2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/drivers/scsi/am53c974.c
Hannes Reinecke 8041708ed4 am53c974: Fix crash during modprobe
On systems with shared interrupts the interrupt routine might
be called as soon as the interrupt is enabled.
As this might happen before pci_set_drvdata() is called the
system would crash.

Reported-by: Andreas Brogle <anbro@ok.de>
Tested-by: Andreas Brogle <anbro@ok.de>
Signed-off-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
2015-04-17 10:13:56 -07:00

583 lines
14 KiB
C

/*
* AMD am53c974 driver.
* Copyright (c) 2014 Hannes Reinecke, SUSE Linux GmbH
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <scsi/scsi_host.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "am53c974"
#define DRV_MODULE_VERSION "1.00"
static bool am53c974_debug;
static bool am53c974_fenab = true;
#define esp_dma_log(f, a...) \
do { \
if (am53c974_debug) \
shost_printk(KERN_DEBUG, esp->host, f, ##a); \
} while (0)
#define ESP_DMA_CMD 0x10
#define ESP_DMA_STC 0x11
#define ESP_DMA_SPA 0x12
#define ESP_DMA_WBC 0x13
#define ESP_DMA_WAC 0x14
#define ESP_DMA_STATUS 0x15
#define ESP_DMA_SMDLA 0x16
#define ESP_DMA_WMAC 0x17
#define ESP_DMA_CMD_IDLE 0x00
#define ESP_DMA_CMD_BLAST 0x01
#define ESP_DMA_CMD_ABORT 0x02
#define ESP_DMA_CMD_START 0x03
#define ESP_DMA_CMD_MASK 0x03
#define ESP_DMA_CMD_DIAG 0x04
#define ESP_DMA_CMD_MDL 0x10
#define ESP_DMA_CMD_INTE_P 0x20
#define ESP_DMA_CMD_INTE_D 0x40
#define ESP_DMA_CMD_DIR 0x80
#define ESP_DMA_STAT_PWDN 0x01
#define ESP_DMA_STAT_ERROR 0x02
#define ESP_DMA_STAT_ABORT 0x04
#define ESP_DMA_STAT_DONE 0x08
#define ESP_DMA_STAT_SCSIINT 0x10
#define ESP_DMA_STAT_BCMPLT 0x20
/* EEPROM is accessed with 16-bit values */
#define DC390_EEPROM_READ 0x80
#define DC390_EEPROM_LEN 0x40
/*
* DC390 EEPROM
*
* 8 * 4 bytes of per-device options
* followed by HBA specific options
*/
/* Per-device options */
#define DC390_EE_MODE1 0x00
#define DC390_EE_SPEED 0x01
/* HBA-specific options */
#define DC390_EE_ADAPT_SCSI_ID 0x40
#define DC390_EE_MODE2 0x41
#define DC390_EE_DELAY 0x42
#define DC390_EE_TAG_CMD_NUM 0x43
#define DC390_EE_MODE1_PARITY_CHK 0x01
#define DC390_EE_MODE1_SYNC_NEGO 0x02
#define DC390_EE_MODE1_EN_DISC 0x04
#define DC390_EE_MODE1_SEND_START 0x08
#define DC390_EE_MODE1_TCQ 0x10
#define DC390_EE_MODE2_MORE_2DRV 0x01
#define DC390_EE_MODE2_GREATER_1G 0x02
#define DC390_EE_MODE2_RST_SCSI_BUS 0x04
#define DC390_EE_MODE2_ACTIVE_NEGATION 0x08
#define DC390_EE_MODE2_NO_SEEK 0x10
#define DC390_EE_MODE2_LUN_CHECK 0x20
struct pci_esp_priv {
struct esp *esp;
u8 dma_status;
};
static void pci_esp_dma_drain(struct esp *esp);
static inline struct pci_esp_priv *pci_esp_get_priv(struct esp *esp)
{
struct pci_dev *pdev = esp->dev;
return pci_get_drvdata(pdev);
}
static void pci_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
iowrite8(val, esp->regs + (reg * 4UL));
}
static u8 pci_esp_read8(struct esp *esp, unsigned long reg)
{
return ioread8(esp->regs + (reg * 4UL));
}
static void pci_esp_write32(struct esp *esp, u32 val, unsigned long reg)
{
return iowrite32(val, esp->regs + (reg * 4UL));
}
static dma_addr_t pci_esp_map_single(struct esp *esp, void *buf,
size_t sz, int dir)
{
return pci_map_single(esp->dev, buf, sz, dir);
}
static int pci_esp_map_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
return pci_map_sg(esp->dev, sg, num_sg, dir);
}
static void pci_esp_unmap_single(struct esp *esp, dma_addr_t addr,
size_t sz, int dir)
{
pci_unmap_single(esp->dev, addr, sz, dir);
}
static void pci_esp_unmap_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
pci_unmap_sg(esp->dev, sg, num_sg, dir);
}
static int pci_esp_irq_pending(struct esp *esp)
{
struct pci_esp_priv *pep = pci_esp_get_priv(esp);
pep->dma_status = pci_esp_read8(esp, ESP_DMA_STATUS);
esp_dma_log("dma intr dreg[%02x]\n", pep->dma_status);
if (pep->dma_status & (ESP_DMA_STAT_ERROR |
ESP_DMA_STAT_ABORT |
ESP_DMA_STAT_DONE |
ESP_DMA_STAT_SCSIINT))
return 1;
return 0;
}
static void pci_esp_reset_dma(struct esp *esp)
{
/* Nothing to do ? */
}
static void pci_esp_dma_drain(struct esp *esp)
{
u8 resid;
int lim = 1000;
if ((esp->sreg & ESP_STAT_PMASK) == ESP_DOP ||
(esp->sreg & ESP_STAT_PMASK) == ESP_DIP)
/* Data-In or Data-Out, nothing to be done */
return;
while (--lim > 0) {
resid = pci_esp_read8(esp, ESP_FFLAGS) & ESP_FF_FBYTES;
if (resid <= 1)
break;
cpu_relax();
}
/*
* When there is a residual BCMPLT will never be set
* (obviously). But we still have to issue the BLAST
* command, otherwise the data will not being transferred.
* But we'll never know when the BLAST operation is
* finished. So check for some time and give up eventually.
*/
lim = 1000;
pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_BLAST, ESP_DMA_CMD);
while (pci_esp_read8(esp, ESP_DMA_STATUS) & ESP_DMA_STAT_BCMPLT) {
if (--lim == 0)
break;
cpu_relax();
}
pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_IDLE, ESP_DMA_CMD);
esp_dma_log("DMA blast done (%d tries, %d bytes left)\n", lim, resid);
/* BLAST residual handling is currently untested */
if (WARN_ON_ONCE(resid == 1)) {
struct esp_cmd_entry *ent = esp->active_cmd;
ent->flags |= ESP_CMD_FLAG_RESIDUAL;
}
}
static void pci_esp_dma_invalidate(struct esp *esp)
{
struct pci_esp_priv *pep = pci_esp_get_priv(esp);
esp_dma_log("invalidate DMA\n");
pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD);
pep->dma_status = 0;
}
static int pci_esp_dma_error(struct esp *esp)
{
struct pci_esp_priv *pep = pci_esp_get_priv(esp);
if (pep->dma_status & ESP_DMA_STAT_ERROR) {
u8 dma_cmd = pci_esp_read8(esp, ESP_DMA_CMD);
if ((dma_cmd & ESP_DMA_CMD_MASK) == ESP_DMA_CMD_START)
pci_esp_write8(esp, ESP_DMA_CMD_ABORT, ESP_DMA_CMD);
return 1;
}
if (pep->dma_status & ESP_DMA_STAT_ABORT) {
pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD);
pep->dma_status = pci_esp_read8(esp, ESP_DMA_CMD);
return 1;
}
return 0;
}
static void pci_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
struct pci_esp_priv *pep = pci_esp_get_priv(esp);
u32 val = 0;
BUG_ON(!(cmd & ESP_CMD_DMA));
pep->dma_status = 0;
/* Set DMA engine to IDLE */
if (write)
/* DMA write direction logic is inverted */
val |= ESP_DMA_CMD_DIR;
pci_esp_write8(esp, ESP_DMA_CMD_IDLE | val, ESP_DMA_CMD);
pci_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
pci_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (esp->config2 & ESP_CONFIG2_FENAB)
pci_esp_write8(esp, (esp_count >> 16) & 0xff, ESP_TCHI);
pci_esp_write32(esp, esp_count, ESP_DMA_STC);
pci_esp_write32(esp, addr, ESP_DMA_SPA);
esp_dma_log("start dma addr[%x] count[%d:%d]\n",
addr, esp_count, dma_count);
scsi_esp_cmd(esp, cmd);
/* Send DMA Start command */
pci_esp_write8(esp, ESP_DMA_CMD_START | val, ESP_DMA_CMD);
}
static u32 pci_esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
{
int dma_limit = 16;
u32 base, end;
/*
* If CONFIG2_FENAB is set we can
* handle up to 24 bit addresses
*/
if (esp->config2 & ESP_CONFIG2_FENAB)
dma_limit = 24;
if (dma_len > (1U << dma_limit))
dma_len = (1U << dma_limit);
/*
* Prevent crossing a 24-bit address boundary.
*/
base = dma_addr & ((1U << 24) - 1U);
end = base + dma_len;
if (end > (1U << 24))
end = (1U <<24);
dma_len = end - base;
return dma_len;
}
static const struct esp_driver_ops pci_esp_ops = {
.esp_write8 = pci_esp_write8,
.esp_read8 = pci_esp_read8,
.map_single = pci_esp_map_single,
.map_sg = pci_esp_map_sg,
.unmap_single = pci_esp_unmap_single,
.unmap_sg = pci_esp_unmap_sg,
.irq_pending = pci_esp_irq_pending,
.reset_dma = pci_esp_reset_dma,
.dma_drain = pci_esp_dma_drain,
.dma_invalidate = pci_esp_dma_invalidate,
.send_dma_cmd = pci_esp_send_dma_cmd,
.dma_error = pci_esp_dma_error,
.dma_length_limit = pci_esp_dma_length_limit,
};
/*
* Read DC-390 eeprom
*/
static void dc390_eeprom_prepare_read(struct pci_dev *pdev, u8 cmd)
{
u8 carry_flag = 1, j = 0x80, bval;
int i;
for (i = 0; i < 9; i++) {
if (carry_flag) {
pci_write_config_byte(pdev, 0x80, 0x40);
bval = 0xc0;
} else
bval = 0x80;
udelay(160);
pci_write_config_byte(pdev, 0x80, bval);
udelay(160);
pci_write_config_byte(pdev, 0x80, 0);
udelay(160);
carry_flag = (cmd & j) ? 1 : 0;
j >>= 1;
}
}
static u16 dc390_eeprom_get_data(struct pci_dev *pdev)
{
int i;
u16 wval = 0;
u8 bval;
for (i = 0; i < 16; i++) {
wval <<= 1;
pci_write_config_byte(pdev, 0x80, 0x80);
udelay(160);
pci_write_config_byte(pdev, 0x80, 0x40);
udelay(160);
pci_read_config_byte(pdev, 0x00, &bval);
if (bval == 0x22)
wval |= 1;
}
return wval;
}
static void dc390_read_eeprom(struct pci_dev *pdev, u16 *ptr)
{
u8 cmd = DC390_EEPROM_READ, i;
for (i = 0; i < DC390_EEPROM_LEN; i++) {
pci_write_config_byte(pdev, 0xc0, 0);
udelay(160);
dc390_eeprom_prepare_read(pdev, cmd++);
*ptr++ = dc390_eeprom_get_data(pdev);
pci_write_config_byte(pdev, 0x80, 0);
pci_write_config_byte(pdev, 0x80, 0);
udelay(160);
}
}
static void dc390_check_eeprom(struct esp *esp)
{
u8 EEbuf[128];
u16 *ptr = (u16 *)EEbuf, wval = 0;
int i;
dc390_read_eeprom((struct pci_dev *)esp->dev, ptr);
for (i = 0; i < DC390_EEPROM_LEN; i++, ptr++)
wval += *ptr;
/* no Tekram EEprom found */
if (wval != 0x1234) {
struct pci_dev *pdev = esp->dev;
dev_printk(KERN_INFO, &pdev->dev,
"No valid Tekram EEprom found\n");
return;
}
esp->scsi_id = EEbuf[DC390_EE_ADAPT_SCSI_ID];
esp->num_tags = 2 << EEbuf[DC390_EE_TAG_CMD_NUM];
if (EEbuf[DC390_EE_MODE2] & DC390_EE_MODE2_ACTIVE_NEGATION)
esp->config4 |= ESP_CONFIG4_RADE | ESP_CONFIG4_RAE;
}
static int pci_esp_probe_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct scsi_host_template *hostt = &scsi_esp_template;
int err = -ENODEV;
struct Scsi_Host *shost;
struct esp *esp;
struct pci_esp_priv *pep;
if (pci_enable_device(pdev)) {
dev_printk(KERN_INFO, &pdev->dev, "cannot enable device\n");
return -ENODEV;
}
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
dev_printk(KERN_INFO, &pdev->dev,
"failed to set 32bit DMA mask\n");
goto fail_disable_device;
}
shost = scsi_host_alloc(hostt, sizeof(struct esp));
if (!shost) {
dev_printk(KERN_INFO, &pdev->dev,
"failed to allocate scsi host\n");
err = -ENOMEM;
goto fail_disable_device;
}
pep = kzalloc(sizeof(struct pci_esp_priv), GFP_KERNEL);
if (!pep) {
dev_printk(KERN_INFO, &pdev->dev,
"failed to allocate esp_priv\n");
err = -ENOMEM;
goto fail_host_alloc;
}
esp = shost_priv(shost);
esp->host = shost;
esp->dev = pdev;
esp->ops = &pci_esp_ops;
/*
* The am53c974 HBA has a design flaw of generating
* spurious DMA completion interrupts when using
* DMA for command submission.
*/
esp->flags |= ESP_FLAG_USE_FIFO;
/*
* Enable CONFIG2_FENAB to allow for large DMA transfers
*/
if (am53c974_fenab)
esp->config2 |= ESP_CONFIG2_FENAB;
pep->esp = esp;
if (pci_request_regions(pdev, DRV_MODULE_NAME)) {
dev_printk(KERN_ERR, &pdev->dev,
"pci memory selection failed\n");
goto fail_priv_alloc;
}
esp->regs = pci_iomap(pdev, 0, pci_resource_len(pdev, 0));
if (!esp->regs) {
dev_printk(KERN_ERR, &pdev->dev, "pci I/O map failed\n");
err = -EINVAL;
goto fail_release_regions;
}
esp->dma_regs = esp->regs;
pci_set_master(pdev);
esp->command_block = pci_alloc_consistent(pdev, 16,
&esp->command_block_dma);
if (!esp->command_block) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to allocate command block\n");
err = -ENOMEM;
goto fail_unmap_regs;
}
pci_set_drvdata(pdev, pep);
err = request_irq(pdev->irq, scsi_esp_intr, IRQF_SHARED,
DRV_MODULE_NAME, esp);
if (err < 0) {
dev_printk(KERN_ERR, &pdev->dev, "failed to register IRQ\n");
goto fail_unmap_command_block;
}
esp->scsi_id = 7;
dc390_check_eeprom(esp);
shost->this_id = esp->scsi_id;
shost->max_id = 8;
shost->irq = pdev->irq;
shost->io_port = pci_resource_start(pdev, 0);
shost->n_io_port = pci_resource_len(pdev, 0);
shost->unique_id = shost->io_port;
esp->scsi_id_mask = (1 << esp->scsi_id);
/* Assume 40MHz clock */
esp->cfreq = 40000000;
err = scsi_esp_register(esp, &pdev->dev);
if (err)
goto fail_free_irq;
return 0;
fail_free_irq:
free_irq(pdev->irq, esp);
fail_unmap_command_block:
pci_set_drvdata(pdev, NULL);
pci_free_consistent(pdev, 16, esp->command_block,
esp->command_block_dma);
fail_unmap_regs:
pci_iounmap(pdev, esp->regs);
fail_release_regions:
pci_release_regions(pdev);
fail_priv_alloc:
kfree(pep);
fail_host_alloc:
scsi_host_put(shost);
fail_disable_device:
pci_disable_device(pdev);
return err;
}
static void pci_esp_remove_one(struct pci_dev *pdev)
{
struct pci_esp_priv *pep = pci_get_drvdata(pdev);
struct esp *esp = pep->esp;
scsi_esp_unregister(esp);
free_irq(pdev->irq, esp);
pci_set_drvdata(pdev, NULL);
pci_free_consistent(pdev, 16, esp->command_block,
esp->command_block_dma);
pci_iounmap(pdev, esp->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(pep);
scsi_host_put(esp->host);
}
static struct pci_device_id am53c974_pci_tbl[] = {
{ PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_SCSI,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ }
};
MODULE_DEVICE_TABLE(pci, am53c974_pci_tbl);
static struct pci_driver am53c974_driver = {
.name = DRV_MODULE_NAME,
.id_table = am53c974_pci_tbl,
.probe = pci_esp_probe_one,
.remove = pci_esp_remove_one,
};
static int __init am53c974_module_init(void)
{
return pci_register_driver(&am53c974_driver);
}
static void __exit am53c974_module_exit(void)
{
pci_unregister_driver(&am53c974_driver);
}
MODULE_DESCRIPTION("AM53C974 SCSI driver");
MODULE_AUTHOR("Hannes Reinecke <hare@suse.de>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_ALIAS("tmscsim");
module_param(am53c974_debug, bool, 0644);
MODULE_PARM_DESC(am53c974_debug, "Enable debugging");
module_param(am53c974_fenab, bool, 0444);
MODULE_PARM_DESC(am53c974_fenab, "Enable 24-bit DMA transfer sizes");
module_init(am53c974_module_init);
module_exit(am53c974_module_exit);