mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
87c961cb74
This patch fixes hard-coded value for the size of a chunk that includes disk header for persistent snapshot. It should be changed to existing macro NUM_SNAPSHOT_HDR_CHUNKS instead of using hard-coded value 1. Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@jp.fujitsu.com> Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
905 lines
21 KiB
C
905 lines
21 KiB
C
/*
|
|
* Copyright (C) 2001-2002 Sistina Software (UK) Limited.
|
|
* Copyright (C) 2006-2008 Red Hat GmbH
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-exception-store.h"
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dm-io.h>
|
|
|
|
#define DM_MSG_PREFIX "persistent snapshot"
|
|
#define DM_CHUNK_SIZE_DEFAULT_SECTORS 32 /* 16KB */
|
|
|
|
/*-----------------------------------------------------------------
|
|
* Persistent snapshots, by persistent we mean that the snapshot
|
|
* will survive a reboot.
|
|
*---------------------------------------------------------------*/
|
|
|
|
/*
|
|
* We need to store a record of which parts of the origin have
|
|
* been copied to the snapshot device. The snapshot code
|
|
* requires that we copy exception chunks to chunk aligned areas
|
|
* of the COW store. It makes sense therefore, to store the
|
|
* metadata in chunk size blocks.
|
|
*
|
|
* There is no backward or forward compatibility implemented,
|
|
* snapshots with different disk versions than the kernel will
|
|
* not be usable. It is expected that "lvcreate" will blank out
|
|
* the start of a fresh COW device before calling the snapshot
|
|
* constructor.
|
|
*
|
|
* The first chunk of the COW device just contains the header.
|
|
* After this there is a chunk filled with exception metadata,
|
|
* followed by as many exception chunks as can fit in the
|
|
* metadata areas.
|
|
*
|
|
* All on disk structures are in little-endian format. The end
|
|
* of the exceptions info is indicated by an exception with a
|
|
* new_chunk of 0, which is invalid since it would point to the
|
|
* header chunk.
|
|
*/
|
|
|
|
/*
|
|
* Magic for persistent snapshots: "SnAp" - Feeble isn't it.
|
|
*/
|
|
#define SNAP_MAGIC 0x70416e53
|
|
|
|
/*
|
|
* The on-disk version of the metadata.
|
|
*/
|
|
#define SNAPSHOT_DISK_VERSION 1
|
|
|
|
#define NUM_SNAPSHOT_HDR_CHUNKS 1
|
|
|
|
struct disk_header {
|
|
uint32_t magic;
|
|
|
|
/*
|
|
* Is this snapshot valid. There is no way of recovering
|
|
* an invalid snapshot.
|
|
*/
|
|
uint32_t valid;
|
|
|
|
/*
|
|
* Simple, incrementing version. no backward
|
|
* compatibility.
|
|
*/
|
|
uint32_t version;
|
|
|
|
/* In sectors */
|
|
uint32_t chunk_size;
|
|
};
|
|
|
|
struct disk_exception {
|
|
uint64_t old_chunk;
|
|
uint64_t new_chunk;
|
|
};
|
|
|
|
struct commit_callback {
|
|
void (*callback)(void *, int success);
|
|
void *context;
|
|
};
|
|
|
|
/*
|
|
* The top level structure for a persistent exception store.
|
|
*/
|
|
struct pstore {
|
|
struct dm_exception_store *store;
|
|
int version;
|
|
int valid;
|
|
uint32_t exceptions_per_area;
|
|
|
|
/*
|
|
* Now that we have an asynchronous kcopyd there is no
|
|
* need for large chunk sizes, so it wont hurt to have a
|
|
* whole chunks worth of metadata in memory at once.
|
|
*/
|
|
void *area;
|
|
|
|
/*
|
|
* An area of zeros used to clear the next area.
|
|
*/
|
|
void *zero_area;
|
|
|
|
/*
|
|
* An area used for header. The header can be written
|
|
* concurrently with metadata (when invalidating the snapshot),
|
|
* so it needs a separate buffer.
|
|
*/
|
|
void *header_area;
|
|
|
|
/*
|
|
* Used to keep track of which metadata area the data in
|
|
* 'chunk' refers to.
|
|
*/
|
|
chunk_t current_area;
|
|
|
|
/*
|
|
* The next free chunk for an exception.
|
|
*
|
|
* When creating exceptions, all the chunks here and above are
|
|
* free. It holds the next chunk to be allocated. On rare
|
|
* occasions (e.g. after a system crash) holes can be left in
|
|
* the exception store because chunks can be committed out of
|
|
* order.
|
|
*
|
|
* When merging exceptions, it does not necessarily mean all the
|
|
* chunks here and above are free. It holds the value it would
|
|
* have held if all chunks had been committed in order of
|
|
* allocation. Consequently the value may occasionally be
|
|
* slightly too low, but since it's only used for 'status' and
|
|
* it can never reach its minimum value too early this doesn't
|
|
* matter.
|
|
*/
|
|
|
|
chunk_t next_free;
|
|
|
|
/*
|
|
* The index of next free exception in the current
|
|
* metadata area.
|
|
*/
|
|
uint32_t current_committed;
|
|
|
|
atomic_t pending_count;
|
|
uint32_t callback_count;
|
|
struct commit_callback *callbacks;
|
|
struct dm_io_client *io_client;
|
|
|
|
struct workqueue_struct *metadata_wq;
|
|
};
|
|
|
|
static unsigned sectors_to_pages(unsigned sectors)
|
|
{
|
|
return DIV_ROUND_UP(sectors, PAGE_SIZE >> 9);
|
|
}
|
|
|
|
static int alloc_area(struct pstore *ps)
|
|
{
|
|
int r = -ENOMEM;
|
|
size_t len;
|
|
|
|
len = ps->store->chunk_size << SECTOR_SHIFT;
|
|
|
|
/*
|
|
* Allocate the chunk_size block of memory that will hold
|
|
* a single metadata area.
|
|
*/
|
|
ps->area = vmalloc(len);
|
|
if (!ps->area)
|
|
goto err_area;
|
|
|
|
ps->zero_area = vmalloc(len);
|
|
if (!ps->zero_area)
|
|
goto err_zero_area;
|
|
memset(ps->zero_area, 0, len);
|
|
|
|
ps->header_area = vmalloc(len);
|
|
if (!ps->header_area)
|
|
goto err_header_area;
|
|
|
|
return 0;
|
|
|
|
err_header_area:
|
|
vfree(ps->zero_area);
|
|
|
|
err_zero_area:
|
|
vfree(ps->area);
|
|
|
|
err_area:
|
|
return r;
|
|
}
|
|
|
|
static void free_area(struct pstore *ps)
|
|
{
|
|
if (ps->area)
|
|
vfree(ps->area);
|
|
ps->area = NULL;
|
|
|
|
if (ps->zero_area)
|
|
vfree(ps->zero_area);
|
|
ps->zero_area = NULL;
|
|
|
|
if (ps->header_area)
|
|
vfree(ps->header_area);
|
|
ps->header_area = NULL;
|
|
}
|
|
|
|
struct mdata_req {
|
|
struct dm_io_region *where;
|
|
struct dm_io_request *io_req;
|
|
struct work_struct work;
|
|
int result;
|
|
};
|
|
|
|
static void do_metadata(struct work_struct *work)
|
|
{
|
|
struct mdata_req *req = container_of(work, struct mdata_req, work);
|
|
|
|
req->result = dm_io(req->io_req, 1, req->where, NULL);
|
|
}
|
|
|
|
/*
|
|
* Read or write a chunk aligned and sized block of data from a device.
|
|
*/
|
|
static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, int rw,
|
|
int metadata)
|
|
{
|
|
struct dm_io_region where = {
|
|
.bdev = dm_snap_cow(ps->store->snap)->bdev,
|
|
.sector = ps->store->chunk_size * chunk,
|
|
.count = ps->store->chunk_size,
|
|
};
|
|
struct dm_io_request io_req = {
|
|
.bi_rw = rw,
|
|
.mem.type = DM_IO_VMA,
|
|
.mem.ptr.vma = area,
|
|
.client = ps->io_client,
|
|
.notify.fn = NULL,
|
|
};
|
|
struct mdata_req req;
|
|
|
|
if (!metadata)
|
|
return dm_io(&io_req, 1, &where, NULL);
|
|
|
|
req.where = &where;
|
|
req.io_req = &io_req;
|
|
|
|
/*
|
|
* Issue the synchronous I/O from a different thread
|
|
* to avoid generic_make_request recursion.
|
|
*/
|
|
INIT_WORK_ON_STACK(&req.work, do_metadata);
|
|
queue_work(ps->metadata_wq, &req.work);
|
|
flush_workqueue(ps->metadata_wq);
|
|
|
|
return req.result;
|
|
}
|
|
|
|
/*
|
|
* Convert a metadata area index to a chunk index.
|
|
*/
|
|
static chunk_t area_location(struct pstore *ps, chunk_t area)
|
|
{
|
|
return NUM_SNAPSHOT_HDR_CHUNKS + ((ps->exceptions_per_area + 1) * area);
|
|
}
|
|
|
|
/*
|
|
* Read or write a metadata area. Remembering to skip the first
|
|
* chunk which holds the header.
|
|
*/
|
|
static int area_io(struct pstore *ps, int rw)
|
|
{
|
|
int r;
|
|
chunk_t chunk;
|
|
|
|
chunk = area_location(ps, ps->current_area);
|
|
|
|
r = chunk_io(ps, ps->area, chunk, rw, 0);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void zero_memory_area(struct pstore *ps)
|
|
{
|
|
memset(ps->area, 0, ps->store->chunk_size << SECTOR_SHIFT);
|
|
}
|
|
|
|
static int zero_disk_area(struct pstore *ps, chunk_t area)
|
|
{
|
|
return chunk_io(ps, ps->zero_area, area_location(ps, area), WRITE, 0);
|
|
}
|
|
|
|
static int read_header(struct pstore *ps, int *new_snapshot)
|
|
{
|
|
int r;
|
|
struct disk_header *dh;
|
|
unsigned chunk_size;
|
|
int chunk_size_supplied = 1;
|
|
char *chunk_err;
|
|
|
|
/*
|
|
* Use default chunk size (or logical_block_size, if larger)
|
|
* if none supplied
|
|
*/
|
|
if (!ps->store->chunk_size) {
|
|
ps->store->chunk_size = max(DM_CHUNK_SIZE_DEFAULT_SECTORS,
|
|
bdev_logical_block_size(dm_snap_cow(ps->store->snap)->
|
|
bdev) >> 9);
|
|
ps->store->chunk_mask = ps->store->chunk_size - 1;
|
|
ps->store->chunk_shift = ffs(ps->store->chunk_size) - 1;
|
|
chunk_size_supplied = 0;
|
|
}
|
|
|
|
ps->io_client = dm_io_client_create(sectors_to_pages(ps->store->
|
|
chunk_size));
|
|
if (IS_ERR(ps->io_client))
|
|
return PTR_ERR(ps->io_client);
|
|
|
|
r = alloc_area(ps);
|
|
if (r)
|
|
return r;
|
|
|
|
r = chunk_io(ps, ps->header_area, 0, READ, 1);
|
|
if (r)
|
|
goto bad;
|
|
|
|
dh = ps->header_area;
|
|
|
|
if (le32_to_cpu(dh->magic) == 0) {
|
|
*new_snapshot = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (le32_to_cpu(dh->magic) != SNAP_MAGIC) {
|
|
DMWARN("Invalid or corrupt snapshot");
|
|
r = -ENXIO;
|
|
goto bad;
|
|
}
|
|
|
|
*new_snapshot = 0;
|
|
ps->valid = le32_to_cpu(dh->valid);
|
|
ps->version = le32_to_cpu(dh->version);
|
|
chunk_size = le32_to_cpu(dh->chunk_size);
|
|
|
|
if (ps->store->chunk_size == chunk_size)
|
|
return 0;
|
|
|
|
if (chunk_size_supplied)
|
|
DMWARN("chunk size %u in device metadata overrides "
|
|
"table chunk size of %u.",
|
|
chunk_size, ps->store->chunk_size);
|
|
|
|
/* We had a bogus chunk_size. Fix stuff up. */
|
|
free_area(ps);
|
|
|
|
r = dm_exception_store_set_chunk_size(ps->store, chunk_size,
|
|
&chunk_err);
|
|
if (r) {
|
|
DMERR("invalid on-disk chunk size %u: %s.",
|
|
chunk_size, chunk_err);
|
|
return r;
|
|
}
|
|
|
|
r = dm_io_client_resize(sectors_to_pages(ps->store->chunk_size),
|
|
ps->io_client);
|
|
if (r)
|
|
return r;
|
|
|
|
r = alloc_area(ps);
|
|
return r;
|
|
|
|
bad:
|
|
free_area(ps);
|
|
return r;
|
|
}
|
|
|
|
static int write_header(struct pstore *ps)
|
|
{
|
|
struct disk_header *dh;
|
|
|
|
memset(ps->header_area, 0, ps->store->chunk_size << SECTOR_SHIFT);
|
|
|
|
dh = ps->header_area;
|
|
dh->magic = cpu_to_le32(SNAP_MAGIC);
|
|
dh->valid = cpu_to_le32(ps->valid);
|
|
dh->version = cpu_to_le32(ps->version);
|
|
dh->chunk_size = cpu_to_le32(ps->store->chunk_size);
|
|
|
|
return chunk_io(ps, ps->header_area, 0, WRITE, 1);
|
|
}
|
|
|
|
/*
|
|
* Access functions for the disk exceptions, these do the endian conversions.
|
|
*/
|
|
static struct disk_exception *get_exception(struct pstore *ps, uint32_t index)
|
|
{
|
|
BUG_ON(index >= ps->exceptions_per_area);
|
|
|
|
return ((struct disk_exception *) ps->area) + index;
|
|
}
|
|
|
|
static void read_exception(struct pstore *ps,
|
|
uint32_t index, struct disk_exception *result)
|
|
{
|
|
struct disk_exception *e = get_exception(ps, index);
|
|
|
|
/* copy it */
|
|
result->old_chunk = le64_to_cpu(e->old_chunk);
|
|
result->new_chunk = le64_to_cpu(e->new_chunk);
|
|
}
|
|
|
|
static void write_exception(struct pstore *ps,
|
|
uint32_t index, struct disk_exception *de)
|
|
{
|
|
struct disk_exception *e = get_exception(ps, index);
|
|
|
|
/* copy it */
|
|
e->old_chunk = cpu_to_le64(de->old_chunk);
|
|
e->new_chunk = cpu_to_le64(de->new_chunk);
|
|
}
|
|
|
|
static void clear_exception(struct pstore *ps, uint32_t index)
|
|
{
|
|
struct disk_exception *e = get_exception(ps, index);
|
|
|
|
/* clear it */
|
|
e->old_chunk = 0;
|
|
e->new_chunk = 0;
|
|
}
|
|
|
|
/*
|
|
* Registers the exceptions that are present in the current area.
|
|
* 'full' is filled in to indicate if the area has been
|
|
* filled.
|
|
*/
|
|
static int insert_exceptions(struct pstore *ps,
|
|
int (*callback)(void *callback_context,
|
|
chunk_t old, chunk_t new),
|
|
void *callback_context,
|
|
int *full)
|
|
{
|
|
int r;
|
|
unsigned int i;
|
|
struct disk_exception de;
|
|
|
|
/* presume the area is full */
|
|
*full = 1;
|
|
|
|
for (i = 0; i < ps->exceptions_per_area; i++) {
|
|
read_exception(ps, i, &de);
|
|
|
|
/*
|
|
* If the new_chunk is pointing at the start of
|
|
* the COW device, where the first metadata area
|
|
* is we know that we've hit the end of the
|
|
* exceptions. Therefore the area is not full.
|
|
*/
|
|
if (de.new_chunk == 0LL) {
|
|
ps->current_committed = i;
|
|
*full = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Keep track of the start of the free chunks.
|
|
*/
|
|
if (ps->next_free <= de.new_chunk)
|
|
ps->next_free = de.new_chunk + 1;
|
|
|
|
/*
|
|
* Otherwise we add the exception to the snapshot.
|
|
*/
|
|
r = callback(callback_context, de.old_chunk, de.new_chunk);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_exceptions(struct pstore *ps,
|
|
int (*callback)(void *callback_context, chunk_t old,
|
|
chunk_t new),
|
|
void *callback_context)
|
|
{
|
|
int r, full = 1;
|
|
|
|
/*
|
|
* Keeping reading chunks and inserting exceptions until
|
|
* we find a partially full area.
|
|
*/
|
|
for (ps->current_area = 0; full; ps->current_area++) {
|
|
r = area_io(ps, READ);
|
|
if (r)
|
|
return r;
|
|
|
|
r = insert_exceptions(ps, callback, callback_context, &full);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
ps->current_area--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct pstore *get_info(struct dm_exception_store *store)
|
|
{
|
|
return (struct pstore *) store->context;
|
|
}
|
|
|
|
static void persistent_usage(struct dm_exception_store *store,
|
|
sector_t *total_sectors,
|
|
sector_t *sectors_allocated,
|
|
sector_t *metadata_sectors)
|
|
{
|
|
struct pstore *ps = get_info(store);
|
|
|
|
*sectors_allocated = ps->next_free * store->chunk_size;
|
|
*total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
|
|
|
|
/*
|
|
* First chunk is the fixed header.
|
|
* Then there are (ps->current_area + 1) metadata chunks, each one
|
|
* separated from the next by ps->exceptions_per_area data chunks.
|
|
*/
|
|
*metadata_sectors = (ps->current_area + 1 + NUM_SNAPSHOT_HDR_CHUNKS) *
|
|
store->chunk_size;
|
|
}
|
|
|
|
static void persistent_dtr(struct dm_exception_store *store)
|
|
{
|
|
struct pstore *ps = get_info(store);
|
|
|
|
destroy_workqueue(ps->metadata_wq);
|
|
|
|
/* Created in read_header */
|
|
if (ps->io_client)
|
|
dm_io_client_destroy(ps->io_client);
|
|
free_area(ps);
|
|
|
|
/* Allocated in persistent_read_metadata */
|
|
if (ps->callbacks)
|
|
vfree(ps->callbacks);
|
|
|
|
kfree(ps);
|
|
}
|
|
|
|
static int persistent_read_metadata(struct dm_exception_store *store,
|
|
int (*callback)(void *callback_context,
|
|
chunk_t old, chunk_t new),
|
|
void *callback_context)
|
|
{
|
|
int r, uninitialized_var(new_snapshot);
|
|
struct pstore *ps = get_info(store);
|
|
|
|
/*
|
|
* Read the snapshot header.
|
|
*/
|
|
r = read_header(ps, &new_snapshot);
|
|
if (r)
|
|
return r;
|
|
|
|
/*
|
|
* Now we know correct chunk_size, complete the initialisation.
|
|
*/
|
|
ps->exceptions_per_area = (ps->store->chunk_size << SECTOR_SHIFT) /
|
|
sizeof(struct disk_exception);
|
|
ps->callbacks = dm_vcalloc(ps->exceptions_per_area,
|
|
sizeof(*ps->callbacks));
|
|
if (!ps->callbacks)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Do we need to setup a new snapshot ?
|
|
*/
|
|
if (new_snapshot) {
|
|
r = write_header(ps);
|
|
if (r) {
|
|
DMWARN("write_header failed");
|
|
return r;
|
|
}
|
|
|
|
ps->current_area = 0;
|
|
zero_memory_area(ps);
|
|
r = zero_disk_area(ps, 0);
|
|
if (r)
|
|
DMWARN("zero_disk_area(0) failed");
|
|
return r;
|
|
}
|
|
/*
|
|
* Sanity checks.
|
|
*/
|
|
if (ps->version != SNAPSHOT_DISK_VERSION) {
|
|
DMWARN("unable to handle snapshot disk version %d",
|
|
ps->version);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Metadata are valid, but snapshot is invalidated
|
|
*/
|
|
if (!ps->valid)
|
|
return 1;
|
|
|
|
/*
|
|
* Read the metadata.
|
|
*/
|
|
r = read_exceptions(ps, callback, callback_context);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int persistent_prepare_exception(struct dm_exception_store *store,
|
|
struct dm_exception *e)
|
|
{
|
|
struct pstore *ps = get_info(store);
|
|
uint32_t stride;
|
|
chunk_t next_free;
|
|
sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
|
|
|
|
/* Is there enough room ? */
|
|
if (size < ((ps->next_free + 1) * store->chunk_size))
|
|
return -ENOSPC;
|
|
|
|
e->new_chunk = ps->next_free;
|
|
|
|
/*
|
|
* Move onto the next free pending, making sure to take
|
|
* into account the location of the metadata chunks.
|
|
*/
|
|
stride = (ps->exceptions_per_area + 1);
|
|
next_free = ++ps->next_free;
|
|
if (sector_div(next_free, stride) == 1)
|
|
ps->next_free++;
|
|
|
|
atomic_inc(&ps->pending_count);
|
|
return 0;
|
|
}
|
|
|
|
static void persistent_commit_exception(struct dm_exception_store *store,
|
|
struct dm_exception *e,
|
|
void (*callback) (void *, int success),
|
|
void *callback_context)
|
|
{
|
|
unsigned int i;
|
|
struct pstore *ps = get_info(store);
|
|
struct disk_exception de;
|
|
struct commit_callback *cb;
|
|
|
|
de.old_chunk = e->old_chunk;
|
|
de.new_chunk = e->new_chunk;
|
|
write_exception(ps, ps->current_committed++, &de);
|
|
|
|
/*
|
|
* Add the callback to the back of the array. This code
|
|
* is the only place where the callback array is
|
|
* manipulated, and we know that it will never be called
|
|
* multiple times concurrently.
|
|
*/
|
|
cb = ps->callbacks + ps->callback_count++;
|
|
cb->callback = callback;
|
|
cb->context = callback_context;
|
|
|
|
/*
|
|
* If there are exceptions in flight and we have not yet
|
|
* filled this metadata area there's nothing more to do.
|
|
*/
|
|
if (!atomic_dec_and_test(&ps->pending_count) &&
|
|
(ps->current_committed != ps->exceptions_per_area))
|
|
return;
|
|
|
|
/*
|
|
* If we completely filled the current area, then wipe the next one.
|
|
*/
|
|
if ((ps->current_committed == ps->exceptions_per_area) &&
|
|
zero_disk_area(ps, ps->current_area + 1))
|
|
ps->valid = 0;
|
|
|
|
/*
|
|
* Commit exceptions to disk.
|
|
*/
|
|
if (ps->valid && area_io(ps, WRITE_BARRIER))
|
|
ps->valid = 0;
|
|
|
|
/*
|
|
* Advance to the next area if this one is full.
|
|
*/
|
|
if (ps->current_committed == ps->exceptions_per_area) {
|
|
ps->current_committed = 0;
|
|
ps->current_area++;
|
|
zero_memory_area(ps);
|
|
}
|
|
|
|
for (i = 0; i < ps->callback_count; i++) {
|
|
cb = ps->callbacks + i;
|
|
cb->callback(cb->context, ps->valid);
|
|
}
|
|
|
|
ps->callback_count = 0;
|
|
}
|
|
|
|
static int persistent_prepare_merge(struct dm_exception_store *store,
|
|
chunk_t *last_old_chunk,
|
|
chunk_t *last_new_chunk)
|
|
{
|
|
struct pstore *ps = get_info(store);
|
|
struct disk_exception de;
|
|
int nr_consecutive;
|
|
int r;
|
|
|
|
/*
|
|
* When current area is empty, move back to preceding area.
|
|
*/
|
|
if (!ps->current_committed) {
|
|
/*
|
|
* Have we finished?
|
|
*/
|
|
if (!ps->current_area)
|
|
return 0;
|
|
|
|
ps->current_area--;
|
|
r = area_io(ps, READ);
|
|
if (r < 0)
|
|
return r;
|
|
ps->current_committed = ps->exceptions_per_area;
|
|
}
|
|
|
|
read_exception(ps, ps->current_committed - 1, &de);
|
|
*last_old_chunk = de.old_chunk;
|
|
*last_new_chunk = de.new_chunk;
|
|
|
|
/*
|
|
* Find number of consecutive chunks within the current area,
|
|
* working backwards.
|
|
*/
|
|
for (nr_consecutive = 1; nr_consecutive < ps->current_committed;
|
|
nr_consecutive++) {
|
|
read_exception(ps, ps->current_committed - 1 - nr_consecutive,
|
|
&de);
|
|
if (de.old_chunk != *last_old_chunk - nr_consecutive ||
|
|
de.new_chunk != *last_new_chunk - nr_consecutive)
|
|
break;
|
|
}
|
|
|
|
return nr_consecutive;
|
|
}
|
|
|
|
static int persistent_commit_merge(struct dm_exception_store *store,
|
|
int nr_merged)
|
|
{
|
|
int r, i;
|
|
struct pstore *ps = get_info(store);
|
|
|
|
BUG_ON(nr_merged > ps->current_committed);
|
|
|
|
for (i = 0; i < nr_merged; i++)
|
|
clear_exception(ps, ps->current_committed - 1 - i);
|
|
|
|
r = area_io(ps, WRITE);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
ps->current_committed -= nr_merged;
|
|
|
|
/*
|
|
* At this stage, only persistent_usage() uses ps->next_free, so
|
|
* we make no attempt to keep ps->next_free strictly accurate
|
|
* as exceptions may have been committed out-of-order originally.
|
|
* Once a snapshot has become merging, we set it to the value it
|
|
* would have held had all the exceptions been committed in order.
|
|
*
|
|
* ps->current_area does not get reduced by prepare_merge() until
|
|
* after commit_merge() has removed the nr_merged previous exceptions.
|
|
*/
|
|
ps->next_free = area_location(ps, ps->current_area) +
|
|
ps->current_committed + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void persistent_drop_snapshot(struct dm_exception_store *store)
|
|
{
|
|
struct pstore *ps = get_info(store);
|
|
|
|
ps->valid = 0;
|
|
if (write_header(ps))
|
|
DMWARN("write header failed");
|
|
}
|
|
|
|
static int persistent_ctr(struct dm_exception_store *store,
|
|
unsigned argc, char **argv)
|
|
{
|
|
struct pstore *ps;
|
|
|
|
/* allocate the pstore */
|
|
ps = kzalloc(sizeof(*ps), GFP_KERNEL);
|
|
if (!ps)
|
|
return -ENOMEM;
|
|
|
|
ps->store = store;
|
|
ps->valid = 1;
|
|
ps->version = SNAPSHOT_DISK_VERSION;
|
|
ps->area = NULL;
|
|
ps->zero_area = NULL;
|
|
ps->header_area = NULL;
|
|
ps->next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1; /* header and 1st area */
|
|
ps->current_committed = 0;
|
|
|
|
ps->callback_count = 0;
|
|
atomic_set(&ps->pending_count, 0);
|
|
ps->callbacks = NULL;
|
|
|
|
ps->metadata_wq = create_singlethread_workqueue("ksnaphd");
|
|
if (!ps->metadata_wq) {
|
|
kfree(ps);
|
|
DMERR("couldn't start header metadata update thread");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
store->context = ps;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned persistent_status(struct dm_exception_store *store,
|
|
status_type_t status, char *result,
|
|
unsigned maxlen)
|
|
{
|
|
unsigned sz = 0;
|
|
|
|
switch (status) {
|
|
case STATUSTYPE_INFO:
|
|
break;
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT(" P %llu", (unsigned long long)store->chunk_size);
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
static struct dm_exception_store_type _persistent_type = {
|
|
.name = "persistent",
|
|
.module = THIS_MODULE,
|
|
.ctr = persistent_ctr,
|
|
.dtr = persistent_dtr,
|
|
.read_metadata = persistent_read_metadata,
|
|
.prepare_exception = persistent_prepare_exception,
|
|
.commit_exception = persistent_commit_exception,
|
|
.prepare_merge = persistent_prepare_merge,
|
|
.commit_merge = persistent_commit_merge,
|
|
.drop_snapshot = persistent_drop_snapshot,
|
|
.usage = persistent_usage,
|
|
.status = persistent_status,
|
|
};
|
|
|
|
static struct dm_exception_store_type _persistent_compat_type = {
|
|
.name = "P",
|
|
.module = THIS_MODULE,
|
|
.ctr = persistent_ctr,
|
|
.dtr = persistent_dtr,
|
|
.read_metadata = persistent_read_metadata,
|
|
.prepare_exception = persistent_prepare_exception,
|
|
.commit_exception = persistent_commit_exception,
|
|
.prepare_merge = persistent_prepare_merge,
|
|
.commit_merge = persistent_commit_merge,
|
|
.drop_snapshot = persistent_drop_snapshot,
|
|
.usage = persistent_usage,
|
|
.status = persistent_status,
|
|
};
|
|
|
|
int dm_persistent_snapshot_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = dm_exception_store_type_register(&_persistent_type);
|
|
if (r) {
|
|
DMERR("Unable to register persistent exception store type");
|
|
return r;
|
|
}
|
|
|
|
r = dm_exception_store_type_register(&_persistent_compat_type);
|
|
if (r) {
|
|
DMERR("Unable to register old-style persistent exception "
|
|
"store type");
|
|
dm_exception_store_type_unregister(&_persistent_type);
|
|
return r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void dm_persistent_snapshot_exit(void)
|
|
{
|
|
dm_exception_store_type_unregister(&_persistent_type);
|
|
dm_exception_store_type_unregister(&_persistent_compat_type);
|
|
}
|