2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/drivers/block/skd_main.c
Ming Lei 56d18f62f5 block: kill BLK_MQ_F_SG_MERGE
QUEUE_FLAG_NO_SG_MERGE has been killed, so kill BLK_MQ_F_SG_MERGE too.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-15 08:40:12 -07:00

3672 lines
93 KiB
C

/*
* Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
* was acquired by Western Digital in 2012.
*
* Copyright 2012 sTec, Inc.
* Copyright (c) 2017 Western Digital Corporation or its affiliates.
*
* This file is part of the Linux kernel, and is made available under
* the terms of the GNU General Public License version 2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/compiler.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/hdreg.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/scatterlist.h>
#include <linux/version.h>
#include <linux/err.h>
#include <linux/aer.h>
#include <linux/wait.h>
#include <linux/stringify.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include "skd_s1120.h"
static int skd_dbg_level;
static int skd_isr_comp_limit = 4;
#define SKD_ASSERT(expr) \
do { \
if (unlikely(!(expr))) { \
pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
# expr, __FILE__, __func__, __LINE__); \
} \
} while (0)
#define DRV_NAME "skd"
#define PFX DRV_NAME ": "
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
#define PCI_VENDOR_ID_STEC 0x1B39
#define PCI_DEVICE_ID_S1120 0x0001
#define SKD_FUA_NV (1 << 1)
#define SKD_MINORS_PER_DEVICE 16
#define SKD_MAX_QUEUE_DEPTH 200u
#define SKD_PAUSE_TIMEOUT (5 * 1000)
#define SKD_N_FITMSG_BYTES (512u)
#define SKD_MAX_REQ_PER_MSG 14
#define SKD_N_SPECIAL_FITMSG_BYTES (128u)
/* SG elements are 32 bytes, so we can make this 4096 and still be under the
* 128KB limit. That allows 4096*4K = 16M xfer size
*/
#define SKD_N_SG_PER_REQ_DEFAULT 256u
#define SKD_N_COMPLETION_ENTRY 256u
#define SKD_N_READ_CAP_BYTES (8u)
#define SKD_N_INTERNAL_BYTES (512u)
#define SKD_SKCOMP_SIZE \
((sizeof(struct fit_completion_entry_v1) + \
sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
/* 5 bits of uniqifier, 0xF800 */
#define SKD_ID_TABLE_MASK (3u << 8u)
#define SKD_ID_RW_REQUEST (0u << 8u)
#define SKD_ID_INTERNAL (1u << 8u)
#define SKD_ID_FIT_MSG (3u << 8u)
#define SKD_ID_SLOT_MASK 0x00FFu
#define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
#define SKD_N_MAX_SECTORS 2048u
#define SKD_MAX_RETRIES 2u
#define SKD_TIMER_SECONDS(seconds) (seconds)
#define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
#define INQ_STD_NBYTES 36
enum skd_drvr_state {
SKD_DRVR_STATE_LOAD,
SKD_DRVR_STATE_IDLE,
SKD_DRVR_STATE_BUSY,
SKD_DRVR_STATE_STARTING,
SKD_DRVR_STATE_ONLINE,
SKD_DRVR_STATE_PAUSING,
SKD_DRVR_STATE_PAUSED,
SKD_DRVR_STATE_RESTARTING,
SKD_DRVR_STATE_RESUMING,
SKD_DRVR_STATE_STOPPING,
SKD_DRVR_STATE_FAULT,
SKD_DRVR_STATE_DISAPPEARED,
SKD_DRVR_STATE_PROTOCOL_MISMATCH,
SKD_DRVR_STATE_BUSY_ERASE,
SKD_DRVR_STATE_BUSY_SANITIZE,
SKD_DRVR_STATE_BUSY_IMMINENT,
SKD_DRVR_STATE_WAIT_BOOT,
SKD_DRVR_STATE_SYNCING,
};
#define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
#define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
#define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
#define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
#define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
#define SKD_START_WAIT_SECONDS 90u
enum skd_req_state {
SKD_REQ_STATE_IDLE,
SKD_REQ_STATE_SETUP,
SKD_REQ_STATE_BUSY,
SKD_REQ_STATE_COMPLETED,
SKD_REQ_STATE_TIMEOUT,
};
enum skd_check_status_action {
SKD_CHECK_STATUS_REPORT_GOOD,
SKD_CHECK_STATUS_REPORT_SMART_ALERT,
SKD_CHECK_STATUS_REQUEUE_REQUEST,
SKD_CHECK_STATUS_REPORT_ERROR,
SKD_CHECK_STATUS_BUSY_IMMINENT,
};
struct skd_msg_buf {
struct fit_msg_hdr fmh;
struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
};
struct skd_fitmsg_context {
u32 id;
u32 length;
struct skd_msg_buf *msg_buf;
dma_addr_t mb_dma_address;
};
struct skd_request_context {
enum skd_req_state state;
u16 id;
u32 fitmsg_id;
u8 flush_cmd;
enum dma_data_direction data_dir;
struct scatterlist *sg;
u32 n_sg;
u32 sg_byte_count;
struct fit_sg_descriptor *sksg_list;
dma_addr_t sksg_dma_address;
struct fit_completion_entry_v1 completion;
struct fit_comp_error_info err_info;
int retries;
blk_status_t status;
};
struct skd_special_context {
struct skd_request_context req;
void *data_buf;
dma_addr_t db_dma_address;
struct skd_msg_buf *msg_buf;
dma_addr_t mb_dma_address;
};
typedef enum skd_irq_type {
SKD_IRQ_LEGACY,
SKD_IRQ_MSI,
SKD_IRQ_MSIX
} skd_irq_type_t;
#define SKD_MAX_BARS 2
struct skd_device {
void __iomem *mem_map[SKD_MAX_BARS];
resource_size_t mem_phys[SKD_MAX_BARS];
u32 mem_size[SKD_MAX_BARS];
struct skd_msix_entry *msix_entries;
struct pci_dev *pdev;
int pcie_error_reporting_is_enabled;
spinlock_t lock;
struct gendisk *disk;
struct blk_mq_tag_set tag_set;
struct request_queue *queue;
struct skd_fitmsg_context *skmsg;
struct device *class_dev;
int gendisk_on;
int sync_done;
u32 devno;
u32 major;
char isr_name[30];
enum skd_drvr_state state;
u32 drive_state;
u32 cur_max_queue_depth;
u32 queue_low_water_mark;
u32 dev_max_queue_depth;
u32 num_fitmsg_context;
u32 num_req_context;
struct skd_fitmsg_context *skmsg_table;
struct skd_special_context internal_skspcl;
u32 read_cap_blocksize;
u32 read_cap_last_lba;
int read_cap_is_valid;
int inquiry_is_valid;
u8 inq_serial_num[13]; /*12 chars plus null term */
u8 skcomp_cycle;
u32 skcomp_ix;
struct kmem_cache *msgbuf_cache;
struct kmem_cache *sglist_cache;
struct kmem_cache *databuf_cache;
struct fit_completion_entry_v1 *skcomp_table;
struct fit_comp_error_info *skerr_table;
dma_addr_t cq_dma_address;
wait_queue_head_t waitq;
struct timer_list timer;
u32 timer_countdown;
u32 timer_substate;
int sgs_per_request;
u32 last_mtd;
u32 proto_ver;
int dbg_level;
u32 connect_time_stamp;
int connect_retries;
#define SKD_MAX_CONNECT_RETRIES 16
u32 drive_jiffies;
u32 timo_slot;
struct work_struct start_queue;
struct work_struct completion_worker;
};
#define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
#define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
#define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
{
u32 val = readl(skdev->mem_map[1] + offset);
if (unlikely(skdev->dbg_level >= 2))
dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
return val;
}
static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
u32 offset)
{
writel(val, skdev->mem_map[1] + offset);
if (unlikely(skdev->dbg_level >= 2))
dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
}
static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
u32 offset)
{
writeq(val, skdev->mem_map[1] + offset);
if (unlikely(skdev->dbg_level >= 2))
dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
val);
}
#define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
static int skd_isr_type = SKD_IRQ_DEFAULT;
module_param(skd_isr_type, int, 0444);
MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
" (0==legacy, 1==MSI, 2==MSI-X, default==1)");
#define SKD_MAX_REQ_PER_MSG_DEFAULT 1
static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
module_param(skd_max_req_per_msg, int, 0444);
MODULE_PARM_DESC(skd_max_req_per_msg,
"Maximum SCSI requests packed in a single message."
" (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
#define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
#define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
module_param(skd_max_queue_depth, int, 0444);
MODULE_PARM_DESC(skd_max_queue_depth,
"Maximum SCSI requests issued to s1120."
" (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
module_param(skd_sgs_per_request, int, 0444);
MODULE_PARM_DESC(skd_sgs_per_request,
"Maximum SG elements per block request."
" (1-4096, default==256)");
static int skd_max_pass_thru = 1;
module_param(skd_max_pass_thru, int, 0444);
MODULE_PARM_DESC(skd_max_pass_thru,
"Maximum SCSI pass-thru at a time. IGNORED");
module_param(skd_dbg_level, int, 0444);
MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
module_param(skd_isr_comp_limit, int, 0444);
MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
/* Major device number dynamically assigned. */
static u32 skd_major;
static void skd_destruct(struct skd_device *skdev);
static const struct block_device_operations skd_blockdev_ops;
static void skd_send_fitmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg);
static void skd_send_special_fitmsg(struct skd_device *skdev,
struct skd_special_context *skspcl);
static bool skd_preop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq);
static void skd_postop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq);
static void skd_restart_device(struct skd_device *skdev);
static int skd_quiesce_dev(struct skd_device *skdev);
static int skd_unquiesce_dev(struct skd_device *skdev);
static void skd_disable_interrupts(struct skd_device *skdev);
static void skd_isr_fwstate(struct skd_device *skdev);
static void skd_recover_requests(struct skd_device *skdev);
static void skd_soft_reset(struct skd_device *skdev);
const char *skd_drive_state_to_str(int state);
const char *skd_skdev_state_to_str(enum skd_drvr_state state);
static void skd_log_skdev(struct skd_device *skdev, const char *event);
static void skd_log_skreq(struct skd_device *skdev,
struct skd_request_context *skreq, const char *event);
/*
*****************************************************************************
* READ/WRITE REQUESTS
*****************************************************************************
*/
static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
{
int *count = data;
count++;
return true;
}
static int skd_in_flight(struct skd_device *skdev)
{
int count = 0;
blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
return count;
}
static void
skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
int data_dir, unsigned lba,
unsigned count)
{
if (data_dir == READ)
scsi_req->cdb[0] = READ_10;
else
scsi_req->cdb[0] = WRITE_10;
scsi_req->cdb[1] = 0;
scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
scsi_req->cdb[4] = (lba & 0xff00) >> 8;
scsi_req->cdb[5] = (lba & 0xff);
scsi_req->cdb[6] = 0;
scsi_req->cdb[7] = (count & 0xff00) >> 8;
scsi_req->cdb[8] = count & 0xff;
scsi_req->cdb[9] = 0;
}
static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
struct skd_request_context *skreq)
{
skreq->flush_cmd = 1;
scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
scsi_req->cdb[1] = 0;
scsi_req->cdb[2] = 0;
scsi_req->cdb[3] = 0;
scsi_req->cdb[4] = 0;
scsi_req->cdb[5] = 0;
scsi_req->cdb[6] = 0;
scsi_req->cdb[7] = 0;
scsi_req->cdb[8] = 0;
scsi_req->cdb[9] = 0;
}
/*
* Return true if and only if all pending requests should be failed.
*/
static bool skd_fail_all(struct request_queue *q)
{
struct skd_device *skdev = q->queuedata;
SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
skd_log_skdev(skdev, "req_not_online");
switch (skdev->state) {
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_WAIT_BOOT:
/* In case of starting, we haven't started the queue,
* so we can't get here... but requests are
* possibly hanging out waiting for us because we
* reported the dev/skd0 already. They'll wait
* forever if connect doesn't complete.
* What to do??? delay dev/skd0 ??
*/
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
return false;
case SKD_DRVR_STATE_BUSY_SANITIZE:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_DISAPPEARED:
default:
return true;
}
}
static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *mqd)
{
struct request *const req = mqd->rq;
struct request_queue *const q = req->q;
struct skd_device *skdev = q->queuedata;
struct skd_fitmsg_context *skmsg;
struct fit_msg_hdr *fmh;
const u32 tag = blk_mq_unique_tag(req);
struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
struct skd_scsi_request *scsi_req;
unsigned long flags = 0;
const u32 lba = blk_rq_pos(req);
const u32 count = blk_rq_sectors(req);
const int data_dir = rq_data_dir(req);
if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
if (!(req->rq_flags & RQF_DONTPREP)) {
skreq->retries = 0;
req->rq_flags |= RQF_DONTPREP;
}
blk_mq_start_request(req);
WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
tag, skd_max_queue_depth, q->nr_requests);
SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
dev_dbg(&skdev->pdev->dev,
"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
lba, count, count, data_dir);
skreq->id = tag + SKD_ID_RW_REQUEST;
skreq->flush_cmd = 0;
skreq->n_sg = 0;
skreq->sg_byte_count = 0;
skreq->fitmsg_id = 0;
skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
dev_dbg(&skdev->pdev->dev, "error Out\n");
skreq->status = BLK_STS_RESOURCE;
blk_mq_complete_request(req);
return BLK_STS_OK;
}
dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
skreq->n_sg *
sizeof(struct fit_sg_descriptor),
DMA_TO_DEVICE);
/* Either a FIT msg is in progress or we have to start one. */
if (skd_max_req_per_msg == 1) {
skmsg = NULL;
} else {
spin_lock_irqsave(&skdev->lock, flags);
skmsg = skdev->skmsg;
}
if (!skmsg) {
skmsg = &skdev->skmsg_table[tag];
skdev->skmsg = skmsg;
/* Initialize the FIT msg header */
fmh = &skmsg->msg_buf->fmh;
memset(fmh, 0, sizeof(*fmh));
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
skmsg->length = sizeof(*fmh);
} else {
fmh = &skmsg->msg_buf->fmh;
}
skreq->fitmsg_id = skmsg->id;
scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
memset(scsi_req, 0, sizeof(*scsi_req));
scsi_req->hdr.tag = skreq->id;
scsi_req->hdr.sg_list_dma_address =
cpu_to_be64(skreq->sksg_dma_address);
if (req_op(req) == REQ_OP_FLUSH) {
skd_prep_zerosize_flush_cdb(scsi_req, skreq);
SKD_ASSERT(skreq->flush_cmd == 1);
} else {
skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
}
if (req->cmd_flags & REQ_FUA)
scsi_req->cdb[1] |= SKD_FUA_NV;
scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
/* Complete resource allocations. */
skreq->state = SKD_REQ_STATE_BUSY;
skmsg->length += sizeof(struct skd_scsi_request);
fmh->num_protocol_cmds_coalesced++;
dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
skd_in_flight(skdev));
/*
* If the FIT msg buffer is full send it.
*/
if (skd_max_req_per_msg == 1) {
skd_send_fitmsg(skdev, skmsg);
} else {
if (mqd->last ||
fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
skd_send_fitmsg(skdev, skmsg);
skdev->skmsg = NULL;
}
spin_unlock_irqrestore(&skdev->lock, flags);
}
return BLK_STS_OK;
}
static enum blk_eh_timer_return skd_timed_out(struct request *req,
bool reserved)
{
struct skd_device *skdev = req->q->queuedata;
dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
blk_mq_unique_tag(req));
return BLK_EH_RESET_TIMER;
}
static void skd_complete_rq(struct request *req)
{
struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
blk_mq_end_request(req, skreq->status);
}
static bool skd_preop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq)
{
struct request *req = blk_mq_rq_from_pdu(skreq);
struct scatterlist *sgl = &skreq->sg[0], *sg;
int n_sg;
int i;
skreq->sg_byte_count = 0;
WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
skreq->data_dir != DMA_FROM_DEVICE);
n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
if (n_sg <= 0)
return false;
/*
* Map scatterlist to PCI bus addresses.
* Note PCI might change the number of entries.
*/
n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
if (n_sg <= 0)
return false;
SKD_ASSERT(n_sg <= skdev->sgs_per_request);
skreq->n_sg = n_sg;
for_each_sg(sgl, sg, n_sg, i) {
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
u32 cnt = sg_dma_len(sg);
uint64_t dma_addr = sg_dma_address(sg);
sgd->control = FIT_SGD_CONTROL_NOT_LAST;
sgd->byte_count = cnt;
skreq->sg_byte_count += cnt;
sgd->host_side_addr = dma_addr;
sgd->dev_side_addr = 0;
}
skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
if (unlikely(skdev->dbg_level > 1)) {
dev_dbg(&skdev->pdev->dev,
"skreq=%x sksg_list=%p sksg_dma=%pad\n",
skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
for (i = 0; i < n_sg; i++) {
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
dev_dbg(&skdev->pdev->dev,
" sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
i, sgd->byte_count, sgd->control,
sgd->host_side_addr, sgd->next_desc_ptr);
}
}
return true;
}
static void skd_postop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq)
{
/*
* restore the next ptr for next IO request so we
* don't have to set it every time.
*/
skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
skreq->sksg_dma_address +
((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
skreq->data_dir);
}
/*
*****************************************************************************
* TIMER
*****************************************************************************
*/
static void skd_timer_tick_not_online(struct skd_device *skdev);
static void skd_start_queue(struct work_struct *work)
{
struct skd_device *skdev = container_of(work, typeof(*skdev),
start_queue);
/*
* Although it is safe to call blk_start_queue() from interrupt
* context, blk_mq_start_hw_queues() must not be called from
* interrupt context.
*/
blk_mq_start_hw_queues(skdev->queue);
}
static void skd_timer_tick(struct timer_list *t)
{
struct skd_device *skdev = from_timer(skdev, t, timer);
unsigned long reqflags;
u32 state;
if (skdev->state == SKD_DRVR_STATE_FAULT)
/* The driver has declared fault, and we want it to
* stay that way until driver is reloaded.
*/
return;
spin_lock_irqsave(&skdev->lock, reqflags);
state = SKD_READL(skdev, FIT_STATUS);
state &= FIT_SR_DRIVE_STATE_MASK;
if (state != skdev->drive_state)
skd_isr_fwstate(skdev);
if (skdev->state != SKD_DRVR_STATE_ONLINE)
skd_timer_tick_not_online(skdev);
mod_timer(&skdev->timer, (jiffies + HZ));
spin_unlock_irqrestore(&skdev->lock, reqflags);
}
static void skd_timer_tick_not_online(struct skd_device *skdev)
{
switch (skdev->state) {
case SKD_DRVR_STATE_IDLE:
case SKD_DRVR_STATE_LOAD:
break;
case SKD_DRVR_STATE_BUSY_SANITIZE:
dev_dbg(&skdev->pdev->dev,
"drive busy sanitize[%x], driver[%x]\n",
skdev->drive_state, skdev->state);
/* If we've been in sanitize for 3 seconds, we figure we're not
* going to get anymore completions, so recover requests now
*/
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
skd_recover_requests(skdev);
break;
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
skdev->state, skdev->timer_countdown);
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
dev_dbg(&skdev->pdev->dev,
"busy[%x], timedout=%d, restarting device.",
skdev->state, skdev->timer_countdown);
skd_restart_device(skdev);
break;
case SKD_DRVR_STATE_WAIT_BOOT:
case SKD_DRVR_STATE_STARTING:
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
/* For now, we fault the drive. Could attempt resets to
* revcover at some point. */
skdev->state = SKD_DRVR_STATE_FAULT;
dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
skdev->drive_state);
/*start the queue so we can respond with error to requests */
/* wakeup anyone waiting for startup complete */
schedule_work(&skdev->start_queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_ONLINE:
/* shouldn't get here. */
break;
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
break;
case SKD_DRVR_STATE_RESTARTING:
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
/* For now, we fault the drive. Could attempt resets to
* revcover at some point. */
skdev->state = SKD_DRVR_STATE_FAULT;
dev_err(&skdev->pdev->dev,
"DriveFault Reconnect Timeout (%x)\n",
skdev->drive_state);
/*
* Recovering does two things:
* 1. completes IO with error
* 2. reclaims dma resources
* When is it safe to recover requests?
* - if the drive state is faulted
* - if the state is still soft reset after out timeout
* - if the drive registers are dead (state = FF)
* If it is "unsafe", we still need to recover, so we will
* disable pci bus mastering and disable our interrupts.
*/
if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
(skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
(skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
/* It never came out of soft reset. Try to
* recover the requests and then let them
* fail. This is to mitigate hung processes. */
skd_recover_requests(skdev);
else {
dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
skdev->drive_state);
pci_disable_device(skdev->pdev);
skd_disable_interrupts(skdev);
skd_recover_requests(skdev);
}
/*start the queue so we can respond with error to requests */
/* wakeup anyone waiting for startup complete */
schedule_work(&skdev->start_queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_RESUMING:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_DISAPPEARED:
default:
break;
}
}
static int skd_start_timer(struct skd_device *skdev)
{
int rc;
timer_setup(&skdev->timer, skd_timer_tick, 0);
rc = mod_timer(&skdev->timer, (jiffies + HZ));
if (rc)
dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
return rc;
}
static void skd_kill_timer(struct skd_device *skdev)
{
del_timer_sync(&skdev->timer);
}
/*
*****************************************************************************
* INTERNAL REQUESTS -- generated by driver itself
*****************************************************************************
*/
static int skd_format_internal_skspcl(struct skd_device *skdev)
{
struct skd_special_context *skspcl = &skdev->internal_skspcl;
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
struct fit_msg_hdr *fmh;
uint64_t dma_address;
struct skd_scsi_request *scsi;
fmh = &skspcl->msg_buf->fmh;
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
fmh->num_protocol_cmds_coalesced = 1;
scsi = &skspcl->msg_buf->scsi[0];
memset(scsi, 0, sizeof(*scsi));
dma_address = skspcl->req.sksg_dma_address;
scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
skspcl->req.n_sg = 1;
sgd->control = FIT_SGD_CONTROL_LAST;
sgd->byte_count = 0;
sgd->host_side_addr = skspcl->db_dma_address;
sgd->dev_side_addr = 0;
sgd->next_desc_ptr = 0LL;
return 1;
}
#define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
static void skd_send_internal_skspcl(struct skd_device *skdev,
struct skd_special_context *skspcl,
u8 opcode)
{
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
struct skd_scsi_request *scsi;
unsigned char *buf = skspcl->data_buf;
int i;
if (skspcl->req.state != SKD_REQ_STATE_IDLE)
/*
* A refresh is already in progress.
* Just wait for it to finish.
*/
return;
skspcl->req.state = SKD_REQ_STATE_BUSY;
scsi = &skspcl->msg_buf->scsi[0];
scsi->hdr.tag = skspcl->req.id;
memset(scsi->cdb, 0, sizeof(scsi->cdb));
switch (opcode) {
case TEST_UNIT_READY:
scsi->cdb[0] = TEST_UNIT_READY;
sgd->byte_count = 0;
scsi->hdr.sg_list_len_bytes = 0;
break;
case READ_CAPACITY:
scsi->cdb[0] = READ_CAPACITY;
sgd->byte_count = SKD_N_READ_CAP_BYTES;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
break;
case INQUIRY:
scsi->cdb[0] = INQUIRY;
scsi->cdb[1] = 0x01; /* evpd */
scsi->cdb[2] = 0x80; /* serial number page */
scsi->cdb[4] = 0x10;
sgd->byte_count = 16;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
break;
case SYNCHRONIZE_CACHE:
scsi->cdb[0] = SYNCHRONIZE_CACHE;
sgd->byte_count = 0;
scsi->hdr.sg_list_len_bytes = 0;
break;
case WRITE_BUFFER:
scsi->cdb[0] = WRITE_BUFFER;
scsi->cdb[1] = 0x02;
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
sgd->byte_count = WR_BUF_SIZE;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
/* fill incrementing byte pattern */
for (i = 0; i < sgd->byte_count; i++)
buf[i] = i & 0xFF;
break;
case READ_BUFFER:
scsi->cdb[0] = READ_BUFFER;
scsi->cdb[1] = 0x02;
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
sgd->byte_count = WR_BUF_SIZE;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
memset(skspcl->data_buf, 0, sgd->byte_count);
break;
default:
SKD_ASSERT("Don't know what to send");
return;
}
skd_send_special_fitmsg(skdev, skspcl);
}
static void skd_refresh_device_data(struct skd_device *skdev)
{
struct skd_special_context *skspcl = &skdev->internal_skspcl;
skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
}
static int skd_chk_read_buf(struct skd_device *skdev,
struct skd_special_context *skspcl)
{
unsigned char *buf = skspcl->data_buf;
int i;
/* check for incrementing byte pattern */
for (i = 0; i < WR_BUF_SIZE; i++)
if (buf[i] != (i & 0xFF))
return 1;
return 0;
}
static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
u8 code, u8 qual, u8 fruc)
{
/* If the check condition is of special interest, log a message */
if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
&& (code == 0x04) && (qual == 0x06)) {
dev_err(&skdev->pdev->dev,
"*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
key, code, qual, fruc);
}
}
static void skd_complete_internal(struct skd_device *skdev,
struct fit_completion_entry_v1 *skcomp,
struct fit_comp_error_info *skerr,
struct skd_special_context *skspcl)
{
u8 *buf = skspcl->data_buf;
u8 status;
int i;
struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
lockdep_assert_held(&skdev->lock);
SKD_ASSERT(skspcl == &skdev->internal_skspcl);
dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
dma_sync_single_for_cpu(&skdev->pdev->dev,
skspcl->db_dma_address,
skspcl->req.sksg_list[0].byte_count,
DMA_BIDIRECTIONAL);
skspcl->req.completion = *skcomp;
skspcl->req.state = SKD_REQ_STATE_IDLE;
status = skspcl->req.completion.status;
skd_log_check_status(skdev, status, skerr->key, skerr->code,
skerr->qual, skerr->fruc);
switch (scsi->cdb[0]) {
case TEST_UNIT_READY:
if (status == SAM_STAT_GOOD)
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
else if ((status == SAM_STAT_CHECK_CONDITION) &&
(skerr->key == MEDIUM_ERROR))
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
dev_dbg(&skdev->pdev->dev,
"TUR failed, don't send anymore state 0x%x\n",
skdev->state);
return;
}
dev_dbg(&skdev->pdev->dev,
"**** TUR failed, retry skerr\n");
skd_send_internal_skspcl(skdev, skspcl,
TEST_UNIT_READY);
}
break;
case WRITE_BUFFER:
if (status == SAM_STAT_GOOD)
skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
dev_dbg(&skdev->pdev->dev,
"write buffer failed, don't send anymore state 0x%x\n",
skdev->state);
return;
}
dev_dbg(&skdev->pdev->dev,
"**** write buffer failed, retry skerr\n");
skd_send_internal_skspcl(skdev, skspcl,
TEST_UNIT_READY);
}
break;
case READ_BUFFER:
if (status == SAM_STAT_GOOD) {
if (skd_chk_read_buf(skdev, skspcl) == 0)
skd_send_internal_skspcl(skdev, skspcl,
READ_CAPACITY);
else {
dev_err(&skdev->pdev->dev,
"*** W/R Buffer mismatch %d ***\n",
skdev->connect_retries);
if (skdev->connect_retries <
SKD_MAX_CONNECT_RETRIES) {
skdev->connect_retries++;
skd_soft_reset(skdev);
} else {
dev_err(&skdev->pdev->dev,
"W/R Buffer Connect Error\n");
return;
}
}
} else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
dev_dbg(&skdev->pdev->dev,
"read buffer failed, don't send anymore state 0x%x\n",
skdev->state);
return;
}
dev_dbg(&skdev->pdev->dev,
"**** read buffer failed, retry skerr\n");
skd_send_internal_skspcl(skdev, skspcl,
TEST_UNIT_READY);
}
break;
case READ_CAPACITY:
skdev->read_cap_is_valid = 0;
if (status == SAM_STAT_GOOD) {
skdev->read_cap_last_lba =
(buf[0] << 24) | (buf[1] << 16) |
(buf[2] << 8) | buf[3];
skdev->read_cap_blocksize =
(buf[4] << 24) | (buf[5] << 16) |
(buf[6] << 8) | buf[7];
dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
skdev->read_cap_last_lba,
skdev->read_cap_blocksize);
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
skdev->read_cap_is_valid = 1;
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
} else if ((status == SAM_STAT_CHECK_CONDITION) &&
(skerr->key == MEDIUM_ERROR)) {
skdev->read_cap_last_lba = ~0;
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
} else {
dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
skd_send_internal_skspcl(skdev, skspcl,
TEST_UNIT_READY);
}
break;
case INQUIRY:
skdev->inquiry_is_valid = 0;
if (status == SAM_STAT_GOOD) {
skdev->inquiry_is_valid = 1;
for (i = 0; i < 12; i++)
skdev->inq_serial_num[i] = buf[i + 4];
skdev->inq_serial_num[12] = 0;
}
if (skd_unquiesce_dev(skdev) < 0)
dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
/* connection is complete */
skdev->connect_retries = 0;
break;
case SYNCHRONIZE_CACHE:
if (status == SAM_STAT_GOOD)
skdev->sync_done = 1;
else
skdev->sync_done = -1;
wake_up_interruptible(&skdev->waitq);
break;
default:
SKD_ASSERT("we didn't send this");
}
}
/*
*****************************************************************************
* FIT MESSAGES
*****************************************************************************
*/
static void skd_send_fitmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg)
{
u64 qcmd;
dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
&skmsg->mb_dma_address, skd_in_flight(skdev));
dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
qcmd = skmsg->mb_dma_address;
qcmd |= FIT_QCMD_QID_NORMAL;
if (unlikely(skdev->dbg_level > 1)) {
u8 *bp = (u8 *)skmsg->msg_buf;
int i;
for (i = 0; i < skmsg->length; i += 8) {
dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
&bp[i]);
if (i == 0)
i = 64 - 8;
}
}
if (skmsg->length > 256)
qcmd |= FIT_QCMD_MSGSIZE_512;
else if (skmsg->length > 128)
qcmd |= FIT_QCMD_MSGSIZE_256;
else if (skmsg->length > 64)
qcmd |= FIT_QCMD_MSGSIZE_128;
else
/*
* This makes no sense because the FIT msg header is
* 64 bytes. If the msg is only 64 bytes long it has
* no payload.
*/
qcmd |= FIT_QCMD_MSGSIZE_64;
dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
skmsg->length, DMA_TO_DEVICE);
/* Make sure skd_msg_buf is written before the doorbell is triggered. */
smp_wmb();
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
}
static void skd_send_special_fitmsg(struct skd_device *skdev,
struct skd_special_context *skspcl)
{
u64 qcmd;
WARN_ON_ONCE(skspcl->req.n_sg != 1);
if (unlikely(skdev->dbg_level > 1)) {
u8 *bp = (u8 *)skspcl->msg_buf;
int i;
for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
&bp[i]);
if (i == 0)
i = 64 - 8;
}
dev_dbg(&skdev->pdev->dev,
"skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
skspcl, skspcl->req.id, skspcl->req.sksg_list,
&skspcl->req.sksg_dma_address);
for (i = 0; i < skspcl->req.n_sg; i++) {
struct fit_sg_descriptor *sgd =
&skspcl->req.sksg_list[i];
dev_dbg(&skdev->pdev->dev,
" sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
i, sgd->byte_count, sgd->control,
sgd->host_side_addr, sgd->next_desc_ptr);
}
}
/*
* Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
* and one 64-byte SSDI command.
*/
qcmd = skspcl->mb_dma_address;
qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
dma_sync_single_for_device(&skdev->pdev->dev,
skspcl->req.sksg_dma_address,
1 * sizeof(struct fit_sg_descriptor),
DMA_TO_DEVICE);
dma_sync_single_for_device(&skdev->pdev->dev,
skspcl->db_dma_address,
skspcl->req.sksg_list[0].byte_count,
DMA_BIDIRECTIONAL);
/* Make sure skd_msg_buf is written before the doorbell is triggered. */
smp_wmb();
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
}
/*
*****************************************************************************
* COMPLETION QUEUE
*****************************************************************************
*/
static void skd_complete_other(struct skd_device *skdev,
struct fit_completion_entry_v1 *skcomp,
struct fit_comp_error_info *skerr);
struct sns_info {
u8 type;
u8 stat;
u8 key;
u8 asc;
u8 ascq;
u8 mask;
enum skd_check_status_action action;
};
static struct sns_info skd_chkstat_table[] = {
/* Good */
{ 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
SKD_CHECK_STATUS_REPORT_GOOD },
/* Smart alerts */
{ 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
{ 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
/* Retry (with limits) */
{ 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
/* Busy (or about to be) */
{ 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
SKD_CHECK_STATUS_BUSY_IMMINENT },
};
/*
* Look up status and sense data to decide how to handle the error
* from the device.
* mask says which fields must match e.g., mask=0x18 means check
* type and stat, ignore key, asc, ascq.
*/
static enum skd_check_status_action
skd_check_status(struct skd_device *skdev,
u8 cmp_status, struct fit_comp_error_info *skerr)
{
int i;
dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
skerr->key, skerr->code, skerr->qual, skerr->fruc);
dev_dbg(&skdev->pdev->dev,
"stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
skerr->fruc);
/* Does the info match an entry in the good category? */
for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
struct sns_info *sns = &skd_chkstat_table[i];
if (sns->mask & 0x10)
if (skerr->type != sns->type)
continue;
if (sns->mask & 0x08)
if (cmp_status != sns->stat)
continue;
if (sns->mask & 0x04)
if (skerr->key != sns->key)
continue;
if (sns->mask & 0x02)
if (skerr->code != sns->asc)
continue;
if (sns->mask & 0x01)
if (skerr->qual != sns->ascq)
continue;
if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
dev_err(&skdev->pdev->dev,
"SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
skerr->key, skerr->code, skerr->qual);
}
return sns->action;
}
/* No other match, so nonzero status means error,
* zero status means good
*/
if (cmp_status) {
dev_dbg(&skdev->pdev->dev, "status check: error\n");
return SKD_CHECK_STATUS_REPORT_ERROR;
}
dev_dbg(&skdev->pdev->dev, "status check good default\n");
return SKD_CHECK_STATUS_REPORT_GOOD;
}
static void skd_resolve_req_exception(struct skd_device *skdev,
struct skd_request_context *skreq,
struct request *req)
{
u8 cmp_status = skreq->completion.status;
switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
case SKD_CHECK_STATUS_REPORT_GOOD:
case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
skreq->status = BLK_STS_OK;
blk_mq_complete_request(req);
break;
case SKD_CHECK_STATUS_BUSY_IMMINENT:
skd_log_skreq(skdev, skreq, "retry(busy)");
blk_mq_requeue_request(req, true);
dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
skdev->timer_countdown = SKD_TIMER_MINUTES(20);
skd_quiesce_dev(skdev);
break;
case SKD_CHECK_STATUS_REQUEUE_REQUEST:
if (++skreq->retries < SKD_MAX_RETRIES) {
skd_log_skreq(skdev, skreq, "retry");
blk_mq_requeue_request(req, true);
break;
}
/* fall through */
case SKD_CHECK_STATUS_REPORT_ERROR:
default:
skreq->status = BLK_STS_IOERR;
blk_mq_complete_request(req);
break;
}
}
static void skd_release_skreq(struct skd_device *skdev,
struct skd_request_context *skreq)
{
/*
* Reclaim the skd_request_context
*/
skreq->state = SKD_REQ_STATE_IDLE;
}
static int skd_isr_completion_posted(struct skd_device *skdev,
int limit, int *enqueued)
{
struct fit_completion_entry_v1 *skcmp;
struct fit_comp_error_info *skerr;
u16 req_id;
u32 tag;
u16 hwq = 0;
struct request *rq;
struct skd_request_context *skreq;
u16 cmp_cntxt;
u8 cmp_status;
u8 cmp_cycle;
u32 cmp_bytes;
int rc = 0;
int processed = 0;
lockdep_assert_held(&skdev->lock);
for (;; ) {
SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
cmp_cycle = skcmp->cycle;
cmp_cntxt = skcmp->tag;
cmp_status = skcmp->status;
cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
skerr = &skdev->skerr_table[skdev->skcomp_ix];
dev_dbg(&skdev->pdev->dev,
"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
cmp_cntxt, cmp_status, skd_in_flight(skdev),
cmp_bytes, skdev->proto_ver);
if (cmp_cycle != skdev->skcomp_cycle) {
dev_dbg(&skdev->pdev->dev, "end of completions\n");
break;
}
/*
* Update the completion queue head index and possibly
* the completion cycle count. 8-bit wrap-around.
*/
skdev->skcomp_ix++;
if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
skdev->skcomp_ix = 0;
skdev->skcomp_cycle++;
}
/*
* The command context is a unique 32-bit ID. The low order
* bits help locate the request. The request is usually a
* r/w request (see skd_start() above) or a special request.
*/
req_id = cmp_cntxt;
tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
/* Is this other than a r/w request? */
if (tag >= skdev->num_req_context) {
/*
* This is not a completion for a r/w request.
*/
WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
tag));
skd_complete_other(skdev, skcmp, skerr);
continue;
}
rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
tag))
continue;
skreq = blk_mq_rq_to_pdu(rq);
/*
* Make sure the request ID for the slot matches.
*/
if (skreq->id != req_id) {
dev_err(&skdev->pdev->dev,
"Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
req_id, skreq->id, cmp_cntxt);
continue;
}
SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
skreq->completion = *skcmp;
if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
skreq->err_info = *skerr;
skd_log_check_status(skdev, cmp_status, skerr->key,
skerr->code, skerr->qual,
skerr->fruc);
}
/* Release DMA resources for the request. */
if (skreq->n_sg > 0)
skd_postop_sg_list(skdev, skreq);
skd_release_skreq(skdev, skreq);
/*
* Capture the outcome and post it back to the native request.
*/
if (likely(cmp_status == SAM_STAT_GOOD)) {
skreq->status = BLK_STS_OK;
blk_mq_complete_request(rq);
} else {
skd_resolve_req_exception(skdev, skreq, rq);
}
/* skd_isr_comp_limit equal zero means no limit */
if (limit) {
if (++processed >= limit) {
rc = 1;
break;
}
}
}
if (skdev->state == SKD_DRVR_STATE_PAUSING &&
skd_in_flight(skdev) == 0) {
skdev->state = SKD_DRVR_STATE_PAUSED;
wake_up_interruptible(&skdev->waitq);
}
return rc;
}
static void skd_complete_other(struct skd_device *skdev,
struct fit_completion_entry_v1 *skcomp,
struct fit_comp_error_info *skerr)
{
u32 req_id = 0;
u32 req_table;
u32 req_slot;
struct skd_special_context *skspcl;
lockdep_assert_held(&skdev->lock);
req_id = skcomp->tag;
req_table = req_id & SKD_ID_TABLE_MASK;
req_slot = req_id & SKD_ID_SLOT_MASK;
dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
req_id, req_slot);
/*
* Based on the request id, determine how to dispatch this completion.
* This swich/case is finding the good cases and forwarding the
* completion entry. Errors are reported below the switch.
*/
switch (req_table) {
case SKD_ID_RW_REQUEST:
/*
* The caller, skd_isr_completion_posted() above,
* handles r/w requests. The only way we get here
* is if the req_slot is out of bounds.
*/
break;
case SKD_ID_INTERNAL:
if (req_slot == 0) {
skspcl = &skdev->internal_skspcl;
if (skspcl->req.id == req_id &&
skspcl->req.state == SKD_REQ_STATE_BUSY) {
skd_complete_internal(skdev,
skcomp, skerr, skspcl);
return;
}
}
break;
case SKD_ID_FIT_MSG:
/*
* These id's should never appear in a completion record.
*/
break;
default:
/*
* These id's should never appear anywhere;
*/
break;
}
/*
* If we get here it is a bad or stale id.
*/
}
static void skd_reset_skcomp(struct skd_device *skdev)
{
memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
skdev->skcomp_ix = 0;
skdev->skcomp_cycle = 1;
}
/*
*****************************************************************************
* INTERRUPTS
*****************************************************************************
*/
static void skd_completion_worker(struct work_struct *work)
{
struct skd_device *skdev =
container_of(work, struct skd_device, completion_worker);
unsigned long flags;
int flush_enqueued = 0;
spin_lock_irqsave(&skdev->lock, flags);
/*
* pass in limit=0, which means no limit..
* process everything in compq
*/
skd_isr_completion_posted(skdev, 0, &flush_enqueued);
schedule_work(&skdev->start_queue);
spin_unlock_irqrestore(&skdev->lock, flags);
}
static void skd_isr_msg_from_dev(struct skd_device *skdev);
static irqreturn_t
skd_isr(int irq, void *ptr)
{
struct skd_device *skdev = ptr;
u32 intstat;
u32 ack;
int rc = 0;
int deferred = 0;
int flush_enqueued = 0;
spin_lock(&skdev->lock);
for (;; ) {
intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
ack = FIT_INT_DEF_MASK;
ack &= intstat;
dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
ack);
/* As long as there is an int pending on device, keep
* running loop. When none, get out, but if we've never
* done any processing, call completion handler?
*/
if (ack == 0) {
/* No interrupts on device, but run the completion
* processor anyway?
*/
if (rc == 0)
if (likely (skdev->state
== SKD_DRVR_STATE_ONLINE))
deferred = 1;
break;
}
rc = IRQ_HANDLED;
SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
(skdev->state != SKD_DRVR_STATE_STOPPING))) {
if (intstat & FIT_ISH_COMPLETION_POSTED) {
/*
* If we have already deferred completion
* processing, don't bother running it again
*/
if (deferred == 0)
deferred =
skd_isr_completion_posted(skdev,
skd_isr_comp_limit, &flush_enqueued);
}
if (intstat & FIT_ISH_FW_STATE_CHANGE) {
skd_isr_fwstate(skdev);
if (skdev->state == SKD_DRVR_STATE_FAULT ||
skdev->state ==
SKD_DRVR_STATE_DISAPPEARED) {
spin_unlock(&skdev->lock);
return rc;
}
}
if (intstat & FIT_ISH_MSG_FROM_DEV)
skd_isr_msg_from_dev(skdev);
}
}
if (unlikely(flush_enqueued))
schedule_work(&skdev->start_queue);
if (deferred)
schedule_work(&skdev->completion_worker);
else if (!flush_enqueued)
schedule_work(&skdev->start_queue);
spin_unlock(&skdev->lock);
return rc;
}
static void skd_drive_fault(struct skd_device *skdev)
{
skdev->state = SKD_DRVR_STATE_FAULT;
dev_err(&skdev->pdev->dev, "Drive FAULT\n");
}
static void skd_drive_disappeared(struct skd_device *skdev)
{
skdev->state = SKD_DRVR_STATE_DISAPPEARED;
dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
}
static void skd_isr_fwstate(struct skd_device *skdev)
{
u32 sense;
u32 state;
u32 mtd;
int prev_driver_state = skdev->state;
sense = SKD_READL(skdev, FIT_STATUS);
state = sense & FIT_SR_DRIVE_STATE_MASK;
dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
skd_drive_state_to_str(state), state);
skdev->drive_state = state;
switch (skdev->drive_state) {
case FIT_SR_DRIVE_INIT:
if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
skd_disable_interrupts(skdev);
break;
}
if (skdev->state == SKD_DRVR_STATE_RESTARTING)
skd_recover_requests(skdev);
if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
skdev->timer_countdown = SKD_STARTING_TIMO;
skdev->state = SKD_DRVR_STATE_STARTING;
skd_soft_reset(skdev);
break;
}
mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_SR_DRIVE_ONLINE:
skdev->cur_max_queue_depth = skd_max_queue_depth;
if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
skdev->queue_low_water_mark =
skdev->cur_max_queue_depth * 2 / 3 + 1;
if (skdev->queue_low_water_mark < 1)
skdev->queue_low_water_mark = 1;
dev_info(&skdev->pdev->dev,
"Queue depth limit=%d dev=%d lowat=%d\n",
skdev->cur_max_queue_depth,
skdev->dev_max_queue_depth,
skdev->queue_low_water_mark);
skd_refresh_device_data(skdev);
break;
case FIT_SR_DRIVE_BUSY:
skdev->state = SKD_DRVR_STATE_BUSY;
skdev->timer_countdown = SKD_BUSY_TIMO;
skd_quiesce_dev(skdev);
break;
case FIT_SR_DRIVE_BUSY_SANITIZE:
/* set timer for 3 seconds, we'll abort any unfinished
* commands after that expires
*/
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
skdev->timer_countdown = SKD_TIMER_SECONDS(3);
schedule_work(&skdev->start_queue);
break;
case FIT_SR_DRIVE_BUSY_ERASE:
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
skdev->timer_countdown = SKD_BUSY_TIMO;
break;
case FIT_SR_DRIVE_OFFLINE:
skdev->state = SKD_DRVR_STATE_IDLE;
break;
case FIT_SR_DRIVE_SOFT_RESET:
switch (skdev->state) {
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
/* Expected by a caller of skd_soft_reset() */
break;
default:
skdev->state = SKD_DRVR_STATE_RESTARTING;
break;
}
break;
case FIT_SR_DRIVE_FW_BOOTING:
dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
break;
case FIT_SR_DRIVE_DEGRADED:
case FIT_SR_PCIE_LINK_DOWN:
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
break;
case FIT_SR_DRIVE_FAULT:
skd_drive_fault(skdev);
skd_recover_requests(skdev);
schedule_work(&skdev->start_queue);
break;
/* PCIe bus returned all Fs? */
case 0xFF:
dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
sense);
skd_drive_disappeared(skdev);
skd_recover_requests(skdev);
schedule_work(&skdev->start_queue);
break;
default:
/*
* Uknown FW State. Wait for a state we recognize.
*/
break;
}
dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
skd_skdev_state_to_str(skdev->state), skdev->state);
}
static bool skd_recover_request(struct request *req, void *data, bool reserved)
{
struct skd_device *const skdev = data;
struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
if (skreq->state != SKD_REQ_STATE_BUSY)
return true;
skd_log_skreq(skdev, skreq, "recover");
/* Release DMA resources for the request. */
if (skreq->n_sg > 0)
skd_postop_sg_list(skdev, skreq);
skreq->state = SKD_REQ_STATE_IDLE;
skreq->status = BLK_STS_IOERR;
blk_mq_complete_request(req);
return true;
}
static void skd_recover_requests(struct skd_device *skdev)
{
blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
}
static void skd_isr_msg_from_dev(struct skd_device *skdev)
{
u32 mfd;
u32 mtd;
u32 data;
mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
skdev->last_mtd);
/* ignore any mtd that is an ack for something we didn't send */
if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
return;
switch (FIT_MXD_TYPE(mfd)) {
case FIT_MTD_FITFW_INIT:
skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
dev_err(&skdev->pdev->dev, "protocol mismatch\n");
dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
dev_err(&skdev->pdev->dev, " please upgrade driver\n");
skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
skd_soft_reset(skdev);
break;
}
mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_GET_CMDQ_DEPTH:
skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
SKD_N_COMPLETION_ENTRY);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_SET_COMPQ_DEPTH:
SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_SET_COMPQ_ADDR:
skd_reset_skcomp(skdev);
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_HOST_ID:
/* hardware interface overflows in y2106 */
skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
data = skdev->connect_time_stamp & 0xFFFF;
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
skdev->drive_jiffies = FIT_MXD_DATA(mfd);
data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
skdev->connect_time_stamp, skdev->drive_jiffies);
break;
case FIT_MTD_ARM_QUEUE:
skdev->last_mtd = 0;
/*
* State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
*/
break;
default:
break;
}
}
static void skd_disable_interrupts(struct skd_device *skdev)
{
u32 sense;
sense = SKD_READL(skdev, FIT_CONTROL);
sense &= ~FIT_CR_ENABLE_INTERRUPTS;
SKD_WRITEL(skdev, sense, FIT_CONTROL);
dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
/* Note that the 1s is written. A 1-bit means
* disable, a 0 means enable.
*/
SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
}
static void skd_enable_interrupts(struct skd_device *skdev)
{
u32 val;
/* unmask interrupts first */
val = FIT_ISH_FW_STATE_CHANGE +
FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
/* Note that the compliment of mask is written. A 1-bit means
* disable, a 0 means enable. */
SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
val = SKD_READL(skdev, FIT_CONTROL);
val |= FIT_CR_ENABLE_INTERRUPTS;
dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
SKD_WRITEL(skdev, val, FIT_CONTROL);
}
/*
*****************************************************************************
* START, STOP, RESTART, QUIESCE, UNQUIESCE
*****************************************************************************
*/
static void skd_soft_reset(struct skd_device *skdev)
{
u32 val;
val = SKD_READL(skdev, FIT_CONTROL);
val |= (FIT_CR_SOFT_RESET);
dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
SKD_WRITEL(skdev, val, FIT_CONTROL);
}
static void skd_start_device(struct skd_device *skdev)
{
unsigned long flags;
u32 sense;
u32 state;
spin_lock_irqsave(&skdev->lock, flags);
/* ack all ghost interrupts */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
sense = SKD_READL(skdev, FIT_STATUS);
dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
state = sense & FIT_SR_DRIVE_STATE_MASK;
skdev->drive_state = state;
skdev->last_mtd = 0;
skdev->state = SKD_DRVR_STATE_STARTING;
skdev->timer_countdown = SKD_STARTING_TIMO;
skd_enable_interrupts(skdev);
switch (skdev->drive_state) {
case FIT_SR_DRIVE_OFFLINE:
dev_err(&skdev->pdev->dev, "Drive offline...\n");
break;
case FIT_SR_DRIVE_FW_BOOTING:
dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
break;
case FIT_SR_DRIVE_BUSY_SANITIZE:
dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_BUSY_ERASE:
dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_INIT:
case FIT_SR_DRIVE_ONLINE:
skd_soft_reset(skdev);
break;
case FIT_SR_DRIVE_BUSY:
dev_err(&skdev->pdev->dev, "Drive Busy...\n");
skdev->state = SKD_DRVR_STATE_BUSY;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_SOFT_RESET:
dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
break;
case FIT_SR_DRIVE_FAULT:
/* Fault state is bad...soft reset won't do it...
* Hard reset, maybe, but does it work on device?
* For now, just fault so the system doesn't hang.
*/
skd_drive_fault(skdev);
/*start the queue so we can respond with error to requests */
dev_dbg(&skdev->pdev->dev, "starting queue\n");
schedule_work(&skdev->start_queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case 0xFF:
/* Most likely the device isn't there or isn't responding
* to the BAR1 addresses. */
skd_drive_disappeared(skdev);
/*start the queue so we can respond with error to requests */
dev_dbg(&skdev->pdev->dev,
"starting queue to error-out reqs\n");
schedule_work(&skdev->start_queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
default:
dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
skdev->drive_state);
break;
}
state = SKD_READL(skdev, FIT_CONTROL);
dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
state = SKD_READL(skdev, FIT_INT_MASK_HOST);
dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
state = SKD_READL(skdev, FIT_HW_VERSION);
dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
spin_unlock_irqrestore(&skdev->lock, flags);
}
static void skd_stop_device(struct skd_device *skdev)
{
unsigned long flags;
struct skd_special_context *skspcl = &skdev->internal_skspcl;
u32 dev_state;
int i;
spin_lock_irqsave(&skdev->lock, flags);
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
goto stop_out;
}
if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
goto stop_out;
}
skdev->state = SKD_DRVR_STATE_SYNCING;
skdev->sync_done = 0;
skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
spin_unlock_irqrestore(&skdev->lock, flags);
wait_event_interruptible_timeout(skdev->waitq,
(skdev->sync_done), (10 * HZ));
spin_lock_irqsave(&skdev->lock, flags);
switch (skdev->sync_done) {
case 0:
dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
break;
case 1:
dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
break;
default:
dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
}
stop_out:
skdev->state = SKD_DRVR_STATE_STOPPING;
spin_unlock_irqrestore(&skdev->lock, flags);
skd_kill_timer(skdev);
spin_lock_irqsave(&skdev->lock, flags);
skd_disable_interrupts(skdev);
/* ensure all ints on device are cleared */
/* soft reset the device to unload with a clean slate */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
spin_unlock_irqrestore(&skdev->lock, flags);
/* poll every 100ms, 1 second timeout */
for (i = 0; i < 10; i++) {
dev_state =
SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
if (dev_state == FIT_SR_DRIVE_INIT)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(100));
}
if (dev_state != FIT_SR_DRIVE_INIT)
dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
dev_state);
}
/* assume spinlock is held */
static void skd_restart_device(struct skd_device *skdev)
{
u32 state;
/* ack all ghost interrupts */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
state = SKD_READL(skdev, FIT_STATUS);
dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
state &= FIT_SR_DRIVE_STATE_MASK;
skdev->drive_state = state;
skdev->last_mtd = 0;
skdev->state = SKD_DRVR_STATE_RESTARTING;
skdev->timer_countdown = SKD_RESTARTING_TIMO;
skd_soft_reset(skdev);
}
/* assume spinlock is held */
static int skd_quiesce_dev(struct skd_device *skdev)
{
int rc = 0;
switch (skdev->state) {
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
dev_dbg(&skdev->pdev->dev, "stopping queue\n");
blk_mq_stop_hw_queues(skdev->queue);
break;
case SKD_DRVR_STATE_ONLINE:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_RESUMING:
default:
rc = -EINVAL;
dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
skdev->state);
}
return rc;
}
/* assume spinlock is held */
static int skd_unquiesce_dev(struct skd_device *skdev)
{
int prev_driver_state = skdev->state;
skd_log_skdev(skdev, "unquiesce");
if (skdev->state == SKD_DRVR_STATE_ONLINE) {
dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
return 0;
}
if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
/*
* If there has been an state change to other than
* ONLINE, we will rely on controller state change
* to come back online and restart the queue.
* The BUSY state means that driver is ready to
* continue normal processing but waiting for controller
* to become available.
*/
skdev->state = SKD_DRVR_STATE_BUSY;
dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
return 0;
}
/*
* Drive has just come online, driver is either in startup,
* paused performing a task, or bust waiting for hardware.
*/
switch (skdev->state) {
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_IDLE:
case SKD_DRVR_STATE_LOAD:
skdev->state = SKD_DRVR_STATE_ONLINE;
dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
skd_skdev_state_to_str(prev_driver_state),
prev_driver_state, skd_skdev_state_to_str(skdev->state),
skdev->state);
dev_dbg(&skdev->pdev->dev,
"**** device ONLINE...starting block queue\n");
dev_dbg(&skdev->pdev->dev, "starting queue\n");
dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
schedule_work(&skdev->start_queue);
skdev->gendisk_on = 1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_DISAPPEARED:
default:
dev_dbg(&skdev->pdev->dev,
"**** driver state %d, not implemented\n",
skdev->state);
return -EBUSY;
}
return 0;
}
/*
*****************************************************************************
* PCIe MSI/MSI-X INTERRUPT HANDLERS
*****************************************************************************
*/
static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
SKD_READL(skdev, FIT_INT_STATUS_HOST));
dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
skd_isr_fwstate(skdev);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
int flush_enqueued = 0;
int deferred;
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
&flush_enqueued);
if (flush_enqueued)
schedule_work(&skdev->start_queue);
if (deferred)
schedule_work(&skdev->completion_worker);
else if (!flush_enqueued)
schedule_work(&skdev->start_queue);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
skd_isr_msg_from_dev(skdev);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
/*
*****************************************************************************
* PCIe MSI/MSI-X SETUP
*****************************************************************************
*/
struct skd_msix_entry {
char isr_name[30];
};
struct skd_init_msix_entry {
const char *name;
irq_handler_t handler;
};
#define SKD_MAX_MSIX_COUNT 13
#define SKD_MIN_MSIX_COUNT 7
#define SKD_BASE_MSIX_IRQ 4
static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
{ "(DMA 0)", skd_reserved_isr },
{ "(DMA 1)", skd_reserved_isr },
{ "(DMA 2)", skd_reserved_isr },
{ "(DMA 3)", skd_reserved_isr },
{ "(State Change)", skd_statec_isr },
{ "(COMPL_Q)", skd_comp_q },
{ "(MSG)", skd_msg_isr },
{ "(Reserved)", skd_reserved_isr },
{ "(Reserved)", skd_reserved_isr },
{ "(Queue Full 0)", skd_qfull_isr },
{ "(Queue Full 1)", skd_qfull_isr },
{ "(Queue Full 2)", skd_qfull_isr },
{ "(Queue Full 3)", skd_qfull_isr },
};
static int skd_acquire_msix(struct skd_device *skdev)
{
int i, rc;
struct pci_dev *pdev = skdev->pdev;
rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
PCI_IRQ_MSIX);
if (rc < 0) {
dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
goto out;
}
skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
sizeof(struct skd_msix_entry), GFP_KERNEL);
if (!skdev->msix_entries) {
rc = -ENOMEM;
dev_err(&skdev->pdev->dev, "msix table allocation error\n");
goto out;
}
/* Enable MSI-X vectors for the base queue */
for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
struct skd_msix_entry *qentry = &skdev->msix_entries[i];
snprintf(qentry->isr_name, sizeof(qentry->isr_name),
"%s%d-msix %s", DRV_NAME, skdev->devno,
msix_entries[i].name);
rc = devm_request_irq(&skdev->pdev->dev,
pci_irq_vector(skdev->pdev, i),
msix_entries[i].handler, 0,
qentry->isr_name, skdev);
if (rc) {
dev_err(&skdev->pdev->dev,
"Unable to register(%d) MSI-X handler %d: %s\n",
rc, i, qentry->isr_name);
goto msix_out;
}
}
dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
SKD_MAX_MSIX_COUNT);
return 0;
msix_out:
while (--i >= 0)
devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
out:
kfree(skdev->msix_entries);
skdev->msix_entries = NULL;
return rc;
}
static int skd_acquire_irq(struct skd_device *skdev)
{
struct pci_dev *pdev = skdev->pdev;
unsigned int irq_flag = PCI_IRQ_LEGACY;
int rc;
if (skd_isr_type == SKD_IRQ_MSIX) {
rc = skd_acquire_msix(skdev);
if (!rc)
return 0;
dev_err(&skdev->pdev->dev,
"failed to enable MSI-X, re-trying with MSI %d\n", rc);
}
snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
skdev->devno);
if (skd_isr_type != SKD_IRQ_LEGACY)
irq_flag |= PCI_IRQ_MSI;
rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
if (rc < 0) {
dev_err(&skdev->pdev->dev,
"failed to allocate the MSI interrupt %d\n", rc);
return rc;
}
rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
pdev->msi_enabled ? 0 : IRQF_SHARED,
skdev->isr_name, skdev);
if (rc) {
pci_free_irq_vectors(pdev);
dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
rc);
return rc;
}
return 0;
}
static void skd_release_irq(struct skd_device *skdev)
{
struct pci_dev *pdev = skdev->pdev;
if (skdev->msix_entries) {
int i;
for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
skdev);
}
kfree(skdev->msix_entries);
skdev->msix_entries = NULL;
} else {
devm_free_irq(&pdev->dev, pdev->irq, skdev);
}
pci_free_irq_vectors(pdev);
}
/*
*****************************************************************************
* CONSTRUCT
*****************************************************************************
*/
static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
dma_addr_t *dma_handle, gfp_t gfp,
enum dma_data_direction dir)
{
struct device *dev = &skdev->pdev->dev;
void *buf;
buf = kmem_cache_alloc(s, gfp);
if (!buf)
return NULL;
*dma_handle = dma_map_single(dev, buf,
kmem_cache_size(s), dir);
if (dma_mapping_error(dev, *dma_handle)) {
kmem_cache_free(s, buf);
buf = NULL;
}
return buf;
}
static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
void *vaddr, dma_addr_t dma_handle,
enum dma_data_direction dir)
{
if (!vaddr)
return;
dma_unmap_single(&skdev->pdev->dev, dma_handle,
kmem_cache_size(s), dir);
kmem_cache_free(s, vaddr);
}
static int skd_cons_skcomp(struct skd_device *skdev)
{
int rc = 0;
struct fit_completion_entry_v1 *skcomp;
dev_dbg(&skdev->pdev->dev,
"comp pci_alloc, total bytes %zd entries %d\n",
SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
&skdev->cq_dma_address, GFP_KERNEL);
if (skcomp == NULL) {
rc = -ENOMEM;
goto err_out;
}
skdev->skcomp_table = skcomp;
skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
sizeof(*skcomp) *
SKD_N_COMPLETION_ENTRY);
err_out:
return rc;
}
static int skd_cons_skmsg(struct skd_device *skdev)
{
int rc = 0;
u32 i;
dev_dbg(&skdev->pdev->dev,
"skmsg_table kcalloc, struct %lu, count %u total %lu\n",
sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
sizeof(struct skd_fitmsg_context),
GFP_KERNEL);
if (skdev->skmsg_table == NULL) {
rc = -ENOMEM;
goto err_out;
}
for (i = 0; i < skdev->num_fitmsg_context; i++) {
struct skd_fitmsg_context *skmsg;
skmsg = &skdev->skmsg_table[i];
skmsg->id = i + SKD_ID_FIT_MSG;
skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
SKD_N_FITMSG_BYTES,
&skmsg->mb_dma_address,
GFP_KERNEL);
if (skmsg->msg_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
(FIT_QCMD_ALIGN - 1),
"not aligned: msg_buf %p mb_dma_address %pad\n",
skmsg->msg_buf, &skmsg->mb_dma_address);
memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
}
err_out:
return rc;
}
static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
u32 n_sg,
dma_addr_t *ret_dma_addr)
{
struct fit_sg_descriptor *sg_list;
sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
if (sg_list != NULL) {
uint64_t dma_address = *ret_dma_addr;
u32 i;
for (i = 0; i < n_sg - 1; i++) {
uint64_t ndp_off;
ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
sg_list[i].next_desc_ptr = dma_address + ndp_off;
}
sg_list[i].next_desc_ptr = 0LL;
}
return sg_list;
}
static void skd_free_sg_list(struct skd_device *skdev,
struct fit_sg_descriptor *sg_list,
dma_addr_t dma_addr)
{
if (WARN_ON_ONCE(!sg_list))
return;
skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
DMA_TO_DEVICE);
}
static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx, unsigned int numa_node)
{
struct skd_device *skdev = set->driver_data;
struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
skreq->state = SKD_REQ_STATE_IDLE;
skreq->sg = (void *)(skreq + 1);
sg_init_table(skreq->sg, skd_sgs_per_request);
skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
&skreq->sksg_dma_address);
return skreq->sksg_list ? 0 : -ENOMEM;
}
static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx)
{
struct skd_device *skdev = set->driver_data;
struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
}
static int skd_cons_sksb(struct skd_device *skdev)
{
int rc = 0;
struct skd_special_context *skspcl;
skspcl = &skdev->internal_skspcl;
skspcl->req.id = 0 + SKD_ID_INTERNAL;
skspcl->req.state = SKD_REQ_STATE_IDLE;
skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
&skspcl->db_dma_address,
GFP_DMA | __GFP_ZERO,
DMA_BIDIRECTIONAL);
if (skspcl->data_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
&skspcl->mb_dma_address,
GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
if (skspcl->msg_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
&skspcl->req.sksg_dma_address);
if (skspcl->req.sksg_list == NULL) {
rc = -ENOMEM;
goto err_out;
}
if (!skd_format_internal_skspcl(skdev)) {
rc = -EINVAL;
goto err_out;
}
err_out:
return rc;
}
static const struct blk_mq_ops skd_mq_ops = {
.queue_rq = skd_mq_queue_rq,
.complete = skd_complete_rq,
.timeout = skd_timed_out,
.init_request = skd_init_request,
.exit_request = skd_exit_request,
};
static int skd_cons_disk(struct skd_device *skdev)
{
int rc = 0;
struct gendisk *disk;
struct request_queue *q;
unsigned long flags;
disk = alloc_disk(SKD_MINORS_PER_DEVICE);
if (!disk) {
rc = -ENOMEM;
goto err_out;
}
skdev->disk = disk;
sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
disk->major = skdev->major;
disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
disk->fops = &skd_blockdev_ops;
disk->private_data = skdev;
memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
skdev->tag_set.ops = &skd_mq_ops;
skdev->tag_set.nr_hw_queues = 1;
skdev->tag_set.queue_depth = skd_max_queue_depth;
skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
skdev->sgs_per_request * sizeof(struct scatterlist);
skdev->tag_set.numa_node = NUMA_NO_NODE;
skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
skdev->tag_set.driver_data = skdev;
rc = blk_mq_alloc_tag_set(&skdev->tag_set);
if (rc)
goto err_out;
q = blk_mq_init_queue(&skdev->tag_set);
if (IS_ERR(q)) {
blk_mq_free_tag_set(&skdev->tag_set);
rc = PTR_ERR(q);
goto err_out;
}
q->queuedata = skdev;
skdev->queue = q;
disk->queue = q;
blk_queue_write_cache(q, true, true);
blk_queue_max_segments(q, skdev->sgs_per_request);
blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
/* set optimal I/O size to 8KB */
blk_queue_io_opt(q, 8192);
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
blk_queue_rq_timeout(q, 8 * HZ);
spin_lock_irqsave(&skdev->lock, flags);
dev_dbg(&skdev->pdev->dev, "stopping queue\n");
blk_mq_stop_hw_queues(skdev->queue);
spin_unlock_irqrestore(&skdev->lock, flags);
err_out:
return rc;
}
#define SKD_N_DEV_TABLE 16u
static u32 skd_next_devno;
static struct skd_device *skd_construct(struct pci_dev *pdev)
{
struct skd_device *skdev;
int blk_major = skd_major;
size_t size;
int rc;
skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
if (!skdev) {
dev_err(&pdev->dev, "memory alloc failure\n");
return NULL;
}
skdev->state = SKD_DRVR_STATE_LOAD;
skdev->pdev = pdev;
skdev->devno = skd_next_devno++;
skdev->major = blk_major;
skdev->dev_max_queue_depth = 0;
skdev->num_req_context = skd_max_queue_depth;
skdev->num_fitmsg_context = skd_max_queue_depth;
skdev->cur_max_queue_depth = 1;
skdev->queue_low_water_mark = 1;
skdev->proto_ver = 99;
skdev->sgs_per_request = skd_sgs_per_request;
skdev->dbg_level = skd_dbg_level;
spin_lock_init(&skdev->lock);
INIT_WORK(&skdev->start_queue, skd_start_queue);
INIT_WORK(&skdev->completion_worker, skd_completion_worker);
size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!skdev->msgbuf_cache)
goto err_out;
WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
"skd-msgbuf: %d < %zd\n",
kmem_cache_size(skdev->msgbuf_cache), size);
size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!skdev->sglist_cache)
goto err_out;
WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
"skd-sglist: %d < %zd\n",
kmem_cache_size(skdev->sglist_cache), size);
size = SKD_N_INTERNAL_BYTES;
skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!skdev->databuf_cache)
goto err_out;
WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
"skd-databuf: %d < %zd\n",
kmem_cache_size(skdev->databuf_cache), size);
dev_dbg(&skdev->pdev->dev, "skcomp\n");
rc = skd_cons_skcomp(skdev);
if (rc < 0)
goto err_out;
dev_dbg(&skdev->pdev->dev, "skmsg\n");
rc = skd_cons_skmsg(skdev);
if (rc < 0)
goto err_out;
dev_dbg(&skdev->pdev->dev, "sksb\n");
rc = skd_cons_sksb(skdev);
if (rc < 0)
goto err_out;
dev_dbg(&skdev->pdev->dev, "disk\n");
rc = skd_cons_disk(skdev);
if (rc < 0)
goto err_out;
dev_dbg(&skdev->pdev->dev, "VICTORY\n");
return skdev;
err_out:
dev_dbg(&skdev->pdev->dev, "construct failed\n");
skd_destruct(skdev);
return NULL;
}
/*
*****************************************************************************
* DESTRUCT (FREE)
*****************************************************************************
*/
static void skd_free_skcomp(struct skd_device *skdev)
{
if (skdev->skcomp_table)
dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
skdev->skcomp_table, skdev->cq_dma_address);
skdev->skcomp_table = NULL;
skdev->cq_dma_address = 0;
}
static void skd_free_skmsg(struct skd_device *skdev)
{
u32 i;
if (skdev->skmsg_table == NULL)
return;
for (i = 0; i < skdev->num_fitmsg_context; i++) {
struct skd_fitmsg_context *skmsg;
skmsg = &skdev->skmsg_table[i];
if (skmsg->msg_buf != NULL) {
dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
skmsg->msg_buf,
skmsg->mb_dma_address);
}
skmsg->msg_buf = NULL;
skmsg->mb_dma_address = 0;
}
kfree(skdev->skmsg_table);
skdev->skmsg_table = NULL;
}
static void skd_free_sksb(struct skd_device *skdev)
{
struct skd_special_context *skspcl = &skdev->internal_skspcl;
skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
skspcl->db_dma_address, DMA_BIDIRECTIONAL);
skspcl->data_buf = NULL;
skspcl->db_dma_address = 0;
skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
skspcl->mb_dma_address, DMA_TO_DEVICE);
skspcl->msg_buf = NULL;
skspcl->mb_dma_address = 0;
skd_free_sg_list(skdev, skspcl->req.sksg_list,
skspcl->req.sksg_dma_address);
skspcl->req.sksg_list = NULL;
skspcl->req.sksg_dma_address = 0;
}
static void skd_free_disk(struct skd_device *skdev)
{
struct gendisk *disk = skdev->disk;
if (disk && (disk->flags & GENHD_FL_UP))
del_gendisk(disk);
if (skdev->queue) {
blk_cleanup_queue(skdev->queue);
skdev->queue = NULL;
if (disk)
disk->queue = NULL;
}
if (skdev->tag_set.tags)
blk_mq_free_tag_set(&skdev->tag_set);
put_disk(disk);
skdev->disk = NULL;
}
static void skd_destruct(struct skd_device *skdev)
{
if (skdev == NULL)
return;
cancel_work_sync(&skdev->start_queue);
dev_dbg(&skdev->pdev->dev, "disk\n");
skd_free_disk(skdev);
dev_dbg(&skdev->pdev->dev, "sksb\n");
skd_free_sksb(skdev);
dev_dbg(&skdev->pdev->dev, "skmsg\n");
skd_free_skmsg(skdev);
dev_dbg(&skdev->pdev->dev, "skcomp\n");
skd_free_skcomp(skdev);
kmem_cache_destroy(skdev->databuf_cache);
kmem_cache_destroy(skdev->sglist_cache);
kmem_cache_destroy(skdev->msgbuf_cache);
dev_dbg(&skdev->pdev->dev, "skdev\n");
kfree(skdev);
}
/*
*****************************************************************************
* BLOCK DEVICE (BDEV) GLUE
*****************************************************************************
*/
static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct skd_device *skdev;
u64 capacity;
skdev = bdev->bd_disk->private_data;
dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
bdev->bd_disk->disk_name, current->comm);
if (skdev->read_cap_is_valid) {
capacity = get_capacity(skdev->disk);
geo->heads = 64;
geo->sectors = 255;
geo->cylinders = (capacity) / (255 * 64);
return 0;
}
return -EIO;
}
static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
{
dev_dbg(&skdev->pdev->dev, "add_disk\n");
device_add_disk(parent, skdev->disk, NULL);
return 0;
}
static const struct block_device_operations skd_blockdev_ops = {
.owner = THIS_MODULE,
.getgeo = skd_bdev_getgeo,
};
/*
*****************************************************************************
* PCIe DRIVER GLUE
*****************************************************************************
*/
static const struct pci_device_id skd_pci_tbl[] = {
{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
{ 0 } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
static char *skd_pci_info(struct skd_device *skdev, char *str)
{
int pcie_reg;
strcpy(str, "PCIe (");
pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
if (pcie_reg) {
char lwstr[6];
uint16_t pcie_lstat, lspeed, lwidth;
pcie_reg += 0x12;
pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
lspeed = pcie_lstat & (0xF);
lwidth = (pcie_lstat & 0x3F0) >> 4;
if (lspeed == 1)
strcat(str, "2.5GT/s ");
else if (lspeed == 2)
strcat(str, "5.0GT/s ");
else
strcat(str, "<unknown> ");
snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
strcat(str, lwstr);
}
return str;
}
static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int i;
int rc = 0;
char pci_str[32];
struct skd_device *skdev;
dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
pdev->device);
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(&pdev->dev, "DMA mask error %d\n", rc);
goto err_out_regions;
}
if (!skd_major) {
rc = register_blkdev(0, DRV_NAME);
if (rc < 0)
goto err_out_regions;
BUG_ON(!rc);
skd_major = rc;
}
skdev = skd_construct(pdev);
if (skdev == NULL) {
rc = -ENOMEM;
goto err_out_regions;
}
skd_pci_info(skdev, pci_str);
dev_info(&pdev->dev, "%s 64bit\n", pci_str);
pci_set_master(pdev);
rc = pci_enable_pcie_error_reporting(pdev);
if (rc) {
dev_err(&pdev->dev,
"bad enable of PCIe error reporting rc=%d\n", rc);
skdev->pcie_error_reporting_is_enabled = 0;
} else
skdev->pcie_error_reporting_is_enabled = 1;
pci_set_drvdata(pdev, skdev);
for (i = 0; i < SKD_MAX_BARS; i++) {
skdev->mem_phys[i] = pci_resource_start(pdev, i);
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
skdev->mem_size[i]);
if (!skdev->mem_map[i]) {
dev_err(&pdev->dev,
"Unable to map adapter memory!\n");
rc = -ENODEV;
goto err_out_iounmap;
}
dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
skdev->mem_size[i]);
}
rc = skd_acquire_irq(skdev);
if (rc) {
dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
goto err_out_iounmap;
}
rc = skd_start_timer(skdev);
if (rc)
goto err_out_timer;
init_waitqueue_head(&skdev->waitq);
skd_start_device(skdev);
rc = wait_event_interruptible_timeout(skdev->waitq,
(skdev->gendisk_on),
(SKD_START_WAIT_SECONDS * HZ));
if (skdev->gendisk_on > 0) {
/* device came on-line after reset */
skd_bdev_attach(&pdev->dev, skdev);
rc = 0;
} else {
/* we timed out, something is wrong with the device,
don't add the disk structure */
dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
rc);
/* in case of no error; we timeout with ENXIO */
if (!rc)
rc = -ENXIO;
goto err_out_timer;
}
return rc;
err_out_timer:
skd_stop_device(skdev);
skd_release_irq(skdev);
err_out_iounmap:
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
skd_destruct(skdev);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return rc;
}
static void skd_pci_remove(struct pci_dev *pdev)
{
int i;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
dev_err(&pdev->dev, "no device data for PCI\n");
return;
}
skd_stop_device(skdev);
skd_release_irq(skdev);
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
skd_destruct(skdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return;
}
static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
dev_err(&pdev->dev, "no device data for PCI\n");
return -EIO;
}
skd_stop_device(skdev);
skd_release_irq(skdev);
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
pci_release_regions(pdev);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int skd_pci_resume(struct pci_dev *pdev)
{
int i;
int rc = 0;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
dev_err(&pdev->dev, "no device data for PCI\n");
return -1;
}
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(&pdev->dev, "DMA mask error %d\n", rc);
goto err_out_regions;
}
pci_set_master(pdev);
rc = pci_enable_pcie_error_reporting(pdev);
if (rc) {
dev_err(&pdev->dev,
"bad enable of PCIe error reporting rc=%d\n", rc);
skdev->pcie_error_reporting_is_enabled = 0;
} else
skdev->pcie_error_reporting_is_enabled = 1;
for (i = 0; i < SKD_MAX_BARS; i++) {
skdev->mem_phys[i] = pci_resource_start(pdev, i);
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
skdev->mem_size[i]);
if (!skdev->mem_map[i]) {
dev_err(&pdev->dev, "Unable to map adapter memory!\n");
rc = -ENODEV;
goto err_out_iounmap;
}
dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
skdev->mem_size[i]);
}
rc = skd_acquire_irq(skdev);
if (rc) {
dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
goto err_out_iounmap;
}
rc = skd_start_timer(skdev);
if (rc)
goto err_out_timer;
init_waitqueue_head(&skdev->waitq);
skd_start_device(skdev);
return rc;
err_out_timer:
skd_stop_device(skdev);
skd_release_irq(skdev);
err_out_iounmap:
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
return rc;
}
static void skd_pci_shutdown(struct pci_dev *pdev)
{
struct skd_device *skdev;
dev_err(&pdev->dev, "%s called\n", __func__);
skdev = pci_get_drvdata(pdev);
if (!skdev) {
dev_err(&pdev->dev, "no device data for PCI\n");
return;
}
dev_err(&pdev->dev, "calling stop\n");
skd_stop_device(skdev);
}
static struct pci_driver skd_driver = {
.name = DRV_NAME,
.id_table = skd_pci_tbl,
.probe = skd_pci_probe,
.remove = skd_pci_remove,
.suspend = skd_pci_suspend,
.resume = skd_pci_resume,
.shutdown = skd_pci_shutdown,
};
/*
*****************************************************************************
* LOGGING SUPPORT
*****************************************************************************
*/
const char *skd_drive_state_to_str(int state)
{
switch (state) {
case FIT_SR_DRIVE_OFFLINE:
return "OFFLINE";
case FIT_SR_DRIVE_INIT:
return "INIT";
case FIT_SR_DRIVE_ONLINE:
return "ONLINE";
case FIT_SR_DRIVE_BUSY:
return "BUSY";
case FIT_SR_DRIVE_FAULT:
return "FAULT";
case FIT_SR_DRIVE_DEGRADED:
return "DEGRADED";
case FIT_SR_PCIE_LINK_DOWN:
return "INK_DOWN";
case FIT_SR_DRIVE_SOFT_RESET:
return "SOFT_RESET";
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
return "NEED_FW";
case FIT_SR_DRIVE_INIT_FAULT:
return "INIT_FAULT";
case FIT_SR_DRIVE_BUSY_SANITIZE:
return "BUSY_SANITIZE";
case FIT_SR_DRIVE_BUSY_ERASE:
return "BUSY_ERASE";
case FIT_SR_DRIVE_FW_BOOTING:
return "FW_BOOTING";
default:
return "???";
}
}
const char *skd_skdev_state_to_str(enum skd_drvr_state state)
{
switch (state) {
case SKD_DRVR_STATE_LOAD:
return "LOAD";
case SKD_DRVR_STATE_IDLE:
return "IDLE";
case SKD_DRVR_STATE_BUSY:
return "BUSY";
case SKD_DRVR_STATE_STARTING:
return "STARTING";
case SKD_DRVR_STATE_ONLINE:
return "ONLINE";
case SKD_DRVR_STATE_PAUSING:
return "PAUSING";
case SKD_DRVR_STATE_PAUSED:
return "PAUSED";
case SKD_DRVR_STATE_RESTARTING:
return "RESTARTING";
case SKD_DRVR_STATE_RESUMING:
return "RESUMING";
case SKD_DRVR_STATE_STOPPING:
return "STOPPING";
case SKD_DRVR_STATE_SYNCING:
return "SYNCING";
case SKD_DRVR_STATE_FAULT:
return "FAULT";
case SKD_DRVR_STATE_DISAPPEARED:
return "DISAPPEARED";
case SKD_DRVR_STATE_BUSY_ERASE:
return "BUSY_ERASE";
case SKD_DRVR_STATE_BUSY_SANITIZE:
return "BUSY_SANITIZE";
case SKD_DRVR_STATE_BUSY_IMMINENT:
return "BUSY_IMMINENT";
case SKD_DRVR_STATE_WAIT_BOOT:
return "WAIT_BOOT";
default:
return "???";
}
}
static const char *skd_skreq_state_to_str(enum skd_req_state state)
{
switch (state) {
case SKD_REQ_STATE_IDLE:
return "IDLE";
case SKD_REQ_STATE_SETUP:
return "SETUP";
case SKD_REQ_STATE_BUSY:
return "BUSY";
case SKD_REQ_STATE_COMPLETED:
return "COMPLETED";
case SKD_REQ_STATE_TIMEOUT:
return "TIMEOUT";
default:
return "???";
}
}
static void skd_log_skdev(struct skd_device *skdev, const char *event)
{
dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
skd_skdev_state_to_str(skdev->state), skdev->state);
dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
skd_in_flight(skdev), skdev->cur_max_queue_depth,
skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
skdev->skcomp_cycle, skdev->skcomp_ix);
}
static void skd_log_skreq(struct skd_device *skdev,
struct skd_request_context *skreq, const char *event)
{
struct request *req = blk_mq_rq_from_pdu(skreq);
u32 lba = blk_rq_pos(req);
u32 count = blk_rq_sectors(req);
dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
skreq->fitmsg_id);
dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
skreq->data_dir, skreq->n_sg);
dev_dbg(&skdev->pdev->dev,
"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
count, count, (int)rq_data_dir(req));
}
/*
*****************************************************************************
* MODULE GLUE
*****************************************************************************
*/
static int __init skd_init(void)
{
BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
switch (skd_isr_type) {
case SKD_IRQ_LEGACY:
case SKD_IRQ_MSI:
case SKD_IRQ_MSIX:
break;
default:
pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
skd_isr_type, SKD_IRQ_DEFAULT);
skd_isr_type = SKD_IRQ_DEFAULT;
}
if (skd_max_queue_depth < 1 ||
skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
}
if (skd_max_req_per_msg < 1 ||
skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
}
if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
}
if (skd_dbg_level < 0 || skd_dbg_level > 2) {
pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
skd_dbg_level, 0);
skd_dbg_level = 0;
}
if (skd_isr_comp_limit < 0) {
pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
skd_isr_comp_limit, 0);
skd_isr_comp_limit = 0;
}
return pci_register_driver(&skd_driver);
}
static void __exit skd_exit(void)
{
pci_unregister_driver(&skd_driver);
if (skd_major)
unregister_blkdev(skd_major, DRV_NAME);
}
module_init(skd_init);
module_exit(skd_exit);