2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/sound/soc/codecs/tlv320aic32x4-clk.c
Miquel Raynal 5b4458ebb4
ASoC: tlv320aic32x4: Ensure a minimum delay before clock stabilization
As indicated in the datasheet, a 10ms delay must be observed after
programming the divisors.

The lack of delay prevents the codec to work properly and the playback
appears extremely slow and totally un-audible on a custom sama5 based
board.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/r/20200911173140.29984-2-miquel.raynal@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-09-21 22:08:34 +01:00

491 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0
*
* Clock Tree for the Texas Instruments TLV320AIC32x4
*
* Copyright 2019 Annaliese McDermond
*
* Author: Annaliese McDermond <nh6z@nh6z.net>
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/regmap.h>
#include <linux/device.h>
#include "tlv320aic32x4.h"
#define to_clk_aic32x4(_hw) container_of(_hw, struct clk_aic32x4, hw)
struct clk_aic32x4 {
struct clk_hw hw;
struct device *dev;
struct regmap *regmap;
unsigned int reg;
};
/*
* struct clk_aic32x4_pll_muldiv - Multiplier/divider settings
* @p: Divider
* @r: first multiplier
* @j: integer part of second multiplier
* @d: decimal part of second multiplier
*/
struct clk_aic32x4_pll_muldiv {
u8 p;
u16 r;
u8 j;
u16 d;
};
struct aic32x4_clkdesc {
const char *name;
const char * const *parent_names;
unsigned int num_parents;
const struct clk_ops *ops;
unsigned int reg;
};
static int clk_aic32x4_pll_prepare(struct clk_hw *hw)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
return regmap_update_bits(pll->regmap, AIC32X4_PLLPR,
AIC32X4_PLLEN, AIC32X4_PLLEN);
}
static void clk_aic32x4_pll_unprepare(struct clk_hw *hw)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
regmap_update_bits(pll->regmap, AIC32X4_PLLPR,
AIC32X4_PLLEN, 0);
}
static int clk_aic32x4_pll_is_prepared(struct clk_hw *hw)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
unsigned int val;
int ret;
ret = regmap_read(pll->regmap, AIC32X4_PLLPR, &val);
if (ret < 0)
return ret;
return !!(val & AIC32X4_PLLEN);
}
static int clk_aic32x4_pll_get_muldiv(struct clk_aic32x4 *pll,
struct clk_aic32x4_pll_muldiv *settings)
{
/* Change to use regmap_bulk_read? */
unsigned int val;
int ret;
ret = regmap_read(pll->regmap, AIC32X4_PLLPR, &val);
if (ret < 0)
return ret;
settings->r = val & AIC32X4_PLL_R_MASK;
settings->p = (val & AIC32X4_PLL_P_MASK) >> AIC32X4_PLL_P_SHIFT;
ret = regmap_read(pll->regmap, AIC32X4_PLLJ, &val);
if (ret < 0)
return ret;
settings->j = val;
ret = regmap_read(pll->regmap, AIC32X4_PLLDMSB, &val);
if (ret < 0)
return ret;
settings->d = val << 8;
ret = regmap_read(pll->regmap, AIC32X4_PLLDLSB, &val);
if (ret < 0)
return ret;
settings->d |= val;
return 0;
}
static int clk_aic32x4_pll_set_muldiv(struct clk_aic32x4 *pll,
struct clk_aic32x4_pll_muldiv *settings)
{
int ret;
/* Change to use regmap_bulk_write for some if not all? */
ret = regmap_update_bits(pll->regmap, AIC32X4_PLLPR,
AIC32X4_PLL_R_MASK, settings->r);
if (ret < 0)
return ret;
ret = regmap_update_bits(pll->regmap, AIC32X4_PLLPR,
AIC32X4_PLL_P_MASK,
settings->p << AIC32X4_PLL_P_SHIFT);
if (ret < 0)
return ret;
ret = regmap_write(pll->regmap, AIC32X4_PLLJ, settings->j);
if (ret < 0)
return ret;
ret = regmap_write(pll->regmap, AIC32X4_PLLDMSB, (settings->d >> 8));
if (ret < 0)
return ret;
ret = regmap_write(pll->regmap, AIC32X4_PLLDLSB, (settings->d & 0xff));
if (ret < 0)
return ret;
return 0;
}
static unsigned long clk_aic32x4_pll_calc_rate(
struct clk_aic32x4_pll_muldiv *settings,
unsigned long parent_rate)
{
u64 rate;
/*
* We scale j by 10000 to account for the decimal part of P and divide
* it back out later.
*/
rate = (u64) parent_rate * settings->r *
((settings->j * 10000) + settings->d);
return (unsigned long) DIV_ROUND_UP_ULL(rate, settings->p * 10000);
}
static int clk_aic32x4_pll_calc_muldiv(struct clk_aic32x4_pll_muldiv *settings,
unsigned long rate, unsigned long parent_rate)
{
u64 multiplier;
settings->p = parent_rate / AIC32X4_MAX_PLL_CLKIN + 1;
if (settings->p > 8)
return -1;
/*
* We scale this figure by 10000 so that we can get the decimal part
* of the multiplier. This is because we can't do floating point
* math in the kernel.
*/
multiplier = (u64) rate * settings->p * 10000;
do_div(multiplier, parent_rate);
/*
* J can't be over 64, so R can scale this.
* R can't be greater than 4.
*/
settings->r = ((u32) multiplier / 640000) + 1;
if (settings->r > 4)
return -1;
do_div(multiplier, settings->r);
/*
* J can't be < 1.
*/
if (multiplier < 10000)
return -1;
/* Figure out the integer part, J, and the fractional part, D. */
settings->j = (u32) multiplier / 10000;
settings->d = (u32) multiplier % 10000;
return 0;
}
static unsigned long clk_aic32x4_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
struct clk_aic32x4_pll_muldiv settings;
int ret;
ret = clk_aic32x4_pll_get_muldiv(pll, &settings);
if (ret < 0)
return 0;
return clk_aic32x4_pll_calc_rate(&settings, parent_rate);
}
static long clk_aic32x4_pll_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
struct clk_aic32x4_pll_muldiv settings;
int ret;
ret = clk_aic32x4_pll_calc_muldiv(&settings, rate, *parent_rate);
if (ret < 0)
return 0;
return clk_aic32x4_pll_calc_rate(&settings, *parent_rate);
}
static int clk_aic32x4_pll_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
struct clk_aic32x4_pll_muldiv settings;
int ret;
ret = clk_aic32x4_pll_calc_muldiv(&settings, rate, parent_rate);
if (ret < 0)
return -EINVAL;
ret = clk_aic32x4_pll_set_muldiv(pll, &settings);
if (ret)
return ret;
/* 10ms is the delay to wait before the clocks are stable */
msleep(10);
return 0;
}
static int clk_aic32x4_pll_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
return regmap_update_bits(pll->regmap,
AIC32X4_CLKMUX,
AIC32X4_PLL_CLKIN_MASK,
index << AIC32X4_PLL_CLKIN_SHIFT);
}
static u8 clk_aic32x4_pll_get_parent(struct clk_hw *hw)
{
struct clk_aic32x4 *pll = to_clk_aic32x4(hw);
unsigned int val;
regmap_read(pll->regmap, AIC32X4_PLLPR, &val);
return (val & AIC32X4_PLL_CLKIN_MASK) >> AIC32X4_PLL_CLKIN_SHIFT;
}
static const struct clk_ops aic32x4_pll_ops = {
.prepare = clk_aic32x4_pll_prepare,
.unprepare = clk_aic32x4_pll_unprepare,
.is_prepared = clk_aic32x4_pll_is_prepared,
.recalc_rate = clk_aic32x4_pll_recalc_rate,
.round_rate = clk_aic32x4_pll_round_rate,
.set_rate = clk_aic32x4_pll_set_rate,
.set_parent = clk_aic32x4_pll_set_parent,
.get_parent = clk_aic32x4_pll_get_parent,
};
static int clk_aic32x4_codec_clkin_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_aic32x4 *mux = to_clk_aic32x4(hw);
return regmap_update_bits(mux->regmap,
AIC32X4_CLKMUX,
AIC32X4_CODEC_CLKIN_MASK, index << AIC32X4_CODEC_CLKIN_SHIFT);
}
static u8 clk_aic32x4_codec_clkin_get_parent(struct clk_hw *hw)
{
struct clk_aic32x4 *mux = to_clk_aic32x4(hw);
unsigned int val;
regmap_read(mux->regmap, AIC32X4_CLKMUX, &val);
return (val & AIC32X4_CODEC_CLKIN_MASK) >> AIC32X4_CODEC_CLKIN_SHIFT;
}
static const struct clk_ops aic32x4_codec_clkin_ops = {
.set_parent = clk_aic32x4_codec_clkin_set_parent,
.get_parent = clk_aic32x4_codec_clkin_get_parent,
};
static int clk_aic32x4_div_prepare(struct clk_hw *hw)
{
struct clk_aic32x4 *div = to_clk_aic32x4(hw);
return regmap_update_bits(div->regmap, div->reg,
AIC32X4_DIVEN, AIC32X4_DIVEN);
}
static void clk_aic32x4_div_unprepare(struct clk_hw *hw)
{
struct clk_aic32x4 *div = to_clk_aic32x4(hw);
regmap_update_bits(div->regmap, div->reg,
AIC32X4_DIVEN, 0);
}
static int clk_aic32x4_div_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_aic32x4 *div = to_clk_aic32x4(hw);
u8 divisor;
divisor = DIV_ROUND_UP(parent_rate, rate);
if (divisor > 128)
return -EINVAL;
return regmap_update_bits(div->regmap, div->reg,
AIC32X4_DIV_MASK, divisor);
}
static long clk_aic32x4_div_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long divisor;
divisor = DIV_ROUND_UP(*parent_rate, rate);
if (divisor > 128)
return -EINVAL;
return DIV_ROUND_UP(*parent_rate, divisor);
}
static unsigned long clk_aic32x4_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_aic32x4 *div = to_clk_aic32x4(hw);
unsigned int val;
regmap_read(div->regmap, div->reg, &val);
return DIV_ROUND_UP(parent_rate, val & AIC32X4_DIV_MASK);
}
static const struct clk_ops aic32x4_div_ops = {
.prepare = clk_aic32x4_div_prepare,
.unprepare = clk_aic32x4_div_unprepare,
.set_rate = clk_aic32x4_div_set_rate,
.round_rate = clk_aic32x4_div_round_rate,
.recalc_rate = clk_aic32x4_div_recalc_rate,
};
static int clk_aic32x4_bdiv_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_aic32x4 *mux = to_clk_aic32x4(hw);
return regmap_update_bits(mux->regmap, AIC32X4_IFACE3,
AIC32X4_BDIVCLK_MASK, index);
}
static u8 clk_aic32x4_bdiv_get_parent(struct clk_hw *hw)
{
struct clk_aic32x4 *mux = to_clk_aic32x4(hw);
unsigned int val;
regmap_read(mux->regmap, AIC32X4_IFACE3, &val);
return val & AIC32X4_BDIVCLK_MASK;
}
static const struct clk_ops aic32x4_bdiv_ops = {
.prepare = clk_aic32x4_div_prepare,
.unprepare = clk_aic32x4_div_unprepare,
.set_parent = clk_aic32x4_bdiv_set_parent,
.get_parent = clk_aic32x4_bdiv_get_parent,
.set_rate = clk_aic32x4_div_set_rate,
.round_rate = clk_aic32x4_div_round_rate,
.recalc_rate = clk_aic32x4_div_recalc_rate,
};
static struct aic32x4_clkdesc aic32x4_clkdesc_array[] = {
{
.name = "pll",
.parent_names =
(const char* []) { "mclk", "bclk", "gpio", "din" },
.num_parents = 4,
.ops = &aic32x4_pll_ops,
.reg = 0,
},
{
.name = "codec_clkin",
.parent_names =
(const char *[]) { "mclk", "bclk", "gpio", "pll" },
.num_parents = 4,
.ops = &aic32x4_codec_clkin_ops,
.reg = 0,
},
{
.name = "ndac",
.parent_names = (const char * []) { "codec_clkin" },
.num_parents = 1,
.ops = &aic32x4_div_ops,
.reg = AIC32X4_NDAC,
},
{
.name = "mdac",
.parent_names = (const char * []) { "ndac" },
.num_parents = 1,
.ops = &aic32x4_div_ops,
.reg = AIC32X4_MDAC,
},
{
.name = "nadc",
.parent_names = (const char * []) { "codec_clkin" },
.num_parents = 1,
.ops = &aic32x4_div_ops,
.reg = AIC32X4_NADC,
},
{
.name = "madc",
.parent_names = (const char * []) { "nadc" },
.num_parents = 1,
.ops = &aic32x4_div_ops,
.reg = AIC32X4_MADC,
},
{
.name = "bdiv",
.parent_names =
(const char *[]) { "ndac", "mdac", "nadc", "madc" },
.num_parents = 4,
.ops = &aic32x4_bdiv_ops,
.reg = AIC32X4_BCLKN,
},
};
static struct clk *aic32x4_register_clk(struct device *dev,
struct aic32x4_clkdesc *desc)
{
struct clk_init_data init;
struct clk_aic32x4 *priv;
const char *devname = dev_name(dev);
init.ops = desc->ops;
init.name = desc->name;
init.parent_names = desc->parent_names;
init.num_parents = desc->num_parents;
init.flags = 0;
priv = devm_kzalloc(dev, sizeof(struct clk_aic32x4), GFP_KERNEL);
if (priv == NULL)
return (struct clk *) -ENOMEM;
priv->dev = dev;
priv->hw.init = &init;
priv->regmap = dev_get_regmap(dev, NULL);
priv->reg = desc->reg;
clk_hw_register_clkdev(&priv->hw, desc->name, devname);
return devm_clk_register(dev, &priv->hw);
}
int aic32x4_register_clocks(struct device *dev, const char *mclk_name)
{
int i;
/*
* These lines are here to preserve the current functionality of
* the driver with regard to the DT. These should eventually be set
* by DT nodes so that the connections can be set up in configuration
* rather than code.
*/
aic32x4_clkdesc_array[0].parent_names =
(const char* []) { mclk_name, "bclk", "gpio", "din" };
aic32x4_clkdesc_array[1].parent_names =
(const char *[]) { mclk_name, "bclk", "gpio", "pll" };
for (i = 0; i < ARRAY_SIZE(aic32x4_clkdesc_array); ++i)
aic32x4_register_clk(dev, &aic32x4_clkdesc_array[i]);
return 0;
}
EXPORT_SYMBOL_GPL(aic32x4_register_clocks);