrapper
*blob)
{
const struct rt2x00debug *debug = intf->debug;
char *data;
data = kzalloc(8 * MAX_LINE_LENGTH, GFP_KERNEL);
if (!data)
return NULL;
blob->data = data;
data += sprintf(data, "rt chip:\t%04x\n", intf->rt2x00dev->chip.rt);
data += sprintf(data, "rf chip:\t%04x\n", intf->rt2x00dev->chip.rf);
data += sprintf(data, "revision:\t%04x\n", intf->rt2x00dev->chip.rev);
data += sprintf(data, "\n");
data += sprintf(data, "register\tbase\twords\twordsize\n");
data += sprintf(data, "csr\t%d\t%d\t%d\n",
debug->csr.word_base,
debug->csr.word_count,
debug->csr.word_size);
data += sprintf(data, "eeprom\t%d\t%d\t%d\n",
debug->eeprom.word_base,
debug->eeprom.word_count,
debug->eeprom.word_size);
data += sprintf(data, "bbp\t%d\t%d\t%d\n",
debug->bbp.word_base,
debug->bbp.word_count,
debug->bbp.word_size);
data += sprintf(data, "rf\t%d\t%d\t%d\n",
debug->rf.word_base,
debug->rf.word_count,
debug->rf.word_size);
blob->size = strlen(blob->data);
return debugfs_create_blob(name, S_IRUSR, intf->driver_folder, blob);
}
void rt2x00debug_register(struct rt2x00_dev *rt2x00dev)
{
const struct rt2x00debug *debug = rt2x00dev->ops->debugfs;
struct rt2x00debug_intf *intf;
intf = kzalloc(sizeof(struct rt2x00debug_intf), GFP_KERNEL);
if (!intf) {
ERROR(rt2x00dev, "Failed to allocate debug handler.\n");
return;
}
intf->debug = debug;
intf->rt2x00dev = rt2x00dev;
rt2x00dev->debugfs_intf = intf;
intf->driver_folder =
debugfs_create_dir(intf->rt2x00dev->ops->name,
rt2x00dev->hw->wiphy->debugfsdir);
if (IS_ERR(intf->driver_folder) || !intf->driver_folder)
goto exit;
intf->driver_entry =
rt2x00debug_create_file_driver("driver", intf, &intf->driver_blob);
if (IS_ERR(intf->driver_entry) || !intf->driver_entry)
goto exit;
intf->chipset_entry =
rt2x00debug_create_file_chipset("chipset",
intf, &intf->chipset_blob);
if (IS_ERR(intf->chipset_entry) || !intf->chipset_entry)
goto exit;
intf->dev_flags = debugfs_create_file("dev_flags", S_IRUSR,
intf->driver_folder, intf,
&rt2x00debug_fop_dev_flags);
if (IS_ERR(intf->dev_flags) || !intf->dev_flags)
goto exit;
intf->cap_flags = debugfs_create_file("cap_flags", S_IRUSR,
intf->driver_folder, intf,
&rt2x00debug_fop_cap_flags);
if (IS_ERR(intf->cap_flags) || !intf->cap_flags)
goto exit;
intf->register_folder =
debugfs_create_dir("register", intf->driver_folder);
if (IS_ERR(intf->register_folder) || !intf->register_folder)
goto exit;
#define RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(__intf, __name) \
({ \
(__intf)->__name##_off_entry = \
debugfs_create_u32(__stringify(__name) "_offset", \
S_IRUSR | S_IWUSR, \
(__intf)->register_folder, \
&(__intf)->offset_##__name); \
if (IS_ERR((__intf)->__name##_off_entry) \
|| !(__intf)->__name##_off_entry) \
goto exit; \
\
(__intf)->__name##_val_entry = \
debugfs_create_file(__stringify(__name) "_value", \
S_IRUSR | S_IWUSR, \
(__intf)->register_folder, \
(__intf), &rt2x00debug_fop_##__name);\
if (IS_ERR((__intf)->__name##_val_entry) \
|| !(__intf)->__name##_val_entry) \
goto exit; \
})
RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, csr);
RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, eeprom);
RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, bbp);
RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, rf);
#undef RT2X00DEBUGFS_CREATE_REGISTER_ENTRY
intf->queue_folder =
debugfs_create_dir("queue", intf->driver_folder);
if (IS_ERR(intf->queue_folder) || !intf->queue_folder)
goto exit;
intf->queue_frame_dump_entry =
debugfs_create_file("dump", S_IRUSR, intf->queue_folder,
intf, &rt2x00debug_fop_queue_dump);
if (IS_ERR(intf->queue_frame_dump_entry)
|| !intf->queue_frame_dump_entry)
goto exit;
skb_queue_head_init(&intf->frame_dump_skbqueue);
init_waitqueue_head(&intf->frame_dump_waitqueue);
intf->queue_stats_entry =
debugfs_create_file("queue", S_IRUSR, intf->queue_folder,
intf, &rt2x00debug_fop_queue_stats);
#ifdef CONFIG_RT2X00_LIB_CRYPTO
if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
intf->crypto_stats_entry =
debugfs_create_file("crypto", S_IRUGO, intf->queue_folder,
intf, &rt2x00debug_fop_crypto_stats);
#endif
return;
exit:
rt2x00debug_deregister(rt2x00dev);
ERROR(rt2x00dev, "Failed to register debug handler.\n");
}
void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev)
{
struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
if (unlikely(!intf))
return;
skb_queue_purge(&intf->frame_dump_skbqueue);
#ifdef CONFIG_RT2X00_LIB_CRYPTO
debugfs_remove(intf->crypto_stats_entry);
#endif
debugfs_remove(intf->queue_stats_entry);
debugfs_remove(intf->queue_frame_dump_entry);
debugfs_remove(intf->queue_folder);
debugfs_remove(intf->rf_val_entry);
debugfs_remove(intf->rf_off_entry);
debugfs_remove(intf->bbp_val_entry);
debugfs_remove(intf->bbp_off_entry);
debugfs_remove(intf->eeprom_val_entry);
debugfs_remove(intf->eeprom_off_entry);
debugfs_remove(intf->csr_val_entry);
debugfs_remove(intf->csr_off_entry);
debugfs_remove(intf->register_folder);
debugfs_remove(intf->dev_flags);
debugfs_remove(intf->cap_flags);
debugfs_remove(intf->chipset_entry);
debugfs_remove(intf->driver_entry);
debugfs_remove(intf->driver_folder);
kfree(intf->chipset_blob.data);
kfree(intf->driver_blob.data);
kfree(intf);
rt2x00dev->debugfs_intf = NULL;
}