2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 02:34:01 +08:00
linux-next/arch/m68k/mm/motorola.c
Greg Ungerer f50bf88df3 m68k: move to a single instance of free_initmem()
Currently each sub-architecture has its own implementation if init_freemem().
There is two different cases that the various implementations deal with.
They either free the init memory, or they don't. We only need a single instance
to cover all cases.

The non-MMU version did some page alignment twidling, but this is not
neccessary. The current linker script enforces page alignment. It also
checked for CONFIG_RAMKERNEL, but this also is not necessary, the linker
script always keeps the init sections in RAM.

The MMU ColdFire version of free_initmem() was empty. There is no reason it
can't carry out the freeing of the init memory. So it is now changed and
tested to do this.

For the other MMU cases the code is the same. For the general Motorola MMU
case we free the init memory. For the SUN3 case we do nothing (though I
think it could safely free the init memory as well).

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2012-11-14 08:50:56 +01:00

307 lines
7.3 KiB
C

/*
* linux/arch/m68k/mm/motorola.c
*
* Routines specific to the Motorola MMU, originally from:
* linux/arch/m68k/init.c
* which are Copyright (C) 1995 Hamish Macdonald
*
* Moved 8/20/1999 Sam Creasey
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/gfp.h>
#include <asm/setup.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/dma.h>
#ifdef CONFIG_ATARI
#include <asm/atari_stram.h>
#endif
#include <asm/sections.h>
#undef DEBUG
#ifndef mm_cachebits
/*
* Bits to add to page descriptors for "normal" caching mode.
* For 68020/030 this is 0.
* For 68040, this is _PAGE_CACHE040 (cachable, copyback)
*/
unsigned long mm_cachebits;
EXPORT_SYMBOL(mm_cachebits);
#endif
/* size of memory already mapped in head.S */
#define INIT_MAPPED_SIZE (4UL<<20)
extern unsigned long availmem;
static pte_t * __init kernel_page_table(void)
{
pte_t *ptablep;
ptablep = (pte_t *)alloc_bootmem_low_pages(PAGE_SIZE);
clear_page(ptablep);
__flush_page_to_ram(ptablep);
flush_tlb_kernel_page(ptablep);
nocache_page(ptablep);
return ptablep;
}
static pmd_t *last_pgtable __initdata = NULL;
pmd_t *zero_pgtable __initdata = NULL;
static pmd_t * __init kernel_ptr_table(void)
{
if (!last_pgtable) {
unsigned long pmd, last;
int i;
/* Find the last ptr table that was used in head.S and
* reuse the remaining space in that page for further
* ptr tables.
*/
last = (unsigned long)kernel_pg_dir;
for (i = 0; i < PTRS_PER_PGD; i++) {
if (!pgd_present(kernel_pg_dir[i]))
continue;
pmd = __pgd_page(kernel_pg_dir[i]);
if (pmd > last)
last = pmd;
}
last_pgtable = (pmd_t *)last;
#ifdef DEBUG
printk("kernel_ptr_init: %p\n", last_pgtable);
#endif
}
last_pgtable += PTRS_PER_PMD;
if (((unsigned long)last_pgtable & ~PAGE_MASK) == 0) {
last_pgtable = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
clear_page(last_pgtable);
__flush_page_to_ram(last_pgtable);
flush_tlb_kernel_page(last_pgtable);
nocache_page(last_pgtable);
}
return last_pgtable;
}
static void __init map_node(int node)
{
#define PTRTREESIZE (256*1024)
#define ROOTTREESIZE (32*1024*1024)
unsigned long physaddr, virtaddr, size;
pgd_t *pgd_dir;
pmd_t *pmd_dir;
pte_t *pte_dir;
size = m68k_memory[node].size;
physaddr = m68k_memory[node].addr;
virtaddr = (unsigned long)phys_to_virt(physaddr);
physaddr |= m68k_supervisor_cachemode |
_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY;
if (CPU_IS_040_OR_060)
physaddr |= _PAGE_GLOBAL040;
while (size > 0) {
#ifdef DEBUG
if (!(virtaddr & (PTRTREESIZE-1)))
printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK,
virtaddr);
#endif
pgd_dir = pgd_offset_k(virtaddr);
if (virtaddr && CPU_IS_020_OR_030) {
if (!(virtaddr & (ROOTTREESIZE-1)) &&
size >= ROOTTREESIZE) {
#ifdef DEBUG
printk ("[very early term]");
#endif
pgd_val(*pgd_dir) = physaddr;
size -= ROOTTREESIZE;
virtaddr += ROOTTREESIZE;
physaddr += ROOTTREESIZE;
continue;
}
}
if (!pgd_present(*pgd_dir)) {
pmd_dir = kernel_ptr_table();
#ifdef DEBUG
printk ("[new pointer %p]", pmd_dir);
#endif
pgd_set(pgd_dir, pmd_dir);
} else
pmd_dir = pmd_offset(pgd_dir, virtaddr);
if (CPU_IS_020_OR_030) {
if (virtaddr) {
#ifdef DEBUG
printk ("[early term]");
#endif
pmd_dir->pmd[(virtaddr/PTRTREESIZE) & 15] = physaddr;
physaddr += PTRTREESIZE;
} else {
int i;
#ifdef DEBUG
printk ("[zero map]");
#endif
zero_pgtable = kernel_ptr_table();
pte_dir = (pte_t *)zero_pgtable;
pmd_dir->pmd[0] = virt_to_phys(pte_dir) |
_PAGE_TABLE | _PAGE_ACCESSED;
pte_val(*pte_dir++) = 0;
physaddr += PAGE_SIZE;
for (i = 1; i < 64; physaddr += PAGE_SIZE, i++)
pte_val(*pte_dir++) = physaddr;
}
size -= PTRTREESIZE;
virtaddr += PTRTREESIZE;
} else {
if (!pmd_present(*pmd_dir)) {
#ifdef DEBUG
printk ("[new table]");
#endif
pte_dir = kernel_page_table();
pmd_set(pmd_dir, pte_dir);
}
pte_dir = pte_offset_kernel(pmd_dir, virtaddr);
if (virtaddr) {
if (!pte_present(*pte_dir))
pte_val(*pte_dir) = physaddr;
} else
pte_val(*pte_dir) = 0;
size -= PAGE_SIZE;
virtaddr += PAGE_SIZE;
physaddr += PAGE_SIZE;
}
}
#ifdef DEBUG
printk("\n");
#endif
}
/*
* paging_init() continues the virtual memory environment setup which
* was begun by the code in arch/head.S.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES] = { 0, };
unsigned long min_addr, max_addr;
unsigned long addr, size, end;
int i;
#ifdef DEBUG
printk ("start of paging_init (%p, %lx)\n", kernel_pg_dir, availmem);
#endif
/* Fix the cache mode in the page descriptors for the 680[46]0. */
if (CPU_IS_040_OR_060) {
int i;
#ifndef mm_cachebits
mm_cachebits = _PAGE_CACHE040;
#endif
for (i = 0; i < 16; i++)
pgprot_val(protection_map[i]) |= _PAGE_CACHE040;
}
min_addr = m68k_memory[0].addr;
max_addr = min_addr + m68k_memory[0].size;
for (i = 1; i < m68k_num_memory;) {
if (m68k_memory[i].addr < min_addr) {
printk("Ignoring memory chunk at 0x%lx:0x%lx before the first chunk\n",
m68k_memory[i].addr, m68k_memory[i].size);
printk("Fix your bootloader or use a memfile to make use of this area!\n");
m68k_num_memory--;
memmove(m68k_memory + i, m68k_memory + i + 1,
(m68k_num_memory - i) * sizeof(struct mem_info));
continue;
}
addr = m68k_memory[i].addr + m68k_memory[i].size;
if (addr > max_addr)
max_addr = addr;
i++;
}
m68k_memoffset = min_addr - PAGE_OFFSET;
m68k_virt_to_node_shift = fls(max_addr - min_addr - 1) - 6;
module_fixup(NULL, __start_fixup, __stop_fixup);
flush_icache();
high_memory = phys_to_virt(max_addr);
min_low_pfn = availmem >> PAGE_SHIFT;
max_low_pfn = max_addr >> PAGE_SHIFT;
for (i = 0; i < m68k_num_memory; i++) {
addr = m68k_memory[i].addr;
end = addr + m68k_memory[i].size;
m68k_setup_node(i);
availmem = PAGE_ALIGN(availmem);
availmem += init_bootmem_node(NODE_DATA(i),
availmem >> PAGE_SHIFT,
addr >> PAGE_SHIFT,
end >> PAGE_SHIFT);
}
/*
* Map the physical memory available into the kernel virtual
* address space. First initialize the bootmem allocator with
* the memory we already mapped, so map_node() has something
* to allocate.
*/
addr = m68k_memory[0].addr;
size = m68k_memory[0].size;
free_bootmem_node(NODE_DATA(0), availmem, min(INIT_MAPPED_SIZE, size) - (availmem - addr));
map_node(0);
if (size > INIT_MAPPED_SIZE)
free_bootmem_node(NODE_DATA(0), addr + INIT_MAPPED_SIZE, size - INIT_MAPPED_SIZE);
for (i = 1; i < m68k_num_memory; i++)
map_node(i);
flush_tlb_all();
/*
* initialize the bad page table and bad page to point
* to a couple of allocated pages
*/
empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
/*
* Set up SFC/DFC registers
*/
set_fs(KERNEL_DS);
#ifdef DEBUG
printk ("before free_area_init\n");
#endif
for (i = 0; i < m68k_num_memory; i++) {
zones_size[ZONE_DMA] = m68k_memory[i].size >> PAGE_SHIFT;
free_area_init_node(i, zones_size,
m68k_memory[i].addr >> PAGE_SHIFT, NULL);
if (node_present_pages(i))
node_set_state(i, N_NORMAL_MEMORY);
}
}