mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 22:24:09 +08:00
00e5a2bbcc
The size of the vmemmap section is hardcoded to 1 TB to support the
maximum amount of system RAM in 4-level paging mode - 64 TB.
However, 1 TB is not enough for vmemmap in 5-level paging mode. Assuming
the size of struct page is 64 Bytes, to support 4 PB system RAM in 5-level,
64 TB of vmemmap area is needed:
4 * 1000^5 PB / 4096 bytes page size * 64 bytes per page struct / 1000^4 TB = 62.5 TB.
This hardcoding may cause vmemmap to corrupt the following
cpu_entry_area section, if KASLR puts vmemmap very close to it and the
actual vmemmap size is bigger than 1 TB.
So calculate the actual size of the vmemmap region needed and then align
it up to 1 TB boundary.
In 4-level paging mode it is always 1 TB. In 5-level it's adjusted on
demand. The current code reserves 0.5 PB for vmemmap on 5-level. With
this change, the space can be saved and thus used to increase entropy
for the randomization.
[ bp: Spell out how the 64 TB needed for vmemmap is computed and massage commit
message. ]
Fixes: eedb92abb9
("x86/mm: Make virtual memory layout dynamic for CONFIG_X86_5LEVEL=y")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Kirill A. Shutemov <kirill@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: kirill.shutemov@linux.intel.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190523025744.3756-1-bhe@redhat.com
214 lines
6.4 KiB
C
214 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file implements KASLR memory randomization for x86_64. It randomizes
|
|
* the virtual address space of kernel memory regions (physical memory
|
|
* mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
|
|
* exploits relying on predictable kernel addresses.
|
|
*
|
|
* Entropy is generated using the KASLR early boot functions now shared in
|
|
* the lib directory (originally written by Kees Cook). Randomization is
|
|
* done on PGD & P4D/PUD page table levels to increase possible addresses.
|
|
* The physical memory mapping code was adapted to support P4D/PUD level
|
|
* virtual addresses. This implementation on the best configuration provides
|
|
* 30,000 possible virtual addresses in average for each memory region.
|
|
* An additional low memory page is used to ensure each CPU can start with
|
|
* a PGD aligned virtual address (for realmode).
|
|
*
|
|
* The order of each memory region is not changed. The feature looks at
|
|
* the available space for the regions based on different configuration
|
|
* options and randomizes the base and space between each. The size of the
|
|
* physical memory mapping is the available physical memory.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/random.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/kaslr.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
#define TB_SHIFT 40
|
|
|
|
/*
|
|
* The end address could depend on more configuration options to make the
|
|
* highest amount of space for randomization available, but that's too hard
|
|
* to keep straight and caused issues already.
|
|
*/
|
|
static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
|
|
|
|
/*
|
|
* Memory regions randomized by KASLR (except modules that use a separate logic
|
|
* earlier during boot). The list is ordered based on virtual addresses. This
|
|
* order is kept after randomization.
|
|
*/
|
|
static __initdata struct kaslr_memory_region {
|
|
unsigned long *base;
|
|
unsigned long size_tb;
|
|
} kaslr_regions[] = {
|
|
{ &page_offset_base, 0 },
|
|
{ &vmalloc_base, 0 },
|
|
{ &vmemmap_base, 0 },
|
|
};
|
|
|
|
/* Get size in bytes used by the memory region */
|
|
static inline unsigned long get_padding(struct kaslr_memory_region *region)
|
|
{
|
|
return (region->size_tb << TB_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Apply no randomization if KASLR was disabled at boot or if KASAN
|
|
* is enabled. KASAN shadow mappings rely on regions being PGD aligned.
|
|
*/
|
|
static inline bool kaslr_memory_enabled(void)
|
|
{
|
|
return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
|
|
}
|
|
|
|
/* Initialize base and padding for each memory region randomized with KASLR */
|
|
void __init kernel_randomize_memory(void)
|
|
{
|
|
size_t i;
|
|
unsigned long vaddr_start, vaddr;
|
|
unsigned long rand, memory_tb;
|
|
struct rnd_state rand_state;
|
|
unsigned long remain_entropy;
|
|
unsigned long vmemmap_size;
|
|
|
|
vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
|
|
vaddr = vaddr_start;
|
|
|
|
/*
|
|
* These BUILD_BUG_ON checks ensure the memory layout is consistent
|
|
* with the vaddr_start/vaddr_end variables. These checks are very
|
|
* limited....
|
|
*/
|
|
BUILD_BUG_ON(vaddr_start >= vaddr_end);
|
|
BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
|
|
BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
|
|
|
|
if (!kaslr_memory_enabled())
|
|
return;
|
|
|
|
kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
|
|
kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
|
|
|
|
/*
|
|
* Update Physical memory mapping to available and
|
|
* add padding if needed (especially for memory hotplug support).
|
|
*/
|
|
BUG_ON(kaslr_regions[0].base != &page_offset_base);
|
|
memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
|
|
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
|
|
|
|
/* Adapt phyiscal memory region size based on available memory */
|
|
if (memory_tb < kaslr_regions[0].size_tb)
|
|
kaslr_regions[0].size_tb = memory_tb;
|
|
|
|
/*
|
|
* Calculate the vmemmap region size in TBs, aligned to a TB
|
|
* boundary.
|
|
*/
|
|
vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
|
|
sizeof(struct page);
|
|
kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
|
|
|
|
/* Calculate entropy available between regions */
|
|
remain_entropy = vaddr_end - vaddr_start;
|
|
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
|
|
remain_entropy -= get_padding(&kaslr_regions[i]);
|
|
|
|
prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
|
|
unsigned long entropy;
|
|
|
|
/*
|
|
* Select a random virtual address using the extra entropy
|
|
* available.
|
|
*/
|
|
entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
|
|
prandom_bytes_state(&rand_state, &rand, sizeof(rand));
|
|
entropy = (rand % (entropy + 1)) & PUD_MASK;
|
|
vaddr += entropy;
|
|
*kaslr_regions[i].base = vaddr;
|
|
|
|
/*
|
|
* Jump the region and add a minimum padding based on
|
|
* randomization alignment.
|
|
*/
|
|
vaddr += get_padding(&kaslr_regions[i]);
|
|
vaddr = round_up(vaddr + 1, PUD_SIZE);
|
|
remain_entropy -= entropy;
|
|
}
|
|
}
|
|
|
|
static void __meminit init_trampoline_pud(void)
|
|
{
|
|
pud_t *pud_page_tramp, *pud, *pud_tramp;
|
|
p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
|
|
unsigned long paddr, vaddr;
|
|
pgd_t *pgd;
|
|
|
|
pud_page_tramp = alloc_low_page();
|
|
|
|
/*
|
|
* There are two mappings for the low 1MB area, the direct mapping
|
|
* and the 1:1 mapping for the real mode trampoline:
|
|
*
|
|
* Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
|
|
* 1:1 mapping: virt_addr = phys_addr
|
|
*/
|
|
paddr = 0;
|
|
vaddr = (unsigned long)__va(paddr);
|
|
pgd = pgd_offset_k(vaddr);
|
|
|
|
p4d = p4d_offset(pgd, vaddr);
|
|
pud = pud_offset(p4d, vaddr);
|
|
|
|
pud_tramp = pud_page_tramp + pud_index(paddr);
|
|
*pud_tramp = *pud;
|
|
|
|
if (pgtable_l5_enabled()) {
|
|
p4d_page_tramp = alloc_low_page();
|
|
|
|
p4d_tramp = p4d_page_tramp + p4d_index(paddr);
|
|
|
|
set_p4d(p4d_tramp,
|
|
__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
|
|
|
|
set_pgd(&trampoline_pgd_entry,
|
|
__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
|
|
} else {
|
|
set_pgd(&trampoline_pgd_entry,
|
|
__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The real mode trampoline, which is required for bootstrapping CPUs
|
|
* occupies only a small area under the low 1MB. See reserve_real_mode()
|
|
* for details.
|
|
*
|
|
* If KASLR is disabled the first PGD entry of the direct mapping is copied
|
|
* to map the real mode trampoline.
|
|
*
|
|
* If KASLR is enabled, copy only the PUD which covers the low 1MB
|
|
* area. This limits the randomization granularity to 1GB for both 4-level
|
|
* and 5-level paging.
|
|
*/
|
|
void __meminit init_trampoline(void)
|
|
{
|
|
if (!kaslr_memory_enabled()) {
|
|
init_trampoline_default();
|
|
return;
|
|
}
|
|
|
|
init_trampoline_pud();
|
|
}
|