2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/thermal/mtk_thermal.c
Eduardo Valentin c417bdedb1 thermal: convert mtk_thermal to use devm_thermal_zone_of_sensor_register
This changes the driver to use the devm_ version
of thermal_zone_of_sensor_register and cleans
up the  local points and unregister calls.

Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: linux-pm@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mediatek@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2016-05-17 07:28:26 -07:00

617 lines
16 KiB
C

/*
* Copyright (c) 2015 MediaTek Inc.
* Author: Hanyi Wu <hanyi.wu@mediatek.com>
* Sascha Hauer <s.hauer@pengutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/thermal.h>
#include <linux/reset.h>
#include <linux/types.h>
/* AUXADC Registers */
#define AUXADC_CON0_V 0x000
#define AUXADC_CON1_V 0x004
#define AUXADC_CON1_SET_V 0x008
#define AUXADC_CON1_CLR_V 0x00c
#define AUXADC_CON2_V 0x010
#define AUXADC_DATA(channel) (0x14 + (channel) * 4)
#define AUXADC_MISC_V 0x094
#define AUXADC_CON1_CHANNEL(x) BIT(x)
#define APMIXED_SYS_TS_CON1 0x604
/* Thermal Controller Registers */
#define TEMP_MONCTL0 0x000
#define TEMP_MONCTL1 0x004
#define TEMP_MONCTL2 0x008
#define TEMP_MONIDET0 0x014
#define TEMP_MONIDET1 0x018
#define TEMP_MSRCTL0 0x038
#define TEMP_AHBPOLL 0x040
#define TEMP_AHBTO 0x044
#define TEMP_ADCPNP0 0x048
#define TEMP_ADCPNP1 0x04c
#define TEMP_ADCPNP2 0x050
#define TEMP_ADCPNP3 0x0b4
#define TEMP_ADCMUX 0x054
#define TEMP_ADCEN 0x060
#define TEMP_PNPMUXADDR 0x064
#define TEMP_ADCMUXADDR 0x068
#define TEMP_ADCENADDR 0x074
#define TEMP_ADCVALIDADDR 0x078
#define TEMP_ADCVOLTADDR 0x07c
#define TEMP_RDCTRL 0x080
#define TEMP_ADCVALIDMASK 0x084
#define TEMP_ADCVOLTAGESHIFT 0x088
#define TEMP_ADCWRITECTRL 0x08c
#define TEMP_MSR0 0x090
#define TEMP_MSR1 0x094
#define TEMP_MSR2 0x098
#define TEMP_MSR3 0x0B8
#define TEMP_SPARE0 0x0f0
#define PTPCORESEL 0x400
#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff)
#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x)
#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0)
#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1)
#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5)
#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit)
#define MT8173_TS1 0
#define MT8173_TS2 1
#define MT8173_TS3 2
#define MT8173_TS4 3
#define MT8173_TSABB 4
/* AUXADC channel 11 is used for the temperature sensors */
#define MT8173_TEMP_AUXADC_CHANNEL 11
/* The total number of temperature sensors in the MT8173 */
#define MT8173_NUM_SENSORS 5
/* The number of banks in the MT8173 */
#define MT8173_NUM_ZONES 4
/* The number of sensing points per bank */
#define MT8173_NUM_SENSORS_PER_ZONE 4
/* Layout of the fuses providing the calibration data */
#define MT8173_CALIB_BUF0_VALID BIT(0)
#define MT8173_CALIB_BUF1_ADC_GE(x) (((x) >> 22) & 0x3ff)
#define MT8173_CALIB_BUF0_VTS_TS1(x) (((x) >> 17) & 0x1ff)
#define MT8173_CALIB_BUF0_VTS_TS2(x) (((x) >> 8) & 0x1ff)
#define MT8173_CALIB_BUF1_VTS_TS3(x) (((x) >> 0) & 0x1ff)
#define MT8173_CALIB_BUF2_VTS_TS4(x) (((x) >> 23) & 0x1ff)
#define MT8173_CALIB_BUF2_VTS_TSABB(x) (((x) >> 14) & 0x1ff)
#define MT8173_CALIB_BUF0_DEGC_CALI(x) (((x) >> 1) & 0x3f)
#define MT8173_CALIB_BUF0_O_SLOPE(x) (((x) >> 26) & 0x3f)
#define THERMAL_NAME "mtk-thermal"
struct mtk_thermal;
struct mtk_thermal_bank {
struct mtk_thermal *mt;
int id;
};
struct mtk_thermal {
struct device *dev;
void __iomem *thermal_base;
struct clk *clk_peri_therm;
struct clk *clk_auxadc;
struct mtk_thermal_bank banks[MT8173_NUM_ZONES];
/* lock: for getting and putting banks */
struct mutex lock;
/* Calibration values */
s32 adc_ge;
s32 degc_cali;
s32 o_slope;
s32 vts[MT8173_NUM_SENSORS];
};
struct mtk_thermal_bank_cfg {
unsigned int num_sensors;
unsigned int sensors[MT8173_NUM_SENSORS_PER_ZONE];
};
static const int sensor_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
/*
* The MT8173 thermal controller has four banks. Each bank can read up to
* four temperature sensors simultaneously. The MT8173 has a total of 5
* temperature sensors. We use each bank to measure a certain area of the
* SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
* areas, hence is used in different banks.
*
* The thermal core only gets the maximum temperature of all banks, so
* the bank concept wouldn't be necessary here. However, the SVS (Smart
* Voltage Scaling) unit makes its decisions based on the same bank
* data, and this indeed needs the temperatures of the individual banks
* for making better decisions.
*/
static const struct mtk_thermal_bank_cfg bank_data[] = {
{
.num_sensors = 2,
.sensors = { MT8173_TS2, MT8173_TS3 },
}, {
.num_sensors = 2,
.sensors = { MT8173_TS2, MT8173_TS4 },
}, {
.num_sensors = 3,
.sensors = { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
}, {
.num_sensors = 1,
.sensors = { MT8173_TS2 },
},
};
struct mtk_thermal_sense_point {
int msr;
int adcpnp;
};
static const struct mtk_thermal_sense_point
sensing_points[MT8173_NUM_SENSORS_PER_ZONE] = {
{
.msr = TEMP_MSR0,
.adcpnp = TEMP_ADCPNP0,
}, {
.msr = TEMP_MSR1,
.adcpnp = TEMP_ADCPNP1,
}, {
.msr = TEMP_MSR2,
.adcpnp = TEMP_ADCPNP2,
}, {
.msr = TEMP_MSR3,
.adcpnp = TEMP_ADCPNP3,
},
};
/**
* raw_to_mcelsius - convert a raw ADC value to mcelsius
* @mt: The thermal controller
* @raw: raw ADC value
*
* This converts the raw ADC value to mcelsius using the SoC specific
* calibration constants
*/
static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
{
s32 tmp;
raw &= 0xfff;
tmp = 203450520 << 3;
tmp /= 165 + mt->o_slope;
tmp /= 10000 + mt->adc_ge;
tmp *= raw - mt->vts[sensno] - 3350;
tmp >>= 3;
return mt->degc_cali * 500 - tmp;
}
/**
* mtk_thermal_get_bank - get bank
* @bank: The bank
*
* The bank registers are banked, we have to select a bank in the
* PTPCORESEL register to access it.
*/
static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
u32 val;
mutex_lock(&mt->lock);
val = readl(mt->thermal_base + PTPCORESEL);
val &= ~0xf;
val |= bank->id;
writel(val, mt->thermal_base + PTPCORESEL);
}
/**
* mtk_thermal_put_bank - release bank
* @bank: The bank
*
* release a bank previously taken with mtk_thermal_get_bank,
*/
static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
mutex_unlock(&mt->lock);
}
/**
* mtk_thermal_bank_temperature - get the temperature of a bank
* @bank: The bank
*
* The temperature of a bank is considered the maximum temperature of
* the sensors associated to the bank.
*/
static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
int i, temp = INT_MIN, max = INT_MIN;
u32 raw;
for (i = 0; i < bank_data[bank->id].num_sensors; i++) {
raw = readl(mt->thermal_base + sensing_points[i].msr);
temp = raw_to_mcelsius(mt, bank_data[bank->id].sensors[i], raw);
/*
* The first read of a sensor often contains very high bogus
* temperature value. Filter these out so that the system does
* not immediately shut down.
*/
if (temp > 200000)
temp = 0;
if (temp > max)
max = temp;
}
return max;
}
static int mtk_read_temp(void *data, int *temperature)
{
struct mtk_thermal *mt = data;
int i;
int tempmax = INT_MIN;
for (i = 0; i < MT8173_NUM_ZONES; i++) {
struct mtk_thermal_bank *bank = &mt->banks[i];
mtk_thermal_get_bank(bank);
tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
mtk_thermal_put_bank(bank);
}
*temperature = tempmax;
return 0;
}
static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
.get_temp = mtk_read_temp,
};
static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
u32 apmixed_phys_base, u32 auxadc_phys_base)
{
struct mtk_thermal_bank *bank = &mt->banks[num];
const struct mtk_thermal_bank_cfg *cfg = &bank_data[num];
int i;
bank->id = num;
bank->mt = mt;
mtk_thermal_get_bank(bank);
/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
writel(TEMP_MONCTL1_PERIOD_UNIT(12), mt->thermal_base + TEMP_MONCTL1);
/*
* filt interval is 1 * 46.540us = 46.54us,
* sen interval is 429 * 46.540us = 19.96ms
*/
writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
TEMP_MONCTL2_SENSOR_INTERVAL(429),
mt->thermal_base + TEMP_MONCTL2);
/* poll is set to 10u */
writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
mt->thermal_base + TEMP_AHBPOLL);
/* temperature sampling control, 1 sample */
writel(0x0, mt->thermal_base + TEMP_MSRCTL0);
/* exceed this polling time, IRQ would be inserted */
writel(0xffffffff, mt->thermal_base + TEMP_AHBTO);
/* number of interrupts per event, 1 is enough */
writel(0x0, mt->thermal_base + TEMP_MONIDET0);
writel(0x0, mt->thermal_base + TEMP_MONIDET1);
/*
* The MT8173 thermal controller does not have its own ADC. Instead it
* uses AHB bus accesses to control the AUXADC. To do this the thermal
* controller has to be programmed with the physical addresses of the
* AUXADC registers and with the various bit positions in the AUXADC.
* Also the thermal controller controls a mux in the APMIXEDSYS register
* space.
*/
/*
* this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
* automatically by hw
*/
writel(BIT(MT8173_TEMP_AUXADC_CHANNEL), mt->thermal_base + TEMP_ADCMUX);
/* AHB address for auxadc mux selection */
writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
mt->thermal_base + TEMP_ADCMUXADDR);
/* AHB address for pnp sensor mux selection */
writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
mt->thermal_base + TEMP_PNPMUXADDR);
/* AHB value for auxadc enable */
writel(BIT(MT8173_TEMP_AUXADC_CHANNEL), mt->thermal_base + TEMP_ADCEN);
/* AHB address for auxadc enable (channel 0 immediate mode selected) */
writel(auxadc_phys_base + AUXADC_CON1_SET_V,
mt->thermal_base + TEMP_ADCENADDR);
/* AHB address for auxadc valid bit */
writel(auxadc_phys_base + AUXADC_DATA(MT8173_TEMP_AUXADC_CHANNEL),
mt->thermal_base + TEMP_ADCVALIDADDR);
/* AHB address for auxadc voltage output */
writel(auxadc_phys_base + AUXADC_DATA(MT8173_TEMP_AUXADC_CHANNEL),
mt->thermal_base + TEMP_ADCVOLTADDR);
/* read valid & voltage are at the same register */
writel(0x0, mt->thermal_base + TEMP_RDCTRL);
/* indicate where the valid bit is */
writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
mt->thermal_base + TEMP_ADCVALIDMASK);
/* no shift */
writel(0x0, mt->thermal_base + TEMP_ADCVOLTAGESHIFT);
/* enable auxadc mux write transaction */
writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
mt->thermal_base + TEMP_ADCWRITECTRL);
for (i = 0; i < cfg->num_sensors; i++)
writel(sensor_mux_values[cfg->sensors[i]],
mt->thermal_base + sensing_points[i].adcpnp);
writel((1 << cfg->num_sensors) - 1, mt->thermal_base + TEMP_MONCTL0);
writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
mt->thermal_base + TEMP_ADCWRITECTRL);
mtk_thermal_put_bank(bank);
}
static u64 of_get_phys_base(struct device_node *np)
{
u64 size64;
const __be32 *regaddr_p;
regaddr_p = of_get_address(np, 0, &size64, NULL);
if (!regaddr_p)
return OF_BAD_ADDR;
return of_translate_address(np, regaddr_p);
}
static int mtk_thermal_get_calibration_data(struct device *dev,
struct mtk_thermal *mt)
{
struct nvmem_cell *cell;
u32 *buf;
size_t len;
int i, ret = 0;
/* Start with default values */
mt->adc_ge = 512;
for (i = 0; i < MT8173_NUM_SENSORS; i++)
mt->vts[i] = 260;
mt->degc_cali = 40;
mt->o_slope = 0;
cell = nvmem_cell_get(dev, "calibration-data");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return PTR_ERR(cell);
return 0;
}
buf = (u32 *)nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (len < 3 * sizeof(u32)) {
dev_warn(dev, "invalid calibration data\n");
ret = -EINVAL;
goto out;
}
if (buf[0] & MT8173_CALIB_BUF0_VALID) {
mt->adc_ge = MT8173_CALIB_BUF1_ADC_GE(buf[1]);
mt->vts[MT8173_TS1] = MT8173_CALIB_BUF0_VTS_TS1(buf[0]);
mt->vts[MT8173_TS2] = MT8173_CALIB_BUF0_VTS_TS2(buf[0]);
mt->vts[MT8173_TS3] = MT8173_CALIB_BUF1_VTS_TS3(buf[1]);
mt->vts[MT8173_TS4] = MT8173_CALIB_BUF2_VTS_TS4(buf[2]);
mt->vts[MT8173_TSABB] = MT8173_CALIB_BUF2_VTS_TSABB(buf[2]);
mt->degc_cali = MT8173_CALIB_BUF0_DEGC_CALI(buf[0]);
mt->o_slope = MT8173_CALIB_BUF0_O_SLOPE(buf[0]);
} else {
dev_info(dev, "Device not calibrated, using default calibration values\n");
}
out:
kfree(buf);
return ret;
}
static int mtk_thermal_probe(struct platform_device *pdev)
{
int ret, i;
struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
struct mtk_thermal *mt;
struct resource *res;
u64 auxadc_phys_base, apmixed_phys_base;
mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
if (!mt)
return -ENOMEM;
mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
if (IS_ERR(mt->clk_peri_therm))
return PTR_ERR(mt->clk_peri_therm);
mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
if (IS_ERR(mt->clk_auxadc))
return PTR_ERR(mt->clk_auxadc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mt->thermal_base))
return PTR_ERR(mt->thermal_base);
ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
if (ret)
return ret;
mutex_init(&mt->lock);
mt->dev = &pdev->dev;
auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
if (!auxadc) {
dev_err(&pdev->dev, "missing auxadc node\n");
return -ENODEV;
}
auxadc_phys_base = of_get_phys_base(auxadc);
of_node_put(auxadc);
if (auxadc_phys_base == OF_BAD_ADDR) {
dev_err(&pdev->dev, "Can't get auxadc phys address\n");
return -EINVAL;
}
apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
if (!apmixedsys) {
dev_err(&pdev->dev, "missing apmixedsys node\n");
return -ENODEV;
}
apmixed_phys_base = of_get_phys_base(apmixedsys);
of_node_put(apmixedsys);
if (apmixed_phys_base == OF_BAD_ADDR) {
dev_err(&pdev->dev, "Can't get auxadc phys address\n");
return -EINVAL;
}
ret = clk_prepare_enable(mt->clk_auxadc);
if (ret) {
dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
return ret;
}
ret = device_reset(&pdev->dev);
if (ret)
goto err_disable_clk_auxadc;
ret = clk_prepare_enable(mt->clk_peri_therm);
if (ret) {
dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
goto err_disable_clk_auxadc;
}
for (i = 0; i < MT8173_NUM_ZONES; i++)
mtk_thermal_init_bank(mt, i, apmixed_phys_base,
auxadc_phys_base);
platform_set_drvdata(pdev, mt);
devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
&mtk_thermal_ops);
return 0;
err_disable_clk_auxadc:
clk_disable_unprepare(mt->clk_auxadc);
return ret;
}
static int mtk_thermal_remove(struct platform_device *pdev)
{
struct mtk_thermal *mt = platform_get_drvdata(pdev);
clk_disable_unprepare(mt->clk_peri_therm);
clk_disable_unprepare(mt->clk_auxadc);
return 0;
}
static const struct of_device_id mtk_thermal_of_match[] = {
{
.compatible = "mediatek,mt8173-thermal",
}, {
},
};
static struct platform_driver mtk_thermal_driver = {
.probe = mtk_thermal_probe,
.remove = mtk_thermal_remove,
.driver = {
.name = THERMAL_NAME,
.of_match_table = mtk_thermal_of_match,
},
};
module_platform_driver(mtk_thermal_driver);
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
MODULE_DESCRIPTION("Mediatek thermal driver");
MODULE_LICENSE("GPL v2");