mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-11-16 06:35:39 +08:00
1ca2809897
After checking all possible call chains to kzalloc here, my tool finds that this kzalloc is never called in atomic context. Thus GFP_ATOMIC is not necessary, and it can be replaced with GFP_KERNEL. This is found by a static analysis tool named DCNS written by myself. Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
689 lines
17 KiB
C
689 lines
17 KiB
C
/*
|
|
* RSA padding templates.
|
|
*
|
|
* Copyright (c) 2015 Intel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*/
|
|
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/akcipher.h>
|
|
#include <crypto/internal/akcipher.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/random.h>
|
|
|
|
/*
|
|
* Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
|
|
*/
|
|
static const u8 rsa_digest_info_md5[] = {
|
|
0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
|
|
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
|
|
0x05, 0x00, 0x04, 0x10
|
|
};
|
|
|
|
static const u8 rsa_digest_info_sha1[] = {
|
|
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
|
|
0x2b, 0x0e, 0x03, 0x02, 0x1a,
|
|
0x05, 0x00, 0x04, 0x14
|
|
};
|
|
|
|
static const u8 rsa_digest_info_rmd160[] = {
|
|
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
|
|
0x2b, 0x24, 0x03, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x14
|
|
};
|
|
|
|
static const u8 rsa_digest_info_sha224[] = {
|
|
0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
|
|
0x05, 0x00, 0x04, 0x1c
|
|
};
|
|
|
|
static const u8 rsa_digest_info_sha256[] = {
|
|
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x20
|
|
};
|
|
|
|
static const u8 rsa_digest_info_sha384[] = {
|
|
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
|
|
0x05, 0x00, 0x04, 0x30
|
|
};
|
|
|
|
static const u8 rsa_digest_info_sha512[] = {
|
|
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
|
|
0x05, 0x00, 0x04, 0x40
|
|
};
|
|
|
|
static const struct rsa_asn1_template {
|
|
const char *name;
|
|
const u8 *data;
|
|
size_t size;
|
|
} rsa_asn1_templates[] = {
|
|
#define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
|
|
_(md5),
|
|
_(sha1),
|
|
_(rmd160),
|
|
_(sha256),
|
|
_(sha384),
|
|
_(sha512),
|
|
_(sha224),
|
|
{ NULL }
|
|
#undef _
|
|
};
|
|
|
|
static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
|
|
{
|
|
const struct rsa_asn1_template *p;
|
|
|
|
for (p = rsa_asn1_templates; p->name; p++)
|
|
if (strcmp(name, p->name) == 0)
|
|
return p;
|
|
return NULL;
|
|
}
|
|
|
|
struct pkcs1pad_ctx {
|
|
struct crypto_akcipher *child;
|
|
unsigned int key_size;
|
|
};
|
|
|
|
struct pkcs1pad_inst_ctx {
|
|
struct crypto_akcipher_spawn spawn;
|
|
const struct rsa_asn1_template *digest_info;
|
|
};
|
|
|
|
struct pkcs1pad_request {
|
|
struct scatterlist in_sg[2], out_sg[1];
|
|
uint8_t *in_buf, *out_buf;
|
|
struct akcipher_request child_req;
|
|
};
|
|
|
|
static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
int err;
|
|
|
|
ctx->key_size = 0;
|
|
|
|
err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Find out new modulus size from rsa implementation */
|
|
err = crypto_akcipher_maxsize(ctx->child);
|
|
if (err > PAGE_SIZE)
|
|
return -ENOTSUPP;
|
|
|
|
ctx->key_size = err;
|
|
return 0;
|
|
}
|
|
|
|
static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
int err;
|
|
|
|
ctx->key_size = 0;
|
|
|
|
err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Find out new modulus size from rsa implementation */
|
|
err = crypto_akcipher_maxsize(ctx->child);
|
|
if (err > PAGE_SIZE)
|
|
return -ENOTSUPP;
|
|
|
|
ctx->key_size = err;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
|
|
{
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
/*
|
|
* The maximum destination buffer size for the encrypt/sign operations
|
|
* will be the same as for RSA, even though it's smaller for
|
|
* decrypt/verify.
|
|
*/
|
|
|
|
return ctx->key_size;
|
|
}
|
|
|
|
static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
|
|
struct scatterlist *next)
|
|
{
|
|
int nsegs = next ? 2 : 1;
|
|
|
|
sg_init_table(sg, nsegs);
|
|
sg_set_buf(sg, buf, len);
|
|
|
|
if (next)
|
|
sg_chain(sg, nsegs, next);
|
|
}
|
|
|
|
static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
unsigned int pad_len;
|
|
unsigned int len;
|
|
u8 *out_buf;
|
|
|
|
if (err)
|
|
goto out;
|
|
|
|
len = req_ctx->child_req.dst_len;
|
|
pad_len = ctx->key_size - len;
|
|
|
|
/* Four billion to one */
|
|
if (likely(!pad_len))
|
|
goto out;
|
|
|
|
out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
|
|
err = -ENOMEM;
|
|
if (!out_buf)
|
|
goto out;
|
|
|
|
sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
|
|
out_buf + pad_len, len);
|
|
sg_copy_from_buffer(req->dst,
|
|
sg_nents_for_len(req->dst, ctx->key_size),
|
|
out_buf, ctx->key_size);
|
|
kzfree(out_buf);
|
|
|
|
out:
|
|
req->dst_len = ctx->key_size;
|
|
|
|
kfree(req_ctx->in_buf);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void pkcs1pad_encrypt_sign_complete_cb(
|
|
struct crypto_async_request *child_async_req, int err)
|
|
{
|
|
struct akcipher_request *req = child_async_req->data;
|
|
struct crypto_async_request async_req;
|
|
|
|
if (err == -EINPROGRESS)
|
|
return;
|
|
|
|
async_req.data = req->base.data;
|
|
async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
|
|
async_req.flags = child_async_req->flags;
|
|
req->base.complete(&async_req,
|
|
pkcs1pad_encrypt_sign_complete(req, err));
|
|
}
|
|
|
|
static int pkcs1pad_encrypt(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
int err;
|
|
unsigned int i, ps_end;
|
|
|
|
if (!ctx->key_size)
|
|
return -EINVAL;
|
|
|
|
if (req->src_len > ctx->key_size - 11)
|
|
return -EOVERFLOW;
|
|
|
|
if (req->dst_len < ctx->key_size) {
|
|
req->dst_len = ctx->key_size;
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
|
|
GFP_KERNEL);
|
|
if (!req_ctx->in_buf)
|
|
return -ENOMEM;
|
|
|
|
ps_end = ctx->key_size - req->src_len - 2;
|
|
req_ctx->in_buf[0] = 0x02;
|
|
for (i = 1; i < ps_end; i++)
|
|
req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
|
|
req_ctx->in_buf[ps_end] = 0x00;
|
|
|
|
pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
|
|
ctx->key_size - 1 - req->src_len, req->src);
|
|
|
|
req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
|
|
if (!req_ctx->out_buf) {
|
|
kfree(req_ctx->in_buf);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
|
|
ctx->key_size, NULL);
|
|
|
|
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
|
|
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
|
|
pkcs1pad_encrypt_sign_complete_cb, req);
|
|
|
|
/* Reuse output buffer */
|
|
akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
|
|
req->dst, ctx->key_size - 1, req->dst_len);
|
|
|
|
err = crypto_akcipher_encrypt(&req_ctx->child_req);
|
|
if (err != -EINPROGRESS && err != -EBUSY)
|
|
return pkcs1pad_encrypt_sign_complete(req, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
unsigned int dst_len;
|
|
unsigned int pos;
|
|
u8 *out_buf;
|
|
|
|
if (err)
|
|
goto done;
|
|
|
|
err = -EINVAL;
|
|
dst_len = req_ctx->child_req.dst_len;
|
|
if (dst_len < ctx->key_size - 1)
|
|
goto done;
|
|
|
|
out_buf = req_ctx->out_buf;
|
|
if (dst_len == ctx->key_size) {
|
|
if (out_buf[0] != 0x00)
|
|
/* Decrypted value had no leading 0 byte */
|
|
goto done;
|
|
|
|
dst_len--;
|
|
out_buf++;
|
|
}
|
|
|
|
if (out_buf[0] != 0x02)
|
|
goto done;
|
|
|
|
for (pos = 1; pos < dst_len; pos++)
|
|
if (out_buf[pos] == 0x00)
|
|
break;
|
|
if (pos < 9 || pos == dst_len)
|
|
goto done;
|
|
pos++;
|
|
|
|
err = 0;
|
|
|
|
if (req->dst_len < dst_len - pos)
|
|
err = -EOVERFLOW;
|
|
req->dst_len = dst_len - pos;
|
|
|
|
if (!err)
|
|
sg_copy_from_buffer(req->dst,
|
|
sg_nents_for_len(req->dst, req->dst_len),
|
|
out_buf + pos, req->dst_len);
|
|
|
|
done:
|
|
kzfree(req_ctx->out_buf);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void pkcs1pad_decrypt_complete_cb(
|
|
struct crypto_async_request *child_async_req, int err)
|
|
{
|
|
struct akcipher_request *req = child_async_req->data;
|
|
struct crypto_async_request async_req;
|
|
|
|
if (err == -EINPROGRESS)
|
|
return;
|
|
|
|
async_req.data = req->base.data;
|
|
async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
|
|
async_req.flags = child_async_req->flags;
|
|
req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
|
|
}
|
|
|
|
static int pkcs1pad_decrypt(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
int err;
|
|
|
|
if (!ctx->key_size || req->src_len != ctx->key_size)
|
|
return -EINVAL;
|
|
|
|
req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
|
|
if (!req_ctx->out_buf)
|
|
return -ENOMEM;
|
|
|
|
pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
|
|
ctx->key_size, NULL);
|
|
|
|
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
|
|
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
|
|
pkcs1pad_decrypt_complete_cb, req);
|
|
|
|
/* Reuse input buffer, output to a new buffer */
|
|
akcipher_request_set_crypt(&req_ctx->child_req, req->src,
|
|
req_ctx->out_sg, req->src_len,
|
|
ctx->key_size);
|
|
|
|
err = crypto_akcipher_decrypt(&req_ctx->child_req);
|
|
if (err != -EINPROGRESS && err != -EBUSY)
|
|
return pkcs1pad_decrypt_complete(req, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int pkcs1pad_sign(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
|
|
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
|
|
const struct rsa_asn1_template *digest_info = ictx->digest_info;
|
|
int err;
|
|
unsigned int ps_end, digest_size = 0;
|
|
|
|
if (!ctx->key_size)
|
|
return -EINVAL;
|
|
|
|
digest_size = digest_info->size;
|
|
|
|
if (req->src_len + digest_size > ctx->key_size - 11)
|
|
return -EOVERFLOW;
|
|
|
|
if (req->dst_len < ctx->key_size) {
|
|
req->dst_len = ctx->key_size;
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
|
|
GFP_KERNEL);
|
|
if (!req_ctx->in_buf)
|
|
return -ENOMEM;
|
|
|
|
ps_end = ctx->key_size - digest_size - req->src_len - 2;
|
|
req_ctx->in_buf[0] = 0x01;
|
|
memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
|
|
req_ctx->in_buf[ps_end] = 0x00;
|
|
|
|
memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
|
|
digest_info->size);
|
|
|
|
pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
|
|
ctx->key_size - 1 - req->src_len, req->src);
|
|
|
|
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
|
|
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
|
|
pkcs1pad_encrypt_sign_complete_cb, req);
|
|
|
|
/* Reuse output buffer */
|
|
akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
|
|
req->dst, ctx->key_size - 1, req->dst_len);
|
|
|
|
err = crypto_akcipher_sign(&req_ctx->child_req);
|
|
if (err != -EINPROGRESS && err != -EBUSY)
|
|
return pkcs1pad_encrypt_sign_complete(req, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
|
|
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
|
|
const struct rsa_asn1_template *digest_info = ictx->digest_info;
|
|
unsigned int dst_len;
|
|
unsigned int pos;
|
|
u8 *out_buf;
|
|
|
|
if (err)
|
|
goto done;
|
|
|
|
err = -EINVAL;
|
|
dst_len = req_ctx->child_req.dst_len;
|
|
if (dst_len < ctx->key_size - 1)
|
|
goto done;
|
|
|
|
out_buf = req_ctx->out_buf;
|
|
if (dst_len == ctx->key_size) {
|
|
if (out_buf[0] != 0x00)
|
|
/* Decrypted value had no leading 0 byte */
|
|
goto done;
|
|
|
|
dst_len--;
|
|
out_buf++;
|
|
}
|
|
|
|
err = -EBADMSG;
|
|
if (out_buf[0] != 0x01)
|
|
goto done;
|
|
|
|
for (pos = 1; pos < dst_len; pos++)
|
|
if (out_buf[pos] != 0xff)
|
|
break;
|
|
|
|
if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
|
|
goto done;
|
|
pos++;
|
|
|
|
if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size))
|
|
goto done;
|
|
|
|
pos += digest_info->size;
|
|
|
|
err = 0;
|
|
|
|
if (req->dst_len < dst_len - pos)
|
|
err = -EOVERFLOW;
|
|
req->dst_len = dst_len - pos;
|
|
|
|
if (!err)
|
|
sg_copy_from_buffer(req->dst,
|
|
sg_nents_for_len(req->dst, req->dst_len),
|
|
out_buf + pos, req->dst_len);
|
|
done:
|
|
kzfree(req_ctx->out_buf);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void pkcs1pad_verify_complete_cb(
|
|
struct crypto_async_request *child_async_req, int err)
|
|
{
|
|
struct akcipher_request *req = child_async_req->data;
|
|
struct crypto_async_request async_req;
|
|
|
|
if (err == -EINPROGRESS)
|
|
return;
|
|
|
|
async_req.data = req->base.data;
|
|
async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
|
|
async_req.flags = child_async_req->flags;
|
|
req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
|
|
}
|
|
|
|
/*
|
|
* The verify operation is here for completeness similar to the verification
|
|
* defined in RFC2313 section 10.2 except that block type 0 is not accepted,
|
|
* as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
|
|
* retrieve the DigestInfo from a signature, instead the user is expected
|
|
* to call the sign operation to generate the expected signature and compare
|
|
* signatures instead of the message-digests.
|
|
*/
|
|
static int pkcs1pad_verify(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
|
|
int err;
|
|
|
|
if (!ctx->key_size || req->src_len < ctx->key_size)
|
|
return -EINVAL;
|
|
|
|
req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
|
|
if (!req_ctx->out_buf)
|
|
return -ENOMEM;
|
|
|
|
pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
|
|
ctx->key_size, NULL);
|
|
|
|
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
|
|
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
|
|
pkcs1pad_verify_complete_cb, req);
|
|
|
|
/* Reuse input buffer, output to a new buffer */
|
|
akcipher_request_set_crypt(&req_ctx->child_req, req->src,
|
|
req_ctx->out_sg, req->src_len,
|
|
ctx->key_size);
|
|
|
|
err = crypto_akcipher_verify(&req_ctx->child_req);
|
|
if (err != -EINPROGRESS && err != -EBUSY)
|
|
return pkcs1pad_verify_complete(req, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
|
|
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct crypto_akcipher *child_tfm;
|
|
|
|
child_tfm = crypto_spawn_akcipher(&ictx->spawn);
|
|
if (IS_ERR(child_tfm))
|
|
return PTR_ERR(child_tfm);
|
|
|
|
ctx->child = child_tfm;
|
|
return 0;
|
|
}
|
|
|
|
static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
crypto_free_akcipher(ctx->child);
|
|
}
|
|
|
|
static void pkcs1pad_free(struct akcipher_instance *inst)
|
|
{
|
|
struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
|
|
struct crypto_akcipher_spawn *spawn = &ctx->spawn;
|
|
|
|
crypto_drop_akcipher(spawn);
|
|
kfree(inst);
|
|
}
|
|
|
|
static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
{
|
|
const struct rsa_asn1_template *digest_info;
|
|
struct crypto_attr_type *algt;
|
|
struct akcipher_instance *inst;
|
|
struct pkcs1pad_inst_ctx *ctx;
|
|
struct crypto_akcipher_spawn *spawn;
|
|
struct akcipher_alg *rsa_alg;
|
|
const char *rsa_alg_name;
|
|
const char *hash_name;
|
|
int err;
|
|
|
|
algt = crypto_get_attr_type(tb);
|
|
if (IS_ERR(algt))
|
|
return PTR_ERR(algt);
|
|
|
|
if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask)
|
|
return -EINVAL;
|
|
|
|
rsa_alg_name = crypto_attr_alg_name(tb[1]);
|
|
if (IS_ERR(rsa_alg_name))
|
|
return PTR_ERR(rsa_alg_name);
|
|
|
|
hash_name = crypto_attr_alg_name(tb[2]);
|
|
if (IS_ERR(hash_name))
|
|
return PTR_ERR(hash_name);
|
|
|
|
digest_info = rsa_lookup_asn1(hash_name);
|
|
if (!digest_info)
|
|
return -EINVAL;
|
|
|
|
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
|
|
if (!inst)
|
|
return -ENOMEM;
|
|
|
|
ctx = akcipher_instance_ctx(inst);
|
|
spawn = &ctx->spawn;
|
|
ctx->digest_info = digest_info;
|
|
|
|
crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst));
|
|
err = crypto_grab_akcipher(spawn, rsa_alg_name, 0,
|
|
crypto_requires_sync(algt->type, algt->mask));
|
|
if (err)
|
|
goto out_free_inst;
|
|
|
|
rsa_alg = crypto_spawn_akcipher_alg(spawn);
|
|
|
|
err = -ENAMETOOLONG;
|
|
|
|
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
|
|
"pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >=
|
|
CRYPTO_MAX_ALG_NAME ||
|
|
snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
|
|
"pkcs1pad(%s,%s)",
|
|
rsa_alg->base.cra_driver_name, hash_name) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
goto out_drop_alg;
|
|
|
|
inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC;
|
|
inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
|
|
inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
|
|
|
|
inst->alg.init = pkcs1pad_init_tfm;
|
|
inst->alg.exit = pkcs1pad_exit_tfm;
|
|
|
|
inst->alg.encrypt = pkcs1pad_encrypt;
|
|
inst->alg.decrypt = pkcs1pad_decrypt;
|
|
inst->alg.sign = pkcs1pad_sign;
|
|
inst->alg.verify = pkcs1pad_verify;
|
|
inst->alg.set_pub_key = pkcs1pad_set_pub_key;
|
|
inst->alg.set_priv_key = pkcs1pad_set_priv_key;
|
|
inst->alg.max_size = pkcs1pad_get_max_size;
|
|
inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
|
|
|
|
inst->free = pkcs1pad_free;
|
|
|
|
err = akcipher_register_instance(tmpl, inst);
|
|
if (err)
|
|
goto out_drop_alg;
|
|
|
|
return 0;
|
|
|
|
out_drop_alg:
|
|
crypto_drop_akcipher(spawn);
|
|
out_free_inst:
|
|
kfree(inst);
|
|
return err;
|
|
}
|
|
|
|
struct crypto_template rsa_pkcs1pad_tmpl = {
|
|
.name = "pkcs1pad",
|
|
.create = pkcs1pad_create,
|
|
.module = THIS_MODULE,
|
|
};
|