2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/drivers/pci/pci.c
Rafael J. Wysocki 3a2d5b7001 PM: Introduce PM_EVENT_HIBERNATE callback state
During the last step of hibernation in the "platform" mode (with the
help of ACPI) we use the suspend code, including the devices'
->suspend() methods, to prepare the system for entering the ACPI S4
system sleep state.

But at least for some devices the operations performed by the
->suspend() callback in that case must be different from its operations
during regular suspend.

For this reason, introduce the new PM event type PM_EVENT_HIBERNATE and
pass it to the device drivers' ->suspend() methods during the last phase
of hibernation, so that they can distinguish this case and handle it as
appropriate.  Modify the drivers that handle PM_EVENT_SUSPEND in a
special way and need to handle PM_EVENT_HIBERNATE in the same way.

These changes are necessary to fix a hibernation regression related
to the i915 driver (ref. http://lkml.org/lkml/2008/2/22/488).

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 10:40:04 -08:00

1724 lines
44 KiB
C

/*
* $Id: pci.c,v 1.91 1999/01/21 13:34:01 davem Exp $
*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/log2.h>
#include <asm/dma.h> /* isa_dma_bridge_buggy */
#include "pci.h"
unsigned int pci_pm_d3_delay = 10;
#ifdef CONFIG_PCI_DOMAINS
int pci_domains_supported = 1;
#endif
#define DEFAULT_CARDBUS_IO_SIZE (256)
#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
/* pci=cbmemsize=nnM,cbiosize=nn can override this */
unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
/**
* pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
* @bus: pointer to PCI bus structure to search
*
* Given a PCI bus, returns the highest PCI bus number present in the set
* including the given PCI bus and its list of child PCI buses.
*/
unsigned char pci_bus_max_busnr(struct pci_bus* bus)
{
struct list_head *tmp;
unsigned char max, n;
max = bus->subordinate;
list_for_each(tmp, &bus->children) {
n = pci_bus_max_busnr(pci_bus_b(tmp));
if(n > max)
max = n;
}
return max;
}
EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
#if 0
/**
* pci_max_busnr - returns maximum PCI bus number
*
* Returns the highest PCI bus number present in the system global list of
* PCI buses.
*/
unsigned char __devinit
pci_max_busnr(void)
{
struct pci_bus *bus = NULL;
unsigned char max, n;
max = 0;
while ((bus = pci_find_next_bus(bus)) != NULL) {
n = pci_bus_max_busnr(bus);
if(n > max)
max = n;
}
return max;
}
#endif /* 0 */
#define PCI_FIND_CAP_TTL 48
static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
u8 pos, int cap, int *ttl)
{
u8 id;
while ((*ttl)--) {
pci_bus_read_config_byte(bus, devfn, pos, &pos);
if (pos < 0x40)
break;
pos &= ~3;
pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
&id);
if (id == 0xff)
break;
if (id == cap)
return pos;
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
u8 pos, int cap)
{
int ttl = PCI_FIND_CAP_TTL;
return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
}
int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
{
return __pci_find_next_cap(dev->bus, dev->devfn,
pos + PCI_CAP_LIST_NEXT, cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_capability);
static int __pci_bus_find_cap_start(struct pci_bus *bus,
unsigned int devfn, u8 hdr_type)
{
u16 status;
pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
switch (hdr_type) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
return PCI_CAPABILITY_LIST;
case PCI_HEADER_TYPE_CARDBUS:
return PCI_CB_CAPABILITY_LIST;
default:
return 0;
}
return 0;
}
/**
* pci_find_capability - query for devices' capabilities
* @dev: PCI device to query
* @cap: capability code
*
* Tell if a device supports a given PCI capability.
* Returns the address of the requested capability structure within the
* device's PCI configuration space or 0 in case the device does not
* support it. Possible values for @cap:
*
* %PCI_CAP_ID_PM Power Management
* %PCI_CAP_ID_AGP Accelerated Graphics Port
* %PCI_CAP_ID_VPD Vital Product Data
* %PCI_CAP_ID_SLOTID Slot Identification
* %PCI_CAP_ID_MSI Message Signalled Interrupts
* %PCI_CAP_ID_CHSWP CompactPCI HotSwap
* %PCI_CAP_ID_PCIX PCI-X
* %PCI_CAP_ID_EXP PCI Express
*/
int pci_find_capability(struct pci_dev *dev, int cap)
{
int pos;
pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
if (pos)
pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
return pos;
}
/**
* pci_bus_find_capability - query for devices' capabilities
* @bus: the PCI bus to query
* @devfn: PCI device to query
* @cap: capability code
*
* Like pci_find_capability() but works for pci devices that do not have a
* pci_dev structure set up yet.
*
* Returns the address of the requested capability structure within the
* device's PCI configuration space or 0 in case the device does not
* support it.
*/
int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
{
int pos;
u8 hdr_type;
pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
if (pos)
pos = __pci_find_next_cap(bus, devfn, pos, cap);
return pos;
}
/**
* pci_find_ext_capability - Find an extended capability
* @dev: PCI device to query
* @cap: capability code
*
* Returns the address of the requested extended capability structure
* within the device's PCI configuration space or 0 if the device does
* not support it. Possible values for @cap:
*
* %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
* %PCI_EXT_CAP_ID_VC Virtual Channel
* %PCI_EXT_CAP_ID_DSN Device Serial Number
* %PCI_EXT_CAP_ID_PWR Power Budgeting
*/
int pci_find_ext_capability(struct pci_dev *dev, int cap)
{
u32 header;
int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */
int pos = 0x100;
if (dev->cfg_size <= 256)
return 0;
if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
return 0;
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
return 0;
while (ttl-- > 0) {
if (PCI_EXT_CAP_ID(header) == cap)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < 0x100)
break;
if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(pci_find_ext_capability);
static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
{
int rc, ttl = PCI_FIND_CAP_TTL;
u8 cap, mask;
if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
mask = HT_3BIT_CAP_MASK;
else
mask = HT_5BIT_CAP_MASK;
pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
PCI_CAP_ID_HT, &ttl);
while (pos) {
rc = pci_read_config_byte(dev, pos + 3, &cap);
if (rc != PCIBIOS_SUCCESSFUL)
return 0;
if ((cap & mask) == ht_cap)
return pos;
pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
pos + PCI_CAP_LIST_NEXT,
PCI_CAP_ID_HT, &ttl);
}
return 0;
}
/**
* pci_find_next_ht_capability - query a device's Hypertransport capabilities
* @dev: PCI device to query
* @pos: Position from which to continue searching
* @ht_cap: Hypertransport capability code
*
* To be used in conjunction with pci_find_ht_capability() to search for
* all capabilities matching @ht_cap. @pos should always be a value returned
* from pci_find_ht_capability().
*
* NB. To be 100% safe against broken PCI devices, the caller should take
* steps to avoid an infinite loop.
*/
int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
{
return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
/**
* pci_find_ht_capability - query a device's Hypertransport capabilities
* @dev: PCI device to query
* @ht_cap: Hypertransport capability code
*
* Tell if a device supports a given Hypertransport capability.
* Returns an address within the device's PCI configuration space
* or 0 in case the device does not support the request capability.
* The address points to the PCI capability, of type PCI_CAP_ID_HT,
* which has a Hypertransport capability matching @ht_cap.
*/
int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
{
int pos;
pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
if (pos)
pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
return pos;
}
EXPORT_SYMBOL_GPL(pci_find_ht_capability);
void pcie_wait_pending_transaction(struct pci_dev *dev)
{
int pos;
u16 reg16;
pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (!pos)
return;
while (1) {
pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &reg16);
if (!(reg16 & PCI_EXP_DEVSTA_TRPND))
break;
cpu_relax();
}
}
EXPORT_SYMBOL_GPL(pcie_wait_pending_transaction);
/**
* pci_find_parent_resource - return resource region of parent bus of given region
* @dev: PCI device structure contains resources to be searched
* @res: child resource record for which parent is sought
*
* For given resource region of given device, return the resource
* region of parent bus the given region is contained in or where
* it should be allocated from.
*/
struct resource *
pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
{
const struct pci_bus *bus = dev->bus;
int i;
struct resource *best = NULL;
for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
struct resource *r = bus->resource[i];
if (!r)
continue;
if (res->start && !(res->start >= r->start && res->end <= r->end))
continue; /* Not contained */
if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
continue; /* Wrong type */
if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
return r; /* Exact match */
if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
best = r; /* Approximating prefetchable by non-prefetchable */
}
return best;
}
/**
* pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
* @dev: PCI device to have its BARs restored
*
* Restore the BAR values for a given device, so as to make it
* accessible by its driver.
*/
static void
pci_restore_bars(struct pci_dev *dev)
{
int i, numres;
switch (dev->hdr_type) {
case PCI_HEADER_TYPE_NORMAL:
numres = 6;
break;
case PCI_HEADER_TYPE_BRIDGE:
numres = 2;
break;
case PCI_HEADER_TYPE_CARDBUS:
numres = 1;
break;
default:
/* Should never get here, but just in case... */
return;
}
for (i = 0; i < numres; i ++)
pci_update_resource(dev, &dev->resource[i], i);
}
int (*platform_pci_set_power_state)(struct pci_dev *dev, pci_power_t t);
/**
* pci_set_power_state - Set the power state of a PCI device
* @dev: PCI device to be suspended
* @state: PCI power state (D0, D1, D2, D3hot, D3cold) we're entering
*
* Transition a device to a new power state, using the Power Management
* Capabilities in the device's config space.
*
* RETURN VALUE:
* -EINVAL if trying to enter a lower state than we're already in.
* 0 if we're already in the requested state.
* -EIO if device does not support PCI PM.
* 0 if we can successfully change the power state.
*/
int
pci_set_power_state(struct pci_dev *dev, pci_power_t state)
{
int pm, need_restore = 0;
u16 pmcsr, pmc;
/* bound the state we're entering */
if (state > PCI_D3hot)
state = PCI_D3hot;
/*
* If the device or the parent bridge can't support PCI PM, ignore
* the request if we're doing anything besides putting it into D0
* (which would only happen on boot).
*/
if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
return 0;
/* find PCI PM capability in list */
pm = pci_find_capability(dev, PCI_CAP_ID_PM);
/* abort if the device doesn't support PM capabilities */
if (!pm)
return -EIO;
/* Validate current state:
* Can enter D0 from any state, but if we can only go deeper
* to sleep if we're already in a low power state
*/
if (state != PCI_D0 && dev->current_state > state) {
printk(KERN_ERR "%s(): %s: state=%d, current state=%d\n",
__FUNCTION__, pci_name(dev), state, dev->current_state);
return -EINVAL;
} else if (dev->current_state == state)
return 0; /* we're already there */
pci_read_config_word(dev,pm + PCI_PM_PMC,&pmc);
if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
printk(KERN_DEBUG
"PCI: %s has unsupported PM cap regs version (%u)\n",
pci_name(dev), pmc & PCI_PM_CAP_VER_MASK);
return -EIO;
}
/* check if this device supports the desired state */
if (state == PCI_D1 && !(pmc & PCI_PM_CAP_D1))
return -EIO;
else if (state == PCI_D2 && !(pmc & PCI_PM_CAP_D2))
return -EIO;
pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr);
/* If we're (effectively) in D3, force entire word to 0.
* This doesn't affect PME_Status, disables PME_En, and
* sets PowerState to 0.
*/
switch (dev->current_state) {
case PCI_D0:
case PCI_D1:
case PCI_D2:
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= state;
break;
case PCI_UNKNOWN: /* Boot-up */
if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
&& !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
need_restore = 1;
/* Fall-through: force to D0 */
default:
pmcsr = 0;
break;
}
/* enter specified state */
pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr);
/* Mandatory power management transition delays */
/* see PCI PM 1.1 5.6.1 table 18 */
if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
msleep(pci_pm_d3_delay);
else if (state == PCI_D2 || dev->current_state == PCI_D2)
udelay(200);
/*
* Give firmware a chance to be called, such as ACPI _PRx, _PSx
* Firmware method after native method ?
*/
if (platform_pci_set_power_state)
platform_pci_set_power_state(dev, state);
dev->current_state = state;
/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
* INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
* from D3hot to D0 _may_ perform an internal reset, thereby
* going to "D0 Uninitialized" rather than "D0 Initialized".
* For example, at least some versions of the 3c905B and the
* 3c556B exhibit this behaviour.
*
* At least some laptop BIOSen (e.g. the Thinkpad T21) leave
* devices in a D3hot state at boot. Consequently, we need to
* restore at least the BARs so that the device will be
* accessible to its driver.
*/
if (need_restore)
pci_restore_bars(dev);
return 0;
}
pci_power_t (*platform_pci_choose_state)(struct pci_dev *dev, pm_message_t state);
/**
* pci_choose_state - Choose the power state of a PCI device
* @dev: PCI device to be suspended
* @state: target sleep state for the whole system. This is the value
* that is passed to suspend() function.
*
* Returns PCI power state suitable for given device and given system
* message.
*/
pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
{
pci_power_t ret;
if (!pci_find_capability(dev, PCI_CAP_ID_PM))
return PCI_D0;
if (platform_pci_choose_state) {
ret = platform_pci_choose_state(dev, state);
if (ret != PCI_POWER_ERROR)
return ret;
}
switch (state.event) {
case PM_EVENT_ON:
return PCI_D0;
case PM_EVENT_FREEZE:
case PM_EVENT_PRETHAW:
/* REVISIT both freeze and pre-thaw "should" use D0 */
case PM_EVENT_SUSPEND:
case PM_EVENT_HIBERNATE:
return PCI_D3hot;
default:
printk("Unrecognized suspend event %d\n", state.event);
BUG();
}
return PCI_D0;
}
EXPORT_SYMBOL(pci_choose_state);
static int pci_save_pcie_state(struct pci_dev *dev)
{
int pos, i = 0;
struct pci_cap_saved_state *save_state;
u16 *cap;
int found = 0;
pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (pos <= 0)
return 0;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
if (!save_state)
save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
else
found = 1;
if (!save_state) {
dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n");
return -ENOMEM;
}
cap = (u16 *)&save_state->data[0];
pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
save_state->cap_nr = PCI_CAP_ID_EXP;
if (!found)
pci_add_saved_cap(dev, save_state);
return 0;
}
static void pci_restore_pcie_state(struct pci_dev *dev)
{
int i = 0, pos;
struct pci_cap_saved_state *save_state;
u16 *cap;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (!save_state || pos <= 0)
return;
cap = (u16 *)&save_state->data[0];
pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
}
static int pci_save_pcix_state(struct pci_dev *dev)
{
int pos, i = 0;
struct pci_cap_saved_state *save_state;
u16 *cap;
int found = 0;
pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (pos <= 0)
return 0;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
if (!save_state)
save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
else
found = 1;
if (!save_state) {
dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n");
return -ENOMEM;
}
cap = (u16 *)&save_state->data[0];
pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
save_state->cap_nr = PCI_CAP_ID_PCIX;
if (!found)
pci_add_saved_cap(dev, save_state);
return 0;
}
static void pci_restore_pcix_state(struct pci_dev *dev)
{
int i = 0, pos;
struct pci_cap_saved_state *save_state;
u16 *cap;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (!save_state || pos <= 0)
return;
cap = (u16 *)&save_state->data[0];
pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
}
/**
* pci_save_state - save the PCI configuration space of a device before suspending
* @dev: - PCI device that we're dealing with
*/
int
pci_save_state(struct pci_dev *dev)
{
int i;
/* XXX: 100% dword access ok here? */
for (i = 0; i < 16; i++)
pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
if ((i = pci_save_pcie_state(dev)) != 0)
return i;
if ((i = pci_save_pcix_state(dev)) != 0)
return i;
return 0;
}
/**
* pci_restore_state - Restore the saved state of a PCI device
* @dev: - PCI device that we're dealing with
*/
int
pci_restore_state(struct pci_dev *dev)
{
int i;
u32 val;
/* PCI Express register must be restored first */
pci_restore_pcie_state(dev);
/*
* The Base Address register should be programmed before the command
* register(s)
*/
for (i = 15; i >= 0; i--) {
pci_read_config_dword(dev, i * 4, &val);
if (val != dev->saved_config_space[i]) {
printk(KERN_DEBUG "PM: Writing back config space on "
"device %s at offset %x (was %x, writing %x)\n",
pci_name(dev), i,
val, (int)dev->saved_config_space[i]);
pci_write_config_dword(dev,i * 4,
dev->saved_config_space[i]);
}
}
pci_restore_pcix_state(dev);
pci_restore_msi_state(dev);
return 0;
}
static int do_pci_enable_device(struct pci_dev *dev, int bars)
{
int err;
err = pci_set_power_state(dev, PCI_D0);
if (err < 0 && err != -EIO)
return err;
err = pcibios_enable_device(dev, bars);
if (err < 0)
return err;
pci_fixup_device(pci_fixup_enable, dev);
return 0;
}
/**
* pci_reenable_device - Resume abandoned device
* @dev: PCI device to be resumed
*
* Note this function is a backend of pci_default_resume and is not supposed
* to be called by normal code, write proper resume handler and use it instead.
*/
int pci_reenable_device(struct pci_dev *dev)
{
if (atomic_read(&dev->enable_cnt))
return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
return 0;
}
static int __pci_enable_device_flags(struct pci_dev *dev,
resource_size_t flags)
{
int err;
int i, bars = 0;
if (atomic_add_return(1, &dev->enable_cnt) > 1)
return 0; /* already enabled */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
if (dev->resource[i].flags & flags)
bars |= (1 << i);
err = do_pci_enable_device(dev, bars);
if (err < 0)
atomic_dec(&dev->enable_cnt);
return err;
}
/**
* pci_enable_device_io - Initialize a device for use with IO space
* @dev: PCI device to be initialized
*
* Initialize device before it's used by a driver. Ask low-level code
* to enable I/O resources. Wake up the device if it was suspended.
* Beware, this function can fail.
*/
int pci_enable_device_io(struct pci_dev *dev)
{
return __pci_enable_device_flags(dev, IORESOURCE_IO);
}
/**
* pci_enable_device_mem - Initialize a device for use with Memory space
* @dev: PCI device to be initialized
*
* Initialize device before it's used by a driver. Ask low-level code
* to enable Memory resources. Wake up the device if it was suspended.
* Beware, this function can fail.
*/
int pci_enable_device_mem(struct pci_dev *dev)
{
return __pci_enable_device_flags(dev, IORESOURCE_MEM);
}
/**
* pci_enable_device - Initialize device before it's used by a driver.
* @dev: PCI device to be initialized
*
* Initialize device before it's used by a driver. Ask low-level code
* to enable I/O and memory. Wake up the device if it was suspended.
* Beware, this function can fail.
*
* Note we don't actually enable the device many times if we call
* this function repeatedly (we just increment the count).
*/
int pci_enable_device(struct pci_dev *dev)
{
return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
}
/*
* Managed PCI resources. This manages device on/off, intx/msi/msix
* on/off and BAR regions. pci_dev itself records msi/msix status, so
* there's no need to track it separately. pci_devres is initialized
* when a device is enabled using managed PCI device enable interface.
*/
struct pci_devres {
unsigned int enabled:1;
unsigned int pinned:1;
unsigned int orig_intx:1;
unsigned int restore_intx:1;
u32 region_mask;
};
static void pcim_release(struct device *gendev, void *res)
{
struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
struct pci_devres *this = res;
int i;
if (dev->msi_enabled)
pci_disable_msi(dev);
if (dev->msix_enabled)
pci_disable_msix(dev);
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
if (this->region_mask & (1 << i))
pci_release_region(dev, i);
if (this->restore_intx)
pci_intx(dev, this->orig_intx);
if (this->enabled && !this->pinned)
pci_disable_device(dev);
}
static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
{
struct pci_devres *dr, *new_dr;
dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
if (dr)
return dr;
new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
if (!new_dr)
return NULL;
return devres_get(&pdev->dev, new_dr, NULL, NULL);
}
static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
{
if (pci_is_managed(pdev))
return devres_find(&pdev->dev, pcim_release, NULL, NULL);
return NULL;
}
/**
* pcim_enable_device - Managed pci_enable_device()
* @pdev: PCI device to be initialized
*
* Managed pci_enable_device().
*/
int pcim_enable_device(struct pci_dev *pdev)
{
struct pci_devres *dr;
int rc;
dr = get_pci_dr(pdev);
if (unlikely(!dr))
return -ENOMEM;
if (dr->enabled)
return 0;
rc = pci_enable_device(pdev);
if (!rc) {
pdev->is_managed = 1;
dr->enabled = 1;
}
return rc;
}
/**
* pcim_pin_device - Pin managed PCI device
* @pdev: PCI device to pin
*
* Pin managed PCI device @pdev. Pinned device won't be disabled on
* driver detach. @pdev must have been enabled with
* pcim_enable_device().
*/
void pcim_pin_device(struct pci_dev *pdev)
{
struct pci_devres *dr;
dr = find_pci_dr(pdev);
WARN_ON(!dr || !dr->enabled);
if (dr)
dr->pinned = 1;
}
/**
* pcibios_disable_device - disable arch specific PCI resources for device dev
* @dev: the PCI device to disable
*
* Disables architecture specific PCI resources for the device. This
* is the default implementation. Architecture implementations can
* override this.
*/
void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
/**
* pci_disable_device - Disable PCI device after use
* @dev: PCI device to be disabled
*
* Signal to the system that the PCI device is not in use by the system
* anymore. This only involves disabling PCI bus-mastering, if active.
*
* Note we don't actually disable the device until all callers of
* pci_device_enable() have called pci_device_disable().
*/
void
pci_disable_device(struct pci_dev *dev)
{
struct pci_devres *dr;
u16 pci_command;
dr = find_pci_dr(dev);
if (dr)
dr->enabled = 0;
if (atomic_sub_return(1, &dev->enable_cnt) != 0)
return;
/* Wait for all transactions are finished before disabling the device */
pcie_wait_pending_transaction(dev);
pci_read_config_word(dev, PCI_COMMAND, &pci_command);
if (pci_command & PCI_COMMAND_MASTER) {
pci_command &= ~PCI_COMMAND_MASTER;
pci_write_config_word(dev, PCI_COMMAND, pci_command);
}
dev->is_busmaster = 0;
pcibios_disable_device(dev);
}
/**
* pcibios_set_pcie_reset_state - set reset state for device dev
* @dev: the PCI-E device reset
* @state: Reset state to enter into
*
*
* Sets the PCI-E reset state for the device. This is the default
* implementation. Architecture implementations can override this.
*/
int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
enum pcie_reset_state state)
{
return -EINVAL;
}
/**
* pci_set_pcie_reset_state - set reset state for device dev
* @dev: the PCI-E device reset
* @state: Reset state to enter into
*
*
* Sets the PCI reset state for the device.
*/
int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
{
return pcibios_set_pcie_reset_state(dev, state);
}
/**
* pci_enable_wake - enable PCI device as wakeup event source
* @dev: PCI device affected
* @state: PCI state from which device will issue wakeup events
* @enable: True to enable event generation; false to disable
*
* This enables the device as a wakeup event source, or disables it.
* When such events involves platform-specific hooks, those hooks are
* called automatically by this routine.
*
* Devices with legacy power management (no standard PCI PM capabilities)
* always require such platform hooks. Depending on the platform, devices
* supporting the standard PCI PME# signal may require such platform hooks;
* they always update bits in config space to allow PME# generation.
*
* -EIO is returned if the device can't ever be a wakeup event source.
* -EINVAL is returned if the device can't generate wakeup events from
* the specified PCI state. Returns zero if the operation is successful.
*/
int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
{
int pm;
int status;
u16 value;
/* Note that drivers should verify device_may_wakeup(&dev->dev)
* before calling this function. Platform code should report
* errors when drivers try to enable wakeup on devices that
* can't issue wakeups, or on which wakeups were disabled by
* userspace updating the /sys/devices.../power/wakeup file.
*/
status = call_platform_enable_wakeup(&dev->dev, enable);
/* find PCI PM capability in list */
pm = pci_find_capability(dev, PCI_CAP_ID_PM);
/* If device doesn't support PM Capabilities, but caller wants to
* disable wake events, it's a NOP. Otherwise fail unless the
* platform hooks handled this legacy device already.
*/
if (!pm)
return enable ? status : 0;
/* Check device's ability to generate PME# */
pci_read_config_word(dev,pm+PCI_PM_PMC,&value);
value &= PCI_PM_CAP_PME_MASK;
value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
/* Check if it can generate PME# from requested state. */
if (!value || !(value & (1 << state))) {
/* if it can't, revert what the platform hook changed,
* always reporting the base "EINVAL, can't PME#" error
*/
if (enable)
call_platform_enable_wakeup(&dev->dev, 0);
return enable ? -EINVAL : 0;
}
pci_read_config_word(dev, pm + PCI_PM_CTRL, &value);
/* Clear PME_Status by writing 1 to it and enable PME# */
value |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
if (!enable)
value &= ~PCI_PM_CTRL_PME_ENABLE;
pci_write_config_word(dev, pm + PCI_PM_CTRL, value);
return 0;
}
int
pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
{
u8 pin;
pin = dev->pin;
if (!pin)
return -1;
pin--;
while (dev->bus->self) {
pin = (pin + PCI_SLOT(dev->devfn)) % 4;
dev = dev->bus->self;
}
*bridge = dev;
return pin;
}
/**
* pci_release_region - Release a PCI bar
* @pdev: PCI device whose resources were previously reserved by pci_request_region
* @bar: BAR to release
*
* Releases the PCI I/O and memory resources previously reserved by a
* successful call to pci_request_region. Call this function only
* after all use of the PCI regions has ceased.
*/
void pci_release_region(struct pci_dev *pdev, int bar)
{
struct pci_devres *dr;
if (pci_resource_len(pdev, bar) == 0)
return;
if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
release_region(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar));
else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
release_mem_region(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar));
dr = find_pci_dr(pdev);
if (dr)
dr->region_mask &= ~(1 << bar);
}
/**
* pci_request_region - Reserved PCI I/O and memory resource
* @pdev: PCI device whose resources are to be reserved
* @bar: BAR to be reserved
* @res_name: Name to be associated with resource.
*
* Mark the PCI region associated with PCI device @pdev BR @bar as
* being reserved by owner @res_name. Do not access any
* address inside the PCI regions unless this call returns
* successfully.
*
* Returns 0 on success, or %EBUSY on error. A warning
* message is also printed on failure.
*/
int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
{
struct pci_devres *dr;
if (pci_resource_len(pdev, bar) == 0)
return 0;
if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
if (!request_region(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar), res_name))
goto err_out;
}
else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
if (!request_mem_region(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar), res_name))
goto err_out;
}
dr = find_pci_dr(pdev);
if (dr)
dr->region_mask |= 1 << bar;
return 0;
err_out:
printk (KERN_WARNING "PCI: Unable to reserve %s region #%d:%llx@%llx "
"for device %s\n",
pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
bar + 1, /* PCI BAR # */
(unsigned long long)pci_resource_len(pdev, bar),
(unsigned long long)pci_resource_start(pdev, bar),
pci_name(pdev));
return -EBUSY;
}
/**
* pci_release_selected_regions - Release selected PCI I/O and memory resources
* @pdev: PCI device whose resources were previously reserved
* @bars: Bitmask of BARs to be released
*
* Release selected PCI I/O and memory resources previously reserved.
* Call this function only after all use of the PCI regions has ceased.
*/
void pci_release_selected_regions(struct pci_dev *pdev, int bars)
{
int i;
for (i = 0; i < 6; i++)
if (bars & (1 << i))
pci_release_region(pdev, i);
}
/**
* pci_request_selected_regions - Reserve selected PCI I/O and memory resources
* @pdev: PCI device whose resources are to be reserved
* @bars: Bitmask of BARs to be requested
* @res_name: Name to be associated with resource
*/
int pci_request_selected_regions(struct pci_dev *pdev, int bars,
const char *res_name)
{
int i;
for (i = 0; i < 6; i++)
if (bars & (1 << i))
if(pci_request_region(pdev, i, res_name))
goto err_out;
return 0;
err_out:
while(--i >= 0)
if (bars & (1 << i))
pci_release_region(pdev, i);
return -EBUSY;
}
/**
* pci_release_regions - Release reserved PCI I/O and memory resources
* @pdev: PCI device whose resources were previously reserved by pci_request_regions
*
* Releases all PCI I/O and memory resources previously reserved by a
* successful call to pci_request_regions. Call this function only
* after all use of the PCI regions has ceased.
*/
void pci_release_regions(struct pci_dev *pdev)
{
pci_release_selected_regions(pdev, (1 << 6) - 1);
}
/**
* pci_request_regions - Reserved PCI I/O and memory resources
* @pdev: PCI device whose resources are to be reserved
* @res_name: Name to be associated with resource.
*
* Mark all PCI regions associated with PCI device @pdev as
* being reserved by owner @res_name. Do not access any
* address inside the PCI regions unless this call returns
* successfully.
*
* Returns 0 on success, or %EBUSY on error. A warning
* message is also printed on failure.
*/
int pci_request_regions(struct pci_dev *pdev, const char *res_name)
{
return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
}
/**
* pci_set_master - enables bus-mastering for device dev
* @dev: the PCI device to enable
*
* Enables bus-mastering on the device and calls pcibios_set_master()
* to do the needed arch specific settings.
*/
void
pci_set_master(struct pci_dev *dev)
{
u16 cmd;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
if (! (cmd & PCI_COMMAND_MASTER)) {
pr_debug("PCI: Enabling bus mastering for device %s\n", pci_name(dev));
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
dev->is_busmaster = 1;
pcibios_set_master(dev);
}
#ifdef PCI_DISABLE_MWI
int pci_set_mwi(struct pci_dev *dev)
{
return 0;
}
int pci_try_set_mwi(struct pci_dev *dev)
{
return 0;
}
void pci_clear_mwi(struct pci_dev *dev)
{
}
#else
#ifndef PCI_CACHE_LINE_BYTES
#define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
#endif
/* This can be overridden by arch code. */
/* Don't forget this is measured in 32-bit words, not bytes */
u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
/**
* pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
* @dev: the PCI device for which MWI is to be enabled
*
* Helper function for pci_set_mwi.
* Originally copied from drivers/net/acenic.c.
* Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
static int
pci_set_cacheline_size(struct pci_dev *dev)
{
u8 cacheline_size;
if (!pci_cache_line_size)
return -EINVAL; /* The system doesn't support MWI. */
/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
equal to or multiple of the right value. */
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
if (cacheline_size >= pci_cache_line_size &&
(cacheline_size % pci_cache_line_size) == 0)
return 0;
/* Write the correct value. */
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
/* Read it back. */
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
if (cacheline_size == pci_cache_line_size)
return 0;
printk(KERN_DEBUG "PCI: cache line size of %d is not supported "
"by device %s\n", pci_cache_line_size << 2, pci_name(dev));
return -EINVAL;
}
/**
* pci_set_mwi - enables memory-write-invalidate PCI transaction
* @dev: the PCI device for which MWI is enabled
*
* Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
pci_set_mwi(struct pci_dev *dev)
{
int rc;
u16 cmd;
rc = pci_set_cacheline_size(dev);
if (rc)
return rc;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
if (! (cmd & PCI_COMMAND_INVALIDATE)) {
pr_debug("PCI: Enabling Mem-Wr-Inval for device %s\n",
pci_name(dev));
cmd |= PCI_COMMAND_INVALIDATE;
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
/**
* pci_try_set_mwi - enables memory-write-invalidate PCI transaction
* @dev: the PCI device for which MWI is enabled
*
* Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
* Callers are not required to check the return value.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int pci_try_set_mwi(struct pci_dev *dev)
{
int rc = pci_set_mwi(dev);
return rc;
}
/**
* pci_clear_mwi - disables Memory-Write-Invalidate for device dev
* @dev: the PCI device to disable
*
* Disables PCI Memory-Write-Invalidate transaction on the device
*/
void
pci_clear_mwi(struct pci_dev *dev)
{
u16 cmd;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
if (cmd & PCI_COMMAND_INVALIDATE) {
cmd &= ~PCI_COMMAND_INVALIDATE;
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
}
#endif /* ! PCI_DISABLE_MWI */
/**
* pci_intx - enables/disables PCI INTx for device dev
* @pdev: the PCI device to operate on
* @enable: boolean: whether to enable or disable PCI INTx
*
* Enables/disables PCI INTx for device dev
*/
void
pci_intx(struct pci_dev *pdev, int enable)
{
u16 pci_command, new;
pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
if (enable) {
new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
} else {
new = pci_command | PCI_COMMAND_INTX_DISABLE;
}
if (new != pci_command) {
struct pci_devres *dr;
pci_write_config_word(pdev, PCI_COMMAND, new);
dr = find_pci_dr(pdev);
if (dr && !dr->restore_intx) {
dr->restore_intx = 1;
dr->orig_intx = !enable;
}
}
}
/**
* pci_msi_off - disables any msi or msix capabilities
* @dev: the PCI device to operate on
*
* If you want to use msi see pci_enable_msi and friends.
* This is a lower level primitive that allows us to disable
* msi operation at the device level.
*/
void pci_msi_off(struct pci_dev *dev)
{
int pos;
u16 control;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (pos) {
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
}
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
control &= ~PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
}
}
#ifndef HAVE_ARCH_PCI_SET_DMA_MASK
/*
* These can be overridden by arch-specific implementations
*/
int
pci_set_dma_mask(struct pci_dev *dev, u64 mask)
{
if (!pci_dma_supported(dev, mask))
return -EIO;
dev->dma_mask = mask;
return 0;
}
int
pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
{
if (!pci_dma_supported(dev, mask))
return -EIO;
dev->dev.coherent_dma_mask = mask;
return 0;
}
#endif
#ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
{
return dma_set_max_seg_size(&dev->dev, size);
}
EXPORT_SYMBOL(pci_set_dma_max_seg_size);
#endif
#ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
{
return dma_set_seg_boundary(&dev->dev, mask);
}
EXPORT_SYMBOL(pci_set_dma_seg_boundary);
#endif
/**
* pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
* @dev: PCI device to query
*
* Returns mmrbc: maximum designed memory read count in bytes
* or appropriate error value.
*/
int pcix_get_max_mmrbc(struct pci_dev *dev)
{
int err, cap;
u32 stat;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (!cap)
return -EINVAL;
err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
if (err)
return -EINVAL;
return (stat & PCI_X_STATUS_MAX_READ) >> 12;
}
EXPORT_SYMBOL(pcix_get_max_mmrbc);
/**
* pcix_get_mmrbc - get PCI-X maximum memory read byte count
* @dev: PCI device to query
*
* Returns mmrbc: maximum memory read count in bytes
* or appropriate error value.
*/
int pcix_get_mmrbc(struct pci_dev *dev)
{
int ret, cap;
u32 cmd;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (!cap)
return -EINVAL;
ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
if (!ret)
ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
return ret;
}
EXPORT_SYMBOL(pcix_get_mmrbc);
/**
* pcix_set_mmrbc - set PCI-X maximum memory read byte count
* @dev: PCI device to query
* @mmrbc: maximum memory read count in bytes
* valid values are 512, 1024, 2048, 4096
*
* If possible sets maximum memory read byte count, some bridges have erratas
* that prevent this.
*/
int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
{
int cap, err = -EINVAL;
u32 stat, cmd, v, o;
if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
goto out;
v = ffs(mmrbc) - 10;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (!cap)
goto out;
err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
if (err)
goto out;
if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
return -E2BIG;
err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
if (err)
goto out;
o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
if (o != v) {
if (v > o && dev->bus &&
(dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
return -EIO;
cmd &= ~PCI_X_CMD_MAX_READ;
cmd |= v << 2;
err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
}
out:
return err;
}
EXPORT_SYMBOL(pcix_set_mmrbc);
/**
* pcie_get_readrq - get PCI Express read request size
* @dev: PCI device to query
*
* Returns maximum memory read request in bytes
* or appropriate error value.
*/
int pcie_get_readrq(struct pci_dev *dev)
{
int ret, cap;
u16 ctl;
cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (!cap)
return -EINVAL;
ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
if (!ret)
ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
return ret;
}
EXPORT_SYMBOL(pcie_get_readrq);
/**
* pcie_set_readrq - set PCI Express maximum memory read request
* @dev: PCI device to query
* @rq: maximum memory read count in bytes
* valid values are 128, 256, 512, 1024, 2048, 4096
*
* If possible sets maximum read byte count
*/
int pcie_set_readrq(struct pci_dev *dev, int rq)
{
int cap, err = -EINVAL;
u16 ctl, v;
if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
goto out;
v = (ffs(rq) - 8) << 12;
cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (!cap)
goto out;
err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
if (err)
goto out;
if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
ctl &= ~PCI_EXP_DEVCTL_READRQ;
ctl |= v;
err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
}
out:
return err;
}
EXPORT_SYMBOL(pcie_set_readrq);
/**
* pci_select_bars - Make BAR mask from the type of resource
* @dev: the PCI device for which BAR mask is made
* @flags: resource type mask to be selected
*
* This helper routine makes bar mask from the type of resource.
*/
int pci_select_bars(struct pci_dev *dev, unsigned long flags)
{
int i, bars = 0;
for (i = 0; i < PCI_NUM_RESOURCES; i++)
if (pci_resource_flags(dev, i) & flags)
bars |= (1 << i);
return bars;
}
static void __devinit pci_no_domains(void)
{
#ifdef CONFIG_PCI_DOMAINS
pci_domains_supported = 0;
#endif
}
static int __devinit pci_init(void)
{
struct pci_dev *dev = NULL;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
pci_fixup_device(pci_fixup_final, dev);
}
return 0;
}
static int __devinit pci_setup(char *str)
{
while (str) {
char *k = strchr(str, ',');
if (k)
*k++ = 0;
if (*str && (str = pcibios_setup(str)) && *str) {
if (!strcmp(str, "nomsi")) {
pci_no_msi();
} else if (!strcmp(str, "noaer")) {
pci_no_aer();
} else if (!strcmp(str, "nodomains")) {
pci_no_domains();
} else if (!strncmp(str, "cbiosize=", 9)) {
pci_cardbus_io_size = memparse(str + 9, &str);
} else if (!strncmp(str, "cbmemsize=", 10)) {
pci_cardbus_mem_size = memparse(str + 10, &str);
} else {
printk(KERN_ERR "PCI: Unknown option `%s'\n",
str);
}
}
str = k;
}
return 0;
}
early_param("pci", pci_setup);
device_initcall(pci_init);
EXPORT_SYMBOL(pci_reenable_device);
EXPORT_SYMBOL(pci_enable_device_io);
EXPORT_SYMBOL(pci_enable_device_mem);
EXPORT_SYMBOL(pci_enable_device);
EXPORT_SYMBOL(pcim_enable_device);
EXPORT_SYMBOL(pcim_pin_device);
EXPORT_SYMBOL(pci_disable_device);
EXPORT_SYMBOL(pci_find_capability);
EXPORT_SYMBOL(pci_bus_find_capability);
EXPORT_SYMBOL(pci_release_regions);
EXPORT_SYMBOL(pci_request_regions);
EXPORT_SYMBOL(pci_release_region);
EXPORT_SYMBOL(pci_request_region);
EXPORT_SYMBOL(pci_release_selected_regions);
EXPORT_SYMBOL(pci_request_selected_regions);
EXPORT_SYMBOL(pci_set_master);
EXPORT_SYMBOL(pci_set_mwi);
EXPORT_SYMBOL(pci_try_set_mwi);
EXPORT_SYMBOL(pci_clear_mwi);
EXPORT_SYMBOL_GPL(pci_intx);
EXPORT_SYMBOL(pci_set_dma_mask);
EXPORT_SYMBOL(pci_set_consistent_dma_mask);
EXPORT_SYMBOL(pci_assign_resource);
EXPORT_SYMBOL(pci_find_parent_resource);
EXPORT_SYMBOL(pci_select_bars);
EXPORT_SYMBOL(pci_set_power_state);
EXPORT_SYMBOL(pci_save_state);
EXPORT_SYMBOL(pci_restore_state);
EXPORT_SYMBOL(pci_enable_wake);
EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);