2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-27 08:05:27 +08:00
linux-next/kernel/time/hrtimer.c
Linus Torvalds 43224b96af Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "A rather largish update for everything time and timer related:

   - Cache footprint optimizations for both hrtimers and timer wheel

   - Lower the NOHZ impact on systems which have NOHZ or timer migration
     disabled at runtime.

   - Optimize run time overhead of hrtimer interrupt by making the clock
     offset updates smarter

   - hrtimer cleanups and removal of restrictions to tackle some
     problems in sched/perf

   - Some more leap second tweaks

   - Another round of changes addressing the 2038 problem

   - First step to change the internals of clock event devices by
     introducing the necessary infrastructure

   - Allow constant folding for usecs/msecs_to_jiffies()

   - The usual pile of clockevent/clocksource driver updates

  The hrtimer changes contain updates to sched, perf and x86 as they
  depend on them plus changes all over the tree to cleanup API changes
  and redundant code, which got copied all over the place.  The y2038
  changes touch s390 to remove the last non 2038 safe code related to
  boot/persistant clock"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
  clocksource: Increase dependencies of timer-stm32 to limit build wreckage
  timer: Minimize nohz off overhead
  timer: Reduce timer migration overhead if disabled
  timer: Stats: Simplify the flags handling
  timer: Replace timer base by a cpu index
  timer: Use hlist for the timer wheel hash buckets
  timer: Remove FIFO "guarantee"
  timers: Sanitize catchup_timer_jiffies() usage
  hrtimer: Allow hrtimer::function() to free the timer
  seqcount: Introduce raw_write_seqcount_barrier()
  seqcount: Rename write_seqcount_barrier()
  hrtimer: Fix hrtimer_is_queued() hole
  hrtimer: Remove HRTIMER_STATE_MIGRATE
  selftest: Timers: Avoid signal deadlock in leap-a-day
  timekeeping: Copy the shadow-timekeeper over the real timekeeper last
  clockevents: Check state instead of mode in suspend/resume path
  selftests: timers: Add leap-second timer edge testing to leap-a-day.c
  ntp: Do leapsecond adjustment in adjtimex read path
  time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
  ntp: Introduce and use SECS_PER_DAY macro instead of 86400
  ...
2015-06-22 18:57:44 -07:00

1804 lines
46 KiB
C

/*
* linux/kernel/hrtimer.c
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
*
* High-resolution kernel timers
*
* In contrast to the low-resolution timeout API implemented in
* kernel/timer.c, hrtimers provide finer resolution and accuracy
* depending on system configuration and capabilities.
*
* These timers are currently used for:
* - itimers
* - POSIX timers
* - nanosleep
* - precise in-kernel timing
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* Credits:
* based on kernel/timer.c
*
* Help, testing, suggestions, bugfixes, improvements were
* provided by:
*
* George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
* et. al.
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/cpu.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/kallsyms.h>
#include <linux/interrupt.h>
#include <linux/tick.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/debugobjects.h>
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/sched/deadline.h>
#include <linux/timer.h>
#include <linux/freezer.h>
#include <asm/uaccess.h>
#include <trace/events/timer.h>
#include "tick-internal.h"
/*
* The timer bases:
*
* There are more clockids then hrtimer bases. Thus, we index
* into the timer bases by the hrtimer_base_type enum. When trying
* to reach a base using a clockid, hrtimer_clockid_to_base()
* is used to convert from clockid to the proper hrtimer_base_type.
*/
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
.seq = SEQCNT_ZERO(hrtimer_bases.seq),
.clock_base =
{
{
.index = HRTIMER_BASE_MONOTONIC,
.clockid = CLOCK_MONOTONIC,
.get_time = &ktime_get,
},
{
.index = HRTIMER_BASE_REALTIME,
.clockid = CLOCK_REALTIME,
.get_time = &ktime_get_real,
},
{
.index = HRTIMER_BASE_BOOTTIME,
.clockid = CLOCK_BOOTTIME,
.get_time = &ktime_get_boottime,
},
{
.index = HRTIMER_BASE_TAI,
.clockid = CLOCK_TAI,
.get_time = &ktime_get_clocktai,
},
}
};
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
[CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
[CLOCK_TAI] = HRTIMER_BASE_TAI,
};
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
return hrtimer_clock_to_base_table[clock_id];
}
/*
* Functions and macros which are different for UP/SMP systems are kept in a
* single place
*/
#ifdef CONFIG_SMP
/*
* We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
* such that hrtimer_callback_running() can unconditionally dereference
* timer->base->cpu_base
*/
static struct hrtimer_cpu_base migration_cpu_base = {
.seq = SEQCNT_ZERO(migration_cpu_base),
.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};
#define migration_base migration_cpu_base.clock_base[0]
/*
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
* means that all timers which are tied to this base via timer->base are
* locked, and the base itself is locked too.
*
* So __run_timers/migrate_timers can safely modify all timers which could
* be found on the lists/queues.
*
* When the timer's base is locked, and the timer removed from list, it is
* possible to set timer->base = &migration_base and drop the lock: the timer
* remains locked.
*/
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
unsigned long *flags)
{
struct hrtimer_clock_base *base;
for (;;) {
base = timer->base;
if (likely(base != &migration_base)) {
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
if (likely(base == timer->base))
return base;
/* The timer has migrated to another CPU: */
raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
}
cpu_relax();
}
}
/*
* With HIGHRES=y we do not migrate the timer when it is expiring
* before the next event on the target cpu because we cannot reprogram
* the target cpu hardware and we would cause it to fire late.
*
* Called with cpu_base->lock of target cpu held.
*/
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
ktime_t expires;
if (!new_base->cpu_base->hres_active)
return 0;
expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
return 0;
#endif
}
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
int pinned)
{
if (pinned || !base->migration_enabled)
return this_cpu_ptr(&hrtimer_bases);
return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
int pinned)
{
return this_cpu_ptr(&hrtimer_bases);
}
#endif
/*
* Switch the timer base to the current CPU when possible.
*/
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
int pinned)
{
struct hrtimer_cpu_base *new_cpu_base, *this_base;
struct hrtimer_clock_base *new_base;
int basenum = base->index;
this_base = this_cpu_ptr(&hrtimer_bases);
new_cpu_base = get_target_base(this_base, pinned);
again:
new_base = &new_cpu_base->clock_base[basenum];
if (base != new_base) {
/*
* We are trying to move timer to new_base.
* However we can't change timer's base while it is running,
* so we keep it on the same CPU. No hassle vs. reprogramming
* the event source in the high resolution case. The softirq
* code will take care of this when the timer function has
* completed. There is no conflict as we hold the lock until
* the timer is enqueued.
*/
if (unlikely(hrtimer_callback_running(timer)))
return base;
/* See the comment in lock_hrtimer_base() */
timer->base = &migration_base;
raw_spin_unlock(&base->cpu_base->lock);
raw_spin_lock(&new_base->cpu_base->lock);
if (new_cpu_base != this_base &&
hrtimer_check_target(timer, new_base)) {
raw_spin_unlock(&new_base->cpu_base->lock);
raw_spin_lock(&base->cpu_base->lock);
new_cpu_base = this_base;
timer->base = base;
goto again;
}
timer->base = new_base;
} else {
if (new_cpu_base != this_base &&
hrtimer_check_target(timer, new_base)) {
new_cpu_base = this_base;
goto again;
}
}
return new_base;
}
#else /* CONFIG_SMP */
static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
struct hrtimer_clock_base *base = timer->base;
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
return base;
}
# define switch_hrtimer_base(t, b, p) (b)
#endif /* !CONFIG_SMP */
/*
* Functions for the union type storage format of ktime_t which are
* too large for inlining:
*/
#if BITS_PER_LONG < 64
/*
* Divide a ktime value by a nanosecond value
*/
s64 __ktime_divns(const ktime_t kt, s64 div)
{
int sft = 0;
s64 dclc;
u64 tmp;
dclc = ktime_to_ns(kt);
tmp = dclc < 0 ? -dclc : dclc;
/* Make sure the divisor is less than 2^32: */
while (div >> 32) {
sft++;
div >>= 1;
}
tmp >>= sft;
do_div(tmp, (unsigned long) div);
return dclc < 0 ? -tmp : tmp;
}
EXPORT_SYMBOL_GPL(__ktime_divns);
#endif /* BITS_PER_LONG >= 64 */
/*
* Add two ktime values and do a safety check for overflow:
*/
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
ktime_t res = ktime_add(lhs, rhs);
/*
* We use KTIME_SEC_MAX here, the maximum timeout which we can
* return to user space in a timespec:
*/
if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
res = ktime_set(KTIME_SEC_MAX, 0);
return res;
}
EXPORT_SYMBOL_GPL(ktime_add_safe);
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
static struct debug_obj_descr hrtimer_debug_descr;
static void *hrtimer_debug_hint(void *addr)
{
return ((struct hrtimer *) addr)->function;
}
/*
* fixup_init is called when:
* - an active object is initialized
*/
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
struct hrtimer *timer = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
hrtimer_cancel(timer);
debug_object_init(timer, &hrtimer_debug_descr);
return 1;
default:
return 0;
}
}
/*
* fixup_activate is called when:
* - an active object is activated
* - an unknown object is activated (might be a statically initialized object)
*/
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
switch (state) {
case ODEBUG_STATE_NOTAVAILABLE:
WARN_ON_ONCE(1);
return 0;
case ODEBUG_STATE_ACTIVE:
WARN_ON(1);
default:
return 0;
}
}
/*
* fixup_free is called when:
* - an active object is freed
*/
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
struct hrtimer *timer = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
hrtimer_cancel(timer);
debug_object_free(timer, &hrtimer_debug_descr);
return 1;
default:
return 0;
}
}
static struct debug_obj_descr hrtimer_debug_descr = {
.name = "hrtimer",
.debug_hint = hrtimer_debug_hint,
.fixup_init = hrtimer_fixup_init,
.fixup_activate = hrtimer_fixup_activate,
.fixup_free = hrtimer_fixup_free,
};
static inline void debug_hrtimer_init(struct hrtimer *timer)
{
debug_object_init(timer, &hrtimer_debug_descr);
}
static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
debug_object_activate(timer, &hrtimer_debug_descr);
}
static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
debug_object_deactivate(timer, &hrtimer_debug_descr);
}
static inline void debug_hrtimer_free(struct hrtimer *timer)
{
debug_object_free(timer, &hrtimer_debug_descr);
}
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode);
void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
debug_object_init_on_stack(timer, &hrtimer_debug_descr);
__hrtimer_init(timer, clock_id, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
debug_object_free(timer, &hrtimer_debug_descr);
}
#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
enum hrtimer_mode mode)
{
debug_hrtimer_init(timer);
trace_hrtimer_init(timer, clockid, mode);
}
static inline void debug_activate(struct hrtimer *timer)
{
debug_hrtimer_activate(timer);
trace_hrtimer_start(timer);
}
static inline void debug_deactivate(struct hrtimer *timer)
{
debug_hrtimer_deactivate(timer);
trace_hrtimer_cancel(timer);
}
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
cpu_base->next_timer = timer;
#endif
}
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
{
struct hrtimer_clock_base *base = cpu_base->clock_base;
ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
unsigned int active = cpu_base->active_bases;
hrtimer_update_next_timer(cpu_base, NULL);
for (; active; base++, active >>= 1) {
struct timerqueue_node *next;
struct hrtimer *timer;
if (!(active & 0x01))
continue;
next = timerqueue_getnext(&base->active);
timer = container_of(next, struct hrtimer, node);
expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
if (expires.tv64 < expires_next.tv64) {
expires_next = expires;
hrtimer_update_next_timer(cpu_base, timer);
}
}
/*
* clock_was_set() might have changed base->offset of any of
* the clock bases so the result might be negative. Fix it up
* to prevent a false positive in clockevents_program_event().
*/
if (expires_next.tv64 < 0)
expires_next.tv64 = 0;
return expires_next;
}
#endif
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
return ktime_get_update_offsets_now(&base->clock_was_set_seq,
offs_real, offs_boot, offs_tai);
}
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* High resolution timer enabled ?
*/
static int hrtimer_hres_enabled __read_mostly = 1;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
/*
* Enable / Disable high resolution mode
*/
static int __init setup_hrtimer_hres(char *str)
{
if (!strcmp(str, "off"))
hrtimer_hres_enabled = 0;
else if (!strcmp(str, "on"))
hrtimer_hres_enabled = 1;
else
return 0;
return 1;
}
__setup("highres=", setup_hrtimer_hres);
/*
* hrtimer_high_res_enabled - query, if the highres mode is enabled
*/
static inline int hrtimer_is_hres_enabled(void)
{
return hrtimer_hres_enabled;
}
/*
* Is the high resolution mode active ?
*/
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
return cpu_base->hres_active;
}
static inline int hrtimer_hres_active(void)
{
return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}
/*
* Reprogram the event source with checking both queues for the
* next event
* Called with interrupts disabled and base->lock held
*/
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
{
ktime_t expires_next;
if (!cpu_base->hres_active)
return;
expires_next = __hrtimer_get_next_event(cpu_base);
if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
return;
cpu_base->expires_next.tv64 = expires_next.tv64;
/*
* If a hang was detected in the last timer interrupt then we
* leave the hang delay active in the hardware. We want the
* system to make progress. That also prevents the following
* scenario:
* T1 expires 50ms from now
* T2 expires 5s from now
*
* T1 is removed, so this code is called and would reprogram
* the hardware to 5s from now. Any hrtimer_start after that
* will not reprogram the hardware due to hang_detected being
* set. So we'd effectivly block all timers until the T2 event
* fires.
*/
if (cpu_base->hang_detected)
return;
tick_program_event(cpu_base->expires_next, 1);
}
/*
* When a timer is enqueued and expires earlier than the already enqueued
* timers, we have to check, whether it expires earlier than the timer for
* which the clock event device was armed.
*
* Called with interrupts disabled and base->cpu_base.lock held
*/
static void hrtimer_reprogram(struct hrtimer *timer,
struct hrtimer_clock_base *base)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
/*
* If the timer is not on the current cpu, we cannot reprogram
* the other cpus clock event device.
*/
if (base->cpu_base != cpu_base)
return;
/*
* If the hrtimer interrupt is running, then it will
* reevaluate the clock bases and reprogram the clock event
* device. The callbacks are always executed in hard interrupt
* context so we don't need an extra check for a running
* callback.
*/
if (cpu_base->in_hrtirq)
return;
/*
* CLOCK_REALTIME timer might be requested with an absolute
* expiry time which is less than base->offset. Set it to 0.
*/
if (expires.tv64 < 0)
expires.tv64 = 0;
if (expires.tv64 >= cpu_base->expires_next.tv64)
return;
/* Update the pointer to the next expiring timer */
cpu_base->next_timer = timer;
/*
* If a hang was detected in the last timer interrupt then we
* do not schedule a timer which is earlier than the expiry
* which we enforced in the hang detection. We want the system
* to make progress.
*/
if (cpu_base->hang_detected)
return;
/*
* Program the timer hardware. We enforce the expiry for
* events which are already in the past.
*/
cpu_base->expires_next = expires;
tick_program_event(expires, 1);
}
/*
* Initialize the high resolution related parts of cpu_base
*/
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
base->expires_next.tv64 = KTIME_MAX;
base->hres_active = 0;
}
/*
* Retrigger next event is called after clock was set
*
* Called with interrupts disabled via on_each_cpu()
*/
static void retrigger_next_event(void *arg)
{
struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
if (!base->hres_active)
return;
raw_spin_lock(&base->lock);
hrtimer_update_base(base);
hrtimer_force_reprogram(base, 0);
raw_spin_unlock(&base->lock);
}
/*
* Switch to high resolution mode
*/
static int hrtimer_switch_to_hres(void)
{
struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
if (tick_init_highres()) {
printk(KERN_WARNING "Could not switch to high resolution "
"mode on CPU %d\n", base->cpu);
return 0;
}
base->hres_active = 1;
hrtimer_resolution = HIGH_RES_NSEC;
tick_setup_sched_timer();
/* "Retrigger" the interrupt to get things going */
retrigger_next_event(NULL);
return 1;
}
static void clock_was_set_work(struct work_struct *work)
{
clock_was_set();
}
static DECLARE_WORK(hrtimer_work, clock_was_set_work);
/*
* Called from timekeeping and resume code to reprogramm the hrtimer
* interrupt device on all cpus.
*/
void clock_was_set_delayed(void)
{
schedule_work(&hrtimer_work);
}
#else
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
static inline int hrtimer_switch_to_hres(void) { return 0; }
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
static inline int hrtimer_reprogram(struct hrtimer *timer,
struct hrtimer_clock_base *base)
{
return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void retrigger_next_event(void *arg) { }
#endif /* CONFIG_HIGH_RES_TIMERS */
/*
* Clock realtime was set
*
* Change the offset of the realtime clock vs. the monotonic
* clock.
*
* We might have to reprogram the high resolution timer interrupt. On
* SMP we call the architecture specific code to retrigger _all_ high
* resolution timer interrupts. On UP we just disable interrupts and
* call the high resolution interrupt code.
*/
void clock_was_set(void)
{
#ifdef CONFIG_HIGH_RES_TIMERS
/* Retrigger the CPU local events everywhere */
on_each_cpu(retrigger_next_event, NULL, 1);
#endif
timerfd_clock_was_set();
}
/*
* During resume we might have to reprogram the high resolution timer
* interrupt on all online CPUs. However, all other CPUs will be
* stopped with IRQs interrupts disabled so the clock_was_set() call
* must be deferred.
*/
void hrtimers_resume(void)
{
WARN_ONCE(!irqs_disabled(),
KERN_INFO "hrtimers_resume() called with IRQs enabled!");
/* Retrigger on the local CPU */
retrigger_next_event(NULL);
/* And schedule a retrigger for all others */
clock_was_set_delayed();
}
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
if (timer->start_site)
return;
timer->start_site = __builtin_return_address(0);
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
timer->start_pid = current->pid;
#endif
}
static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
timer->start_site = NULL;
#endif
}
static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
if (likely(!timer_stats_active))
return;
timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
timer->function, timer->start_comm, 0);
#endif
}
/*
* Counterpart to lock_hrtimer_base above:
*/
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
}
/**
* hrtimer_forward - forward the timer expiry
* @timer: hrtimer to forward
* @now: forward past this time
* @interval: the interval to forward
*
* Forward the timer expiry so it will expire in the future.
* Returns the number of overruns.
*
* Can be safely called from the callback function of @timer. If
* called from other contexts @timer must neither be enqueued nor
* running the callback and the caller needs to take care of
* serialization.
*
* Note: This only updates the timer expiry value and does not requeue
* the timer.
*/
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
{
u64 orun = 1;
ktime_t delta;
delta = ktime_sub(now, hrtimer_get_expires(timer));
if (delta.tv64 < 0)
return 0;
if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
return 0;
if (interval.tv64 < hrtimer_resolution)
interval.tv64 = hrtimer_resolution;
if (unlikely(delta.tv64 >= interval.tv64)) {
s64 incr = ktime_to_ns(interval);
orun = ktime_divns(delta, incr);
hrtimer_add_expires_ns(timer, incr * orun);
if (hrtimer_get_expires_tv64(timer) > now.tv64)
return orun;
/*
* This (and the ktime_add() below) is the
* correction for exact:
*/
orun++;
}
hrtimer_add_expires(timer, interval);
return orun;
}
EXPORT_SYMBOL_GPL(hrtimer_forward);
/*
* enqueue_hrtimer - internal function to (re)start a timer
*
* The timer is inserted in expiry order. Insertion into the
* red black tree is O(log(n)). Must hold the base lock.
*
* Returns 1 when the new timer is the leftmost timer in the tree.
*/
static int enqueue_hrtimer(struct hrtimer *timer,
struct hrtimer_clock_base *base)
{
debug_activate(timer);
base->cpu_base->active_bases |= 1 << base->index;
timer->state = HRTIMER_STATE_ENQUEUED;
return timerqueue_add(&base->active, &timer->node);
}
/*
* __remove_hrtimer - internal function to remove a timer
*
* Caller must hold the base lock.
*
* High resolution timer mode reprograms the clock event device when the
* timer is the one which expires next. The caller can disable this by setting
* reprogram to zero. This is useful, when the context does a reprogramming
* anyway (e.g. timer interrupt)
*/
static void __remove_hrtimer(struct hrtimer *timer,
struct hrtimer_clock_base *base,
unsigned long newstate, int reprogram)
{
struct hrtimer_cpu_base *cpu_base = base->cpu_base;
unsigned int state = timer->state;
timer->state = newstate;
if (!(state & HRTIMER_STATE_ENQUEUED))
return;
if (!timerqueue_del(&base->active, &timer->node))
cpu_base->active_bases &= ~(1 << base->index);
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* Note: If reprogram is false we do not update
* cpu_base->next_timer. This happens when we remove the first
* timer on a remote cpu. No harm as we never dereference
* cpu_base->next_timer. So the worst thing what can happen is
* an superflous call to hrtimer_force_reprogram() on the
* remote cpu later on if the same timer gets enqueued again.
*/
if (reprogram && timer == cpu_base->next_timer)
hrtimer_force_reprogram(cpu_base, 1);
#endif
}
/*
* remove hrtimer, called with base lock held
*/
static inline int
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
{
if (hrtimer_is_queued(timer)) {
unsigned long state = timer->state;
int reprogram;
/*
* Remove the timer and force reprogramming when high
* resolution mode is active and the timer is on the current
* CPU. If we remove a timer on another CPU, reprogramming is
* skipped. The interrupt event on this CPU is fired and
* reprogramming happens in the interrupt handler. This is a
* rare case and less expensive than a smp call.
*/
debug_deactivate(timer);
timer_stats_hrtimer_clear_start_info(timer);
reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
if (!restart)
state = HRTIMER_STATE_INACTIVE;
__remove_hrtimer(timer, base, state, reprogram);
return 1;
}
return 0;
}
/**
* hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
* @timer: the timer to be added
* @tim: expiry time
* @delta_ns: "slack" range for the timer
* @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
* relative (HRTIMER_MODE_REL)
*/
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
unsigned long delta_ns, const enum hrtimer_mode mode)
{
struct hrtimer_clock_base *base, *new_base;
unsigned long flags;
int leftmost;
base = lock_hrtimer_base(timer, &flags);
/* Remove an active timer from the queue: */
remove_hrtimer(timer, base, true);
if (mode & HRTIMER_MODE_REL) {
tim = ktime_add_safe(tim, base->get_time());
/*
* CONFIG_TIME_LOW_RES is a temporary way for architectures
* to signal that they simply return xtime in
* do_gettimeoffset(). In this case we want to round up by
* resolution when starting a relative timer, to avoid short
* timeouts. This will go away with the GTOD framework.
*/
#ifdef CONFIG_TIME_LOW_RES
tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
#endif
}
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
/* Switch the timer base, if necessary: */
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
timer_stats_hrtimer_set_start_info(timer);
leftmost = enqueue_hrtimer(timer, new_base);
if (!leftmost)
goto unlock;
if (!hrtimer_is_hres_active(timer)) {
/*
* Kick to reschedule the next tick to handle the new timer
* on dynticks target.
*/
if (new_base->cpu_base->nohz_active)
wake_up_nohz_cpu(new_base->cpu_base->cpu);
} else {
hrtimer_reprogram(timer, new_base);
}
unlock:
unlock_hrtimer_base(timer, &flags);
}
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
/**
* hrtimer_try_to_cancel - try to deactivate a timer
* @timer: hrtimer to stop
*
* Returns:
* 0 when the timer was not active
* 1 when the timer was active
* -1 when the timer is currently excuting the callback function and
* cannot be stopped
*/
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
struct hrtimer_clock_base *base;
unsigned long flags;
int ret = -1;
/*
* Check lockless first. If the timer is not active (neither
* enqueued nor running the callback, nothing to do here. The
* base lock does not serialize against a concurrent enqueue,
* so we can avoid taking it.
*/
if (!hrtimer_active(timer))
return 0;
base = lock_hrtimer_base(timer, &flags);
if (!hrtimer_callback_running(timer))
ret = remove_hrtimer(timer, base, false);
unlock_hrtimer_base(timer, &flags);
return ret;
}
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
/**
* hrtimer_cancel - cancel a timer and wait for the handler to finish.
* @timer: the timer to be cancelled
*
* Returns:
* 0 when the timer was not active
* 1 when the timer was active
*/
int hrtimer_cancel(struct hrtimer *timer)
{
for (;;) {
int ret = hrtimer_try_to_cancel(timer);
if (ret >= 0)
return ret;
cpu_relax();
}
}
EXPORT_SYMBOL_GPL(hrtimer_cancel);
/**
* hrtimer_get_remaining - get remaining time for the timer
* @timer: the timer to read
*/
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
unsigned long flags;
ktime_t rem;
lock_hrtimer_base(timer, &flags);
rem = hrtimer_expires_remaining(timer);
unlock_hrtimer_base(timer, &flags);
return rem;
}
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
#ifdef CONFIG_NO_HZ_COMMON
/**
* hrtimer_get_next_event - get the time until next expiry event
*
* Returns the next expiry time or KTIME_MAX if no timer is pending.
*/
u64 hrtimer_get_next_event(void)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
u64 expires = KTIME_MAX;
unsigned long flags;
raw_spin_lock_irqsave(&cpu_base->lock, flags);
if (!__hrtimer_hres_active(cpu_base))
expires = __hrtimer_get_next_event(cpu_base).tv64;
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
return expires;
}
#endif
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
struct hrtimer_cpu_base *cpu_base;
int base;
memset(timer, 0, sizeof(struct hrtimer));
cpu_base = raw_cpu_ptr(&hrtimer_bases);
if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
clock_id = CLOCK_MONOTONIC;
base = hrtimer_clockid_to_base(clock_id);
timer->base = &cpu_base->clock_base[base];
timerqueue_init(&timer->node);
#ifdef CONFIG_TIMER_STATS
timer->start_site = NULL;
timer->start_pid = -1;
memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
}
/**
* hrtimer_init - initialize a timer to the given clock
* @timer: the timer to be initialized
* @clock_id: the clock to be used
* @mode: timer mode abs/rel
*/
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
debug_init(timer, clock_id, mode);
__hrtimer_init(timer, clock_id, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_init);
/*
* A timer is active, when it is enqueued into the rbtree or the
* callback function is running or it's in the state of being migrated
* to another cpu.
*
* It is important for this function to not return a false negative.
*/
bool hrtimer_active(const struct hrtimer *timer)
{
struct hrtimer_cpu_base *cpu_base;
unsigned int seq;
do {
cpu_base = READ_ONCE(timer->base->cpu_base);
seq = raw_read_seqcount_begin(&cpu_base->seq);
if (timer->state != HRTIMER_STATE_INACTIVE ||
cpu_base->running == timer)
return true;
} while (read_seqcount_retry(&cpu_base->seq, seq) ||
cpu_base != READ_ONCE(timer->base->cpu_base));
return false;
}
EXPORT_SYMBOL_GPL(hrtimer_active);
/*
* The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
* distinct sections:
*
* - queued: the timer is queued
* - callback: the timer is being ran
* - post: the timer is inactive or (re)queued
*
* On the read side we ensure we observe timer->state and cpu_base->running
* from the same section, if anything changed while we looked at it, we retry.
* This includes timer->base changing because sequence numbers alone are
* insufficient for that.
*
* The sequence numbers are required because otherwise we could still observe
* a false negative if the read side got smeared over multiple consequtive
* __run_hrtimer() invocations.
*/
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
struct hrtimer_clock_base *base,
struct hrtimer *timer, ktime_t *now)
{
enum hrtimer_restart (*fn)(struct hrtimer *);
int restart;
lockdep_assert_held(&cpu_base->lock);
debug_deactivate(timer);
cpu_base->running = timer;
/*
* Separate the ->running assignment from the ->state assignment.
*
* As with a regular write barrier, this ensures the read side in
* hrtimer_active() cannot observe cpu_base->running == NULL &&
* timer->state == INACTIVE.
*/
raw_write_seqcount_barrier(&cpu_base->seq);
__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
timer_stats_account_hrtimer(timer);
fn = timer->function;
/*
* Because we run timers from hardirq context, there is no chance
* they get migrated to another cpu, therefore its safe to unlock
* the timer base.
*/
raw_spin_unlock(&cpu_base->lock);
trace_hrtimer_expire_entry(timer, now);
restart = fn(timer);
trace_hrtimer_expire_exit(timer);
raw_spin_lock(&cpu_base->lock);
/*
* Note: We clear the running state after enqueue_hrtimer and
* we do not reprogramm the event hardware. Happens either in
* hrtimer_start_range_ns() or in hrtimer_interrupt()
*
* Note: Because we dropped the cpu_base->lock above,
* hrtimer_start_range_ns() can have popped in and enqueued the timer
* for us already.
*/
if (restart != HRTIMER_NORESTART &&
!(timer->state & HRTIMER_STATE_ENQUEUED))
enqueue_hrtimer(timer, base);
/*
* Separate the ->running assignment from the ->state assignment.
*
* As with a regular write barrier, this ensures the read side in
* hrtimer_active() cannot observe cpu_base->running == NULL &&
* timer->state == INACTIVE.
*/
raw_write_seqcount_barrier(&cpu_base->seq);
WARN_ON_ONCE(cpu_base->running != timer);
cpu_base->running = NULL;
}
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
{
struct hrtimer_clock_base *base = cpu_base->clock_base;
unsigned int active = cpu_base->active_bases;
for (; active; base++, active >>= 1) {
struct timerqueue_node *node;
ktime_t basenow;
if (!(active & 0x01))
continue;
basenow = ktime_add(now, base->offset);
while ((node = timerqueue_getnext(&base->active))) {
struct hrtimer *timer;
timer = container_of(node, struct hrtimer, node);
/*
* The immediate goal for using the softexpires is
* minimizing wakeups, not running timers at the
* earliest interrupt after their soft expiration.
* This allows us to avoid using a Priority Search
* Tree, which can answer a stabbing querry for
* overlapping intervals and instead use the simple
* BST we already have.
* We don't add extra wakeups by delaying timers that
* are right-of a not yet expired timer, because that
* timer will have to trigger a wakeup anyway.
*/
if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
break;
__run_hrtimer(cpu_base, base, timer, &basenow);
}
}
}
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* High resolution timer interrupt
* Called with interrupts disabled
*/
void hrtimer_interrupt(struct clock_event_device *dev)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
ktime_t expires_next, now, entry_time, delta;
int retries = 0;
BUG_ON(!cpu_base->hres_active);
cpu_base->nr_events++;
dev->next_event.tv64 = KTIME_MAX;
raw_spin_lock(&cpu_base->lock);
entry_time = now = hrtimer_update_base(cpu_base);
retry:
cpu_base->in_hrtirq = 1;
/*
* We set expires_next to KTIME_MAX here with cpu_base->lock
* held to prevent that a timer is enqueued in our queue via
* the migration code. This does not affect enqueueing of
* timers which run their callback and need to be requeued on
* this CPU.
*/
cpu_base->expires_next.tv64 = KTIME_MAX;
__hrtimer_run_queues(cpu_base, now);
/* Reevaluate the clock bases for the next expiry */
expires_next = __hrtimer_get_next_event(cpu_base);
/*
* Store the new expiry value so the migration code can verify
* against it.
*/
cpu_base->expires_next = expires_next;
cpu_base->in_hrtirq = 0;
raw_spin_unlock(&cpu_base->lock);
/* Reprogramming necessary ? */
if (!tick_program_event(expires_next, 0)) {
cpu_base->hang_detected = 0;
return;
}
/*
* The next timer was already expired due to:
* - tracing
* - long lasting callbacks
* - being scheduled away when running in a VM
*
* We need to prevent that we loop forever in the hrtimer
* interrupt routine. We give it 3 attempts to avoid
* overreacting on some spurious event.
*
* Acquire base lock for updating the offsets and retrieving
* the current time.
*/
raw_spin_lock(&cpu_base->lock);
now = hrtimer_update_base(cpu_base);
cpu_base->nr_retries++;
if (++retries < 3)
goto retry;
/*
* Give the system a chance to do something else than looping
* here. We stored the entry time, so we know exactly how long
* we spent here. We schedule the next event this amount of
* time away.
*/
cpu_base->nr_hangs++;
cpu_base->hang_detected = 1;
raw_spin_unlock(&cpu_base->lock);
delta = ktime_sub(now, entry_time);
if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
cpu_base->max_hang_time = (unsigned int) delta.tv64;
/*
* Limit it to a sensible value as we enforce a longer
* delay. Give the CPU at least 100ms to catch up.
*/
if (delta.tv64 > 100 * NSEC_PER_MSEC)
expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
else
expires_next = ktime_add(now, delta);
tick_program_event(expires_next, 1);
printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
ktime_to_ns(delta));
}
/*
* local version of hrtimer_peek_ahead_timers() called with interrupts
* disabled.
*/
static inline void __hrtimer_peek_ahead_timers(void)
{
struct tick_device *td;
if (!hrtimer_hres_active())
return;
td = this_cpu_ptr(&tick_cpu_device);
if (td && td->evtdev)
hrtimer_interrupt(td->evtdev);
}
#else /* CONFIG_HIGH_RES_TIMERS */
static inline void __hrtimer_peek_ahead_timers(void) { }
#endif /* !CONFIG_HIGH_RES_TIMERS */
/*
* Called from run_local_timers in hardirq context every jiffy
*/
void hrtimer_run_queues(void)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
ktime_t now;
if (__hrtimer_hres_active(cpu_base))
return;
/*
* This _is_ ugly: We have to check periodically, whether we
* can switch to highres and / or nohz mode. The clocksource
* switch happens with xtime_lock held. Notification from
* there only sets the check bit in the tick_oneshot code,
* otherwise we might deadlock vs. xtime_lock.
*/
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
hrtimer_switch_to_hres();
return;
}
raw_spin_lock(&cpu_base->lock);
now = hrtimer_update_base(cpu_base);
__hrtimer_run_queues(cpu_base, now);
raw_spin_unlock(&cpu_base->lock);
}
/*
* Sleep related functions:
*/
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
{
struct hrtimer_sleeper *t =
container_of(timer, struct hrtimer_sleeper, timer);
struct task_struct *task = t->task;
t->task = NULL;
if (task)
wake_up_process(task);
return HRTIMER_NORESTART;
}
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
{
sl->timer.function = hrtimer_wakeup;
sl->task = task;
}
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
{
hrtimer_init_sleeper(t, current);
do {
set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start_expires(&t->timer, mode);
if (likely(t->task))
freezable_schedule();
hrtimer_cancel(&t->timer);
mode = HRTIMER_MODE_ABS;
} while (t->task && !signal_pending(current));
__set_current_state(TASK_RUNNING);
return t->task == NULL;
}
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
struct timespec rmt;
ktime_t rem;
rem = hrtimer_expires_remaining(timer);
if (rem.tv64 <= 0)
return 0;
rmt = ktime_to_timespec(rem);
if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
return -EFAULT;
return 1;
}
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
{
struct hrtimer_sleeper t;
struct timespec __user *rmtp;
int ret = 0;
hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
HRTIMER_MODE_ABS);
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
if (do_nanosleep(&t, HRTIMER_MODE_ABS))
goto out;
rmtp = restart->nanosleep.rmtp;
if (rmtp) {
ret = update_rmtp(&t.timer, rmtp);
if (ret <= 0)
goto out;
}
/* The other values in restart are already filled in */
ret = -ERESTART_RESTARTBLOCK;
out:
destroy_hrtimer_on_stack(&t.timer);
return ret;
}
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
const enum hrtimer_mode mode, const clockid_t clockid)
{
struct restart_block *restart;
struct hrtimer_sleeper t;
int ret = 0;
unsigned long slack;
slack = current->timer_slack_ns;
if (dl_task(current) || rt_task(current))
slack = 0;
hrtimer_init_on_stack(&t.timer, clockid, mode);
hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
if (do_nanosleep(&t, mode))
goto out;
/* Absolute timers do not update the rmtp value and restart: */
if (mode == HRTIMER_MODE_ABS) {
ret = -ERESTARTNOHAND;
goto out;
}
if (rmtp) {
ret = update_rmtp(&t.timer, rmtp);
if (ret <= 0)
goto out;
}
restart = &current->restart_block;
restart->fn = hrtimer_nanosleep_restart;
restart->nanosleep.clockid = t.timer.base->clockid;
restart->nanosleep.rmtp = rmtp;
restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
ret = -ERESTART_RESTARTBLOCK;
out:
destroy_hrtimer_on_stack(&t.timer);
return ret;
}
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
struct timespec __user *, rmtp)
{
struct timespec tu;
if (copy_from_user(&tu, rqtp, sizeof(tu)))
return -EFAULT;
if (!timespec_valid(&tu))
return -EINVAL;
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
}
/*
* Functions related to boot-time initialization:
*/
static void init_hrtimers_cpu(int cpu)
{
struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
int i;
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
cpu_base->clock_base[i].cpu_base = cpu_base;
timerqueue_init_head(&cpu_base->clock_base[i].active);
}
cpu_base->cpu = cpu;
hrtimer_init_hres(cpu_base);
}
#ifdef CONFIG_HOTPLUG_CPU
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
struct hrtimer_clock_base *new_base)
{
struct hrtimer *timer;
struct timerqueue_node *node;
while ((node = timerqueue_getnext(&old_base->active))) {
timer = container_of(node, struct hrtimer, node);
BUG_ON(hrtimer_callback_running(timer));
debug_deactivate(timer);
/*
* Mark it as ENQUEUED not INACTIVE otherwise the
* timer could be seen as !active and just vanish away
* under us on another CPU
*/
__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
timer->base = new_base;
/*
* Enqueue the timers on the new cpu. This does not
* reprogram the event device in case the timer
* expires before the earliest on this CPU, but we run
* hrtimer_interrupt after we migrated everything to
* sort out already expired timers and reprogram the
* event device.
*/
enqueue_hrtimer(timer, new_base);
}
}
static void migrate_hrtimers(int scpu)
{
struct hrtimer_cpu_base *old_base, *new_base;
int i;
BUG_ON(cpu_online(scpu));
tick_cancel_sched_timer(scpu);
local_irq_disable();
old_base = &per_cpu(hrtimer_bases, scpu);
new_base = this_cpu_ptr(&hrtimer_bases);
/*
* The caller is globally serialized and nobody else
* takes two locks at once, deadlock is not possible.
*/
raw_spin_lock(&new_base->lock);
raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
migrate_hrtimer_list(&old_base->clock_base[i],
&new_base->clock_base[i]);
}
raw_spin_unlock(&old_base->lock);
raw_spin_unlock(&new_base->lock);
/* Check, if we got expired work to do */
__hrtimer_peek_ahead_timers();
local_irq_enable();
}
#endif /* CONFIG_HOTPLUG_CPU */
static int hrtimer_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int scpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
init_hrtimers_cpu(scpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DEAD:
case CPU_DEAD_FROZEN:
migrate_hrtimers(scpu);
break;
#endif
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block hrtimers_nb = {
.notifier_call = hrtimer_cpu_notify,
};
void __init hrtimers_init(void)
{
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
(void *)(long)smp_processor_id());
register_cpu_notifier(&hrtimers_nb);
}
/**
* schedule_hrtimeout_range_clock - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
* @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
*/
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
const enum hrtimer_mode mode, int clock)
{
struct hrtimer_sleeper t;
/*
* Optimize when a zero timeout value is given. It does not
* matter whether this is an absolute or a relative time.
*/
if (expires && !expires->tv64) {
__set_current_state(TASK_RUNNING);
return 0;
}
/*
* A NULL parameter means "infinite"
*/
if (!expires) {
schedule();
return -EINTR;
}
hrtimer_init_on_stack(&t.timer, clock, mode);
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
hrtimer_init_sleeper(&t, current);
hrtimer_start_expires(&t.timer, mode);
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
destroy_hrtimer_on_stack(&t.timer);
__set_current_state(TASK_RUNNING);
return !t.task ? 0 : -EINTR;
}
/**
* schedule_hrtimeout_range - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* The @delta argument gives the kernel the freedom to schedule the
* actual wakeup to a time that is both power and performance friendly.
* The kernel give the normal best effort behavior for "@expires+@delta",
* but may decide to fire the timer earlier, but no earlier than @expires.
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns.
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns 0 when the timer has expired otherwise -EINTR
*/
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range_clock(expires, delta, mode,
CLOCK_MONOTONIC);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
/**
* schedule_hrtimeout - sleep until timeout
* @expires: timeout value (ktime_t)
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns.
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns 0 when the timer has expired otherwise -EINTR
*/
int __sched schedule_hrtimeout(ktime_t *expires,
const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range(expires, 0, mode);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout);