mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
60063497a9
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2552 lines
66 KiB
C
2552 lines
66 KiB
C
/* auditsc.c -- System-call auditing support
|
|
* Handles all system-call specific auditing features.
|
|
*
|
|
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
|
|
* Copyright 2005 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (C) 2005, 2006 IBM Corporation
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
|
|
*
|
|
* Many of the ideas implemented here are from Stephen C. Tweedie,
|
|
* especially the idea of avoiding a copy by using getname.
|
|
*
|
|
* The method for actual interception of syscall entry and exit (not in
|
|
* this file -- see entry.S) is based on a GPL'd patch written by
|
|
* okir@suse.de and Copyright 2003 SuSE Linux AG.
|
|
*
|
|
* POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
|
|
* 2006.
|
|
*
|
|
* The support of additional filter rules compares (>, <, >=, <=) was
|
|
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
|
|
*
|
|
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
|
|
* filesystem information.
|
|
*
|
|
* Subject and object context labeling support added by <danjones@us.ibm.com>
|
|
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/types.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/time.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/unistd.h>
|
|
#include <linux/security.h>
|
|
#include <linux/list.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs_struct.h>
|
|
|
|
#include "audit.h"
|
|
|
|
/* AUDIT_NAMES is the number of slots we reserve in the audit_context
|
|
* for saving names from getname(). */
|
|
#define AUDIT_NAMES 20
|
|
|
|
/* Indicates that audit should log the full pathname. */
|
|
#define AUDIT_NAME_FULL -1
|
|
|
|
/* no execve audit message should be longer than this (userspace limits) */
|
|
#define MAX_EXECVE_AUDIT_LEN 7500
|
|
|
|
/* number of audit rules */
|
|
int audit_n_rules;
|
|
|
|
/* determines whether we collect data for signals sent */
|
|
int audit_signals;
|
|
|
|
struct audit_cap_data {
|
|
kernel_cap_t permitted;
|
|
kernel_cap_t inheritable;
|
|
union {
|
|
unsigned int fE; /* effective bit of a file capability */
|
|
kernel_cap_t effective; /* effective set of a process */
|
|
};
|
|
};
|
|
|
|
/* When fs/namei.c:getname() is called, we store the pointer in name and
|
|
* we don't let putname() free it (instead we free all of the saved
|
|
* pointers at syscall exit time).
|
|
*
|
|
* Further, in fs/namei.c:path_lookup() we store the inode and device. */
|
|
struct audit_names {
|
|
const char *name;
|
|
int name_len; /* number of name's characters to log */
|
|
unsigned name_put; /* call __putname() for this name */
|
|
unsigned long ino;
|
|
dev_t dev;
|
|
umode_t mode;
|
|
uid_t uid;
|
|
gid_t gid;
|
|
dev_t rdev;
|
|
u32 osid;
|
|
struct audit_cap_data fcap;
|
|
unsigned int fcap_ver;
|
|
};
|
|
|
|
struct audit_aux_data {
|
|
struct audit_aux_data *next;
|
|
int type;
|
|
};
|
|
|
|
#define AUDIT_AUX_IPCPERM 0
|
|
|
|
/* Number of target pids per aux struct. */
|
|
#define AUDIT_AUX_PIDS 16
|
|
|
|
struct audit_aux_data_execve {
|
|
struct audit_aux_data d;
|
|
int argc;
|
|
int envc;
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
struct audit_aux_data_pids {
|
|
struct audit_aux_data d;
|
|
pid_t target_pid[AUDIT_AUX_PIDS];
|
|
uid_t target_auid[AUDIT_AUX_PIDS];
|
|
uid_t target_uid[AUDIT_AUX_PIDS];
|
|
unsigned int target_sessionid[AUDIT_AUX_PIDS];
|
|
u32 target_sid[AUDIT_AUX_PIDS];
|
|
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
|
|
int pid_count;
|
|
};
|
|
|
|
struct audit_aux_data_bprm_fcaps {
|
|
struct audit_aux_data d;
|
|
struct audit_cap_data fcap;
|
|
unsigned int fcap_ver;
|
|
struct audit_cap_data old_pcap;
|
|
struct audit_cap_data new_pcap;
|
|
};
|
|
|
|
struct audit_aux_data_capset {
|
|
struct audit_aux_data d;
|
|
pid_t pid;
|
|
struct audit_cap_data cap;
|
|
};
|
|
|
|
struct audit_tree_refs {
|
|
struct audit_tree_refs *next;
|
|
struct audit_chunk *c[31];
|
|
};
|
|
|
|
/* The per-task audit context. */
|
|
struct audit_context {
|
|
int dummy; /* must be the first element */
|
|
int in_syscall; /* 1 if task is in a syscall */
|
|
enum audit_state state, current_state;
|
|
unsigned int serial; /* serial number for record */
|
|
int major; /* syscall number */
|
|
struct timespec ctime; /* time of syscall entry */
|
|
unsigned long argv[4]; /* syscall arguments */
|
|
long return_code;/* syscall return code */
|
|
u64 prio;
|
|
int return_valid; /* return code is valid */
|
|
int name_count;
|
|
struct audit_names names[AUDIT_NAMES];
|
|
char * filterkey; /* key for rule that triggered record */
|
|
struct path pwd;
|
|
struct audit_context *previous; /* For nested syscalls */
|
|
struct audit_aux_data *aux;
|
|
struct audit_aux_data *aux_pids;
|
|
struct sockaddr_storage *sockaddr;
|
|
size_t sockaddr_len;
|
|
/* Save things to print about task_struct */
|
|
pid_t pid, ppid;
|
|
uid_t uid, euid, suid, fsuid;
|
|
gid_t gid, egid, sgid, fsgid;
|
|
unsigned long personality;
|
|
int arch;
|
|
|
|
pid_t target_pid;
|
|
uid_t target_auid;
|
|
uid_t target_uid;
|
|
unsigned int target_sessionid;
|
|
u32 target_sid;
|
|
char target_comm[TASK_COMM_LEN];
|
|
|
|
struct audit_tree_refs *trees, *first_trees;
|
|
struct list_head killed_trees;
|
|
int tree_count;
|
|
|
|
int type;
|
|
union {
|
|
struct {
|
|
int nargs;
|
|
long args[6];
|
|
} socketcall;
|
|
struct {
|
|
uid_t uid;
|
|
gid_t gid;
|
|
mode_t mode;
|
|
u32 osid;
|
|
int has_perm;
|
|
uid_t perm_uid;
|
|
gid_t perm_gid;
|
|
mode_t perm_mode;
|
|
unsigned long qbytes;
|
|
} ipc;
|
|
struct {
|
|
mqd_t mqdes;
|
|
struct mq_attr mqstat;
|
|
} mq_getsetattr;
|
|
struct {
|
|
mqd_t mqdes;
|
|
int sigev_signo;
|
|
} mq_notify;
|
|
struct {
|
|
mqd_t mqdes;
|
|
size_t msg_len;
|
|
unsigned int msg_prio;
|
|
struct timespec abs_timeout;
|
|
} mq_sendrecv;
|
|
struct {
|
|
int oflag;
|
|
mode_t mode;
|
|
struct mq_attr attr;
|
|
} mq_open;
|
|
struct {
|
|
pid_t pid;
|
|
struct audit_cap_data cap;
|
|
} capset;
|
|
struct {
|
|
int fd;
|
|
int flags;
|
|
} mmap;
|
|
};
|
|
int fds[2];
|
|
|
|
#if AUDIT_DEBUG
|
|
int put_count;
|
|
int ino_count;
|
|
#endif
|
|
};
|
|
|
|
static inline int open_arg(int flags, int mask)
|
|
{
|
|
int n = ACC_MODE(flags);
|
|
if (flags & (O_TRUNC | O_CREAT))
|
|
n |= AUDIT_PERM_WRITE;
|
|
return n & mask;
|
|
}
|
|
|
|
static int audit_match_perm(struct audit_context *ctx, int mask)
|
|
{
|
|
unsigned n;
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
n = ctx->major;
|
|
|
|
switch (audit_classify_syscall(ctx->arch, n)) {
|
|
case 0: /* native */
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR, n))
|
|
return 1;
|
|
return 0;
|
|
case 1: /* 32bit on biarch */
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
|
|
return 1;
|
|
return 0;
|
|
case 2: /* open */
|
|
return mask & ACC_MODE(ctx->argv[1]);
|
|
case 3: /* openat */
|
|
return mask & ACC_MODE(ctx->argv[2]);
|
|
case 4: /* socketcall */
|
|
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
|
|
case 5: /* execve */
|
|
return mask & AUDIT_PERM_EXEC;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int audit_match_filetype(struct audit_context *ctx, int which)
|
|
{
|
|
unsigned index = which & ~S_IFMT;
|
|
mode_t mode = which & S_IFMT;
|
|
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
|
|
if (index >= ctx->name_count)
|
|
return 0;
|
|
if (ctx->names[index].ino == -1)
|
|
return 0;
|
|
if ((ctx->names[index].mode ^ mode) & S_IFMT)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
|
|
* ->first_trees points to its beginning, ->trees - to the current end of data.
|
|
* ->tree_count is the number of free entries in array pointed to by ->trees.
|
|
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
|
|
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
|
|
* it's going to remain 1-element for almost any setup) until we free context itself.
|
|
* References in it _are_ dropped - at the same time we free/drop aux stuff.
|
|
*/
|
|
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
static void audit_set_auditable(struct audit_context *ctx)
|
|
{
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_RECORD_CONTEXT;
|
|
}
|
|
}
|
|
|
|
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
int left = ctx->tree_count;
|
|
if (likely(left)) {
|
|
p->c[--left] = chunk;
|
|
ctx->tree_count = left;
|
|
return 1;
|
|
}
|
|
if (!p)
|
|
return 0;
|
|
p = p->next;
|
|
if (p) {
|
|
p->c[30] = chunk;
|
|
ctx->trees = p;
|
|
ctx->tree_count = 30;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int grow_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
|
|
if (!ctx->trees) {
|
|
ctx->trees = p;
|
|
return 0;
|
|
}
|
|
if (p)
|
|
p->next = ctx->trees;
|
|
else
|
|
ctx->first_trees = ctx->trees;
|
|
ctx->tree_count = 31;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void unroll_tree_refs(struct audit_context *ctx,
|
|
struct audit_tree_refs *p, int count)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_tree_refs *q;
|
|
int n;
|
|
if (!p) {
|
|
/* we started with empty chain */
|
|
p = ctx->first_trees;
|
|
count = 31;
|
|
/* if the very first allocation has failed, nothing to do */
|
|
if (!p)
|
|
return;
|
|
}
|
|
n = count;
|
|
for (q = p; q != ctx->trees; q = q->next, n = 31) {
|
|
while (n--) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
}
|
|
while (n-- > ctx->tree_count) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
ctx->trees = p;
|
|
ctx->tree_count = count;
|
|
#endif
|
|
}
|
|
|
|
static void free_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p, *q;
|
|
for (p = ctx->first_trees; p; p = q) {
|
|
q = p->next;
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_tree_refs *p;
|
|
int n;
|
|
if (!tree)
|
|
return 0;
|
|
/* full ones */
|
|
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
|
|
for (n = 0; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
/* partial */
|
|
if (p) {
|
|
for (n = ctx->tree_count; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Determine if any context name data matches a rule's watch data */
|
|
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
|
|
* otherwise.
|
|
*
|
|
* If task_creation is true, this is an explicit indication that we are
|
|
* filtering a task rule at task creation time. This and tsk == current are
|
|
* the only situations where tsk->cred may be accessed without an rcu read lock.
|
|
*/
|
|
static int audit_filter_rules(struct task_struct *tsk,
|
|
struct audit_krule *rule,
|
|
struct audit_context *ctx,
|
|
struct audit_names *name,
|
|
enum audit_state *state,
|
|
bool task_creation)
|
|
{
|
|
const struct cred *cred;
|
|
int i, j, need_sid = 1;
|
|
u32 sid;
|
|
|
|
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
|
|
|
|
for (i = 0; i < rule->field_count; i++) {
|
|
struct audit_field *f = &rule->fields[i];
|
|
int result = 0;
|
|
|
|
switch (f->type) {
|
|
case AUDIT_PID:
|
|
result = audit_comparator(tsk->pid, f->op, f->val);
|
|
break;
|
|
case AUDIT_PPID:
|
|
if (ctx) {
|
|
if (!ctx->ppid)
|
|
ctx->ppid = sys_getppid();
|
|
result = audit_comparator(ctx->ppid, f->op, f->val);
|
|
}
|
|
break;
|
|
case AUDIT_UID:
|
|
result = audit_comparator(cred->uid, f->op, f->val);
|
|
break;
|
|
case AUDIT_EUID:
|
|
result = audit_comparator(cred->euid, f->op, f->val);
|
|
break;
|
|
case AUDIT_SUID:
|
|
result = audit_comparator(cred->suid, f->op, f->val);
|
|
break;
|
|
case AUDIT_FSUID:
|
|
result = audit_comparator(cred->fsuid, f->op, f->val);
|
|
break;
|
|
case AUDIT_GID:
|
|
result = audit_comparator(cred->gid, f->op, f->val);
|
|
break;
|
|
case AUDIT_EGID:
|
|
result = audit_comparator(cred->egid, f->op, f->val);
|
|
break;
|
|
case AUDIT_SGID:
|
|
result = audit_comparator(cred->sgid, f->op, f->val);
|
|
break;
|
|
case AUDIT_FSGID:
|
|
result = audit_comparator(cred->fsgid, f->op, f->val);
|
|
break;
|
|
case AUDIT_PERS:
|
|
result = audit_comparator(tsk->personality, f->op, f->val);
|
|
break;
|
|
case AUDIT_ARCH:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->arch, f->op, f->val);
|
|
break;
|
|
|
|
case AUDIT_EXIT:
|
|
if (ctx && ctx->return_valid)
|
|
result = audit_comparator(ctx->return_code, f->op, f->val);
|
|
break;
|
|
case AUDIT_SUCCESS:
|
|
if (ctx && ctx->return_valid) {
|
|
if (f->val)
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
|
|
else
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
|
|
}
|
|
break;
|
|
case AUDIT_DEVMAJOR:
|
|
if (name)
|
|
result = audit_comparator(MAJOR(name->dev),
|
|
f->op, f->val);
|
|
else if (ctx) {
|
|
for (j = 0; j < ctx->name_count; j++) {
|
|
if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_DEVMINOR:
|
|
if (name)
|
|
result = audit_comparator(MINOR(name->dev),
|
|
f->op, f->val);
|
|
else if (ctx) {
|
|
for (j = 0; j < ctx->name_count; j++) {
|
|
if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_INODE:
|
|
if (name)
|
|
result = (name->ino == f->val);
|
|
else if (ctx) {
|
|
for (j = 0; j < ctx->name_count; j++) {
|
|
if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_WATCH:
|
|
if (name)
|
|
result = audit_watch_compare(rule->watch, name->ino, name->dev);
|
|
break;
|
|
case AUDIT_DIR:
|
|
if (ctx)
|
|
result = match_tree_refs(ctx, rule->tree);
|
|
break;
|
|
case AUDIT_LOGINUID:
|
|
result = 0;
|
|
if (ctx)
|
|
result = audit_comparator(tsk->loginuid, f->op, f->val);
|
|
break;
|
|
case AUDIT_SUBJ_USER:
|
|
case AUDIT_SUBJ_ROLE:
|
|
case AUDIT_SUBJ_TYPE:
|
|
case AUDIT_SUBJ_SEN:
|
|
case AUDIT_SUBJ_CLR:
|
|
/* NOTE: this may return negative values indicating
|
|
a temporary error. We simply treat this as a
|
|
match for now to avoid losing information that
|
|
may be wanted. An error message will also be
|
|
logged upon error */
|
|
if (f->lsm_rule) {
|
|
if (need_sid) {
|
|
security_task_getsecid(tsk, &sid);
|
|
need_sid = 0;
|
|
}
|
|
result = security_audit_rule_match(sid, f->type,
|
|
f->op,
|
|
f->lsm_rule,
|
|
ctx);
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_USER:
|
|
case AUDIT_OBJ_ROLE:
|
|
case AUDIT_OBJ_TYPE:
|
|
case AUDIT_OBJ_LEV_LOW:
|
|
case AUDIT_OBJ_LEV_HIGH:
|
|
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
|
|
also applies here */
|
|
if (f->lsm_rule) {
|
|
/* Find files that match */
|
|
if (name) {
|
|
result = security_audit_rule_match(
|
|
name->osid, f->type, f->op,
|
|
f->lsm_rule, ctx);
|
|
} else if (ctx) {
|
|
for (j = 0; j < ctx->name_count; j++) {
|
|
if (security_audit_rule_match(
|
|
ctx->names[j].osid,
|
|
f->type, f->op,
|
|
f->lsm_rule, ctx)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Find ipc objects that match */
|
|
if (!ctx || ctx->type != AUDIT_IPC)
|
|
break;
|
|
if (security_audit_rule_match(ctx->ipc.osid,
|
|
f->type, f->op,
|
|
f->lsm_rule, ctx))
|
|
++result;
|
|
}
|
|
break;
|
|
case AUDIT_ARG0:
|
|
case AUDIT_ARG1:
|
|
case AUDIT_ARG2:
|
|
case AUDIT_ARG3:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
|
|
break;
|
|
case AUDIT_FILTERKEY:
|
|
/* ignore this field for filtering */
|
|
result = 1;
|
|
break;
|
|
case AUDIT_PERM:
|
|
result = audit_match_perm(ctx, f->val);
|
|
break;
|
|
case AUDIT_FILETYPE:
|
|
result = audit_match_filetype(ctx, f->val);
|
|
break;
|
|
}
|
|
|
|
if (!result)
|
|
return 0;
|
|
}
|
|
|
|
if (ctx) {
|
|
if (rule->prio <= ctx->prio)
|
|
return 0;
|
|
if (rule->filterkey) {
|
|
kfree(ctx->filterkey);
|
|
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
|
|
}
|
|
ctx->prio = rule->prio;
|
|
}
|
|
switch (rule->action) {
|
|
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
|
|
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* At process creation time, we can determine if system-call auditing is
|
|
* completely disabled for this task. Since we only have the task
|
|
* structure at this point, we can only check uid and gid.
|
|
*/
|
|
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
|
|
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
|
|
&state, true)) {
|
|
if (state == AUDIT_RECORD_CONTEXT)
|
|
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
|
|
rcu_read_unlock();
|
|
return state;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return AUDIT_BUILD_CONTEXT;
|
|
}
|
|
|
|
/* At syscall entry and exit time, this filter is called if the
|
|
* audit_state is not low enough that auditing cannot take place, but is
|
|
* also not high enough that we already know we have to write an audit
|
|
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
|
|
*/
|
|
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
|
|
struct audit_context *ctx,
|
|
struct list_head *list)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
if (audit_pid && tsk->tgid == audit_pid)
|
|
return AUDIT_DISABLED;
|
|
|
|
rcu_read_lock();
|
|
if (!list_empty(list)) {
|
|
int word = AUDIT_WORD(ctx->major);
|
|
int bit = AUDIT_BIT(ctx->major);
|
|
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
if ((e->rule.mask[word] & bit) == bit &&
|
|
audit_filter_rules(tsk, &e->rule, ctx, NULL,
|
|
&state, false)) {
|
|
rcu_read_unlock();
|
|
ctx->current_state = state;
|
|
return state;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return AUDIT_BUILD_CONTEXT;
|
|
}
|
|
|
|
/* At syscall exit time, this filter is called if any audit_names[] have been
|
|
* collected during syscall processing. We only check rules in sublists at hash
|
|
* buckets applicable to the inode numbers in audit_names[].
|
|
* Regarding audit_state, same rules apply as for audit_filter_syscall().
|
|
*/
|
|
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
|
|
{
|
|
int i;
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
if (audit_pid && tsk->tgid == audit_pid)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < ctx->name_count; i++) {
|
|
int word = AUDIT_WORD(ctx->major);
|
|
int bit = AUDIT_BIT(ctx->major);
|
|
struct audit_names *n = &ctx->names[i];
|
|
int h = audit_hash_ino((u32)n->ino);
|
|
struct list_head *list = &audit_inode_hash[h];
|
|
|
|
if (list_empty(list))
|
|
continue;
|
|
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
if ((e->rule.mask[word] & bit) == bit &&
|
|
audit_filter_rules(tsk, &e->rule, ctx, n,
|
|
&state, false)) {
|
|
rcu_read_unlock();
|
|
ctx->current_state = state;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static inline struct audit_context *audit_get_context(struct task_struct *tsk,
|
|
int return_valid,
|
|
long return_code)
|
|
{
|
|
struct audit_context *context = tsk->audit_context;
|
|
|
|
if (likely(!context))
|
|
return NULL;
|
|
context->return_valid = return_valid;
|
|
|
|
/*
|
|
* we need to fix up the return code in the audit logs if the actual
|
|
* return codes are later going to be fixed up by the arch specific
|
|
* signal handlers
|
|
*
|
|
* This is actually a test for:
|
|
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
|
|
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
|
|
*
|
|
* but is faster than a bunch of ||
|
|
*/
|
|
if (unlikely(return_code <= -ERESTARTSYS) &&
|
|
(return_code >= -ERESTART_RESTARTBLOCK) &&
|
|
(return_code != -ENOIOCTLCMD))
|
|
context->return_code = -EINTR;
|
|
else
|
|
context->return_code = return_code;
|
|
|
|
if (context->in_syscall && !context->dummy) {
|
|
audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
|
|
audit_filter_inodes(tsk, context);
|
|
}
|
|
|
|
tsk->audit_context = NULL;
|
|
return context;
|
|
}
|
|
|
|
static inline void audit_free_names(struct audit_context *context)
|
|
{
|
|
int i;
|
|
|
|
#if AUDIT_DEBUG == 2
|
|
if (context->put_count + context->ino_count != context->name_count) {
|
|
printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
|
|
" name_count=%d put_count=%d"
|
|
" ino_count=%d [NOT freeing]\n",
|
|
__FILE__, __LINE__,
|
|
context->serial, context->major, context->in_syscall,
|
|
context->name_count, context->put_count,
|
|
context->ino_count);
|
|
for (i = 0; i < context->name_count; i++) {
|
|
printk(KERN_ERR "names[%d] = %p = %s\n", i,
|
|
context->names[i].name,
|
|
context->names[i].name ?: "(null)");
|
|
}
|
|
dump_stack();
|
|
return;
|
|
}
|
|
#endif
|
|
#if AUDIT_DEBUG
|
|
context->put_count = 0;
|
|
context->ino_count = 0;
|
|
#endif
|
|
|
|
for (i = 0; i < context->name_count; i++) {
|
|
if (context->names[i].name && context->names[i].name_put)
|
|
__putname(context->names[i].name);
|
|
}
|
|
context->name_count = 0;
|
|
path_put(&context->pwd);
|
|
context->pwd.dentry = NULL;
|
|
context->pwd.mnt = NULL;
|
|
}
|
|
|
|
static inline void audit_free_aux(struct audit_context *context)
|
|
{
|
|
struct audit_aux_data *aux;
|
|
|
|
while ((aux = context->aux)) {
|
|
context->aux = aux->next;
|
|
kfree(aux);
|
|
}
|
|
while ((aux = context->aux_pids)) {
|
|
context->aux_pids = aux->next;
|
|
kfree(aux);
|
|
}
|
|
}
|
|
|
|
static inline void audit_zero_context(struct audit_context *context,
|
|
enum audit_state state)
|
|
{
|
|
memset(context, 0, sizeof(*context));
|
|
context->state = state;
|
|
context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
|
|
}
|
|
|
|
static inline struct audit_context *audit_alloc_context(enum audit_state state)
|
|
{
|
|
struct audit_context *context;
|
|
|
|
if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
|
|
return NULL;
|
|
audit_zero_context(context, state);
|
|
INIT_LIST_HEAD(&context->killed_trees);
|
|
return context;
|
|
}
|
|
|
|
/**
|
|
* audit_alloc - allocate an audit context block for a task
|
|
* @tsk: task
|
|
*
|
|
* Filter on the task information and allocate a per-task audit context
|
|
* if necessary. Doing so turns on system call auditing for the
|
|
* specified task. This is called from copy_process, so no lock is
|
|
* needed.
|
|
*/
|
|
int audit_alloc(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context;
|
|
enum audit_state state;
|
|
char *key = NULL;
|
|
|
|
if (likely(!audit_ever_enabled))
|
|
return 0; /* Return if not auditing. */
|
|
|
|
state = audit_filter_task(tsk, &key);
|
|
if (likely(state == AUDIT_DISABLED))
|
|
return 0;
|
|
|
|
if (!(context = audit_alloc_context(state))) {
|
|
kfree(key);
|
|
audit_log_lost("out of memory in audit_alloc");
|
|
return -ENOMEM;
|
|
}
|
|
context->filterkey = key;
|
|
|
|
tsk->audit_context = context;
|
|
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
|
|
return 0;
|
|
}
|
|
|
|
static inline void audit_free_context(struct audit_context *context)
|
|
{
|
|
struct audit_context *previous;
|
|
int count = 0;
|
|
|
|
do {
|
|
previous = context->previous;
|
|
if (previous || (count && count < 10)) {
|
|
++count;
|
|
printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
|
|
" freeing multiple contexts (%d)\n",
|
|
context->serial, context->major,
|
|
context->name_count, count);
|
|
}
|
|
audit_free_names(context);
|
|
unroll_tree_refs(context, NULL, 0);
|
|
free_tree_refs(context);
|
|
audit_free_aux(context);
|
|
kfree(context->filterkey);
|
|
kfree(context->sockaddr);
|
|
kfree(context);
|
|
context = previous;
|
|
} while (context);
|
|
if (count >= 10)
|
|
printk(KERN_ERR "audit: freed %d contexts\n", count);
|
|
}
|
|
|
|
void audit_log_task_context(struct audit_buffer *ab)
|
|
{
|
|
char *ctx = NULL;
|
|
unsigned len;
|
|
int error;
|
|
u32 sid;
|
|
|
|
security_task_getsecid(current, &sid);
|
|
if (!sid)
|
|
return;
|
|
|
|
error = security_secid_to_secctx(sid, &ctx, &len);
|
|
if (error) {
|
|
if (error != -EINVAL)
|
|
goto error_path;
|
|
return;
|
|
}
|
|
|
|
audit_log_format(ab, " subj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
return;
|
|
|
|
error_path:
|
|
audit_panic("error in audit_log_task_context");
|
|
return;
|
|
}
|
|
|
|
EXPORT_SYMBOL(audit_log_task_context);
|
|
|
|
static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
|
|
{
|
|
char name[sizeof(tsk->comm)];
|
|
struct mm_struct *mm = tsk->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
/* tsk == current */
|
|
|
|
get_task_comm(name, tsk);
|
|
audit_log_format(ab, " comm=");
|
|
audit_log_untrustedstring(ab, name);
|
|
|
|
if (mm) {
|
|
down_read(&mm->mmap_sem);
|
|
vma = mm->mmap;
|
|
while (vma) {
|
|
if ((vma->vm_flags & VM_EXECUTABLE) &&
|
|
vma->vm_file) {
|
|
audit_log_d_path(ab, "exe=",
|
|
&vma->vm_file->f_path);
|
|
break;
|
|
}
|
|
vma = vma->vm_next;
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
audit_log_task_context(ab);
|
|
}
|
|
|
|
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
|
|
uid_t auid, uid_t uid, unsigned int sessionid,
|
|
u32 sid, char *comm)
|
|
{
|
|
struct audit_buffer *ab;
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
int rc = 0;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
|
|
if (!ab)
|
|
return rc;
|
|
|
|
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
|
|
uid, sessionid);
|
|
if (security_secid_to_secctx(sid, &ctx, &len)) {
|
|
audit_log_format(ab, " obj=(none)");
|
|
rc = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
audit_log_format(ab, " ocomm=");
|
|
audit_log_untrustedstring(ab, comm);
|
|
audit_log_end(ab);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* to_send and len_sent accounting are very loose estimates. We aren't
|
|
* really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
|
|
* within about 500 bytes (next page boundary)
|
|
*
|
|
* why snprintf? an int is up to 12 digits long. if we just assumed when
|
|
* logging that a[%d]= was going to be 16 characters long we would be wasting
|
|
* space in every audit message. In one 7500 byte message we can log up to
|
|
* about 1000 min size arguments. That comes down to about 50% waste of space
|
|
* if we didn't do the snprintf to find out how long arg_num_len was.
|
|
*/
|
|
static int audit_log_single_execve_arg(struct audit_context *context,
|
|
struct audit_buffer **ab,
|
|
int arg_num,
|
|
size_t *len_sent,
|
|
const char __user *p,
|
|
char *buf)
|
|
{
|
|
char arg_num_len_buf[12];
|
|
const char __user *tmp_p = p;
|
|
/* how many digits are in arg_num? 5 is the length of ' a=""' */
|
|
size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
|
|
size_t len, len_left, to_send;
|
|
size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
|
|
unsigned int i, has_cntl = 0, too_long = 0;
|
|
int ret;
|
|
|
|
/* strnlen_user includes the null we don't want to send */
|
|
len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
|
|
|
|
/*
|
|
* We just created this mm, if we can't find the strings
|
|
* we just copied into it something is _very_ wrong. Similar
|
|
* for strings that are too long, we should not have created
|
|
* any.
|
|
*/
|
|
if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
|
|
/* walk the whole argument looking for non-ascii chars */
|
|
do {
|
|
if (len_left > MAX_EXECVE_AUDIT_LEN)
|
|
to_send = MAX_EXECVE_AUDIT_LEN;
|
|
else
|
|
to_send = len_left;
|
|
ret = copy_from_user(buf, tmp_p, to_send);
|
|
/*
|
|
* There is no reason for this copy to be short. We just
|
|
* copied them here, and the mm hasn't been exposed to user-
|
|
* space yet.
|
|
*/
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
buf[to_send] = '\0';
|
|
has_cntl = audit_string_contains_control(buf, to_send);
|
|
if (has_cntl) {
|
|
/*
|
|
* hex messages get logged as 2 bytes, so we can only
|
|
* send half as much in each message
|
|
*/
|
|
max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
|
|
break;
|
|
}
|
|
len_left -= to_send;
|
|
tmp_p += to_send;
|
|
} while (len_left > 0);
|
|
|
|
len_left = len;
|
|
|
|
if (len > max_execve_audit_len)
|
|
too_long = 1;
|
|
|
|
/* rewalk the argument actually logging the message */
|
|
for (i = 0; len_left > 0; i++) {
|
|
int room_left;
|
|
|
|
if (len_left > max_execve_audit_len)
|
|
to_send = max_execve_audit_len;
|
|
else
|
|
to_send = len_left;
|
|
|
|
/* do we have space left to send this argument in this ab? */
|
|
room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
|
|
if (has_cntl)
|
|
room_left -= (to_send * 2);
|
|
else
|
|
room_left -= to_send;
|
|
if (room_left < 0) {
|
|
*len_sent = 0;
|
|
audit_log_end(*ab);
|
|
*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
|
|
if (!*ab)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* first record needs to say how long the original string was
|
|
* so we can be sure nothing was lost.
|
|
*/
|
|
if ((i == 0) && (too_long))
|
|
audit_log_format(*ab, " a%d_len=%zu", arg_num,
|
|
has_cntl ? 2*len : len);
|
|
|
|
/*
|
|
* normally arguments are small enough to fit and we already
|
|
* filled buf above when we checked for control characters
|
|
* so don't bother with another copy_from_user
|
|
*/
|
|
if (len >= max_execve_audit_len)
|
|
ret = copy_from_user(buf, p, to_send);
|
|
else
|
|
ret = 0;
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
buf[to_send] = '\0';
|
|
|
|
/* actually log it */
|
|
audit_log_format(*ab, " a%d", arg_num);
|
|
if (too_long)
|
|
audit_log_format(*ab, "[%d]", i);
|
|
audit_log_format(*ab, "=");
|
|
if (has_cntl)
|
|
audit_log_n_hex(*ab, buf, to_send);
|
|
else
|
|
audit_log_string(*ab, buf);
|
|
|
|
p += to_send;
|
|
len_left -= to_send;
|
|
*len_sent += arg_num_len;
|
|
if (has_cntl)
|
|
*len_sent += to_send * 2;
|
|
else
|
|
*len_sent += to_send;
|
|
}
|
|
/* include the null we didn't log */
|
|
return len + 1;
|
|
}
|
|
|
|
static void audit_log_execve_info(struct audit_context *context,
|
|
struct audit_buffer **ab,
|
|
struct audit_aux_data_execve *axi)
|
|
{
|
|
int i;
|
|
size_t len, len_sent = 0;
|
|
const char __user *p;
|
|
char *buf;
|
|
|
|
if (axi->mm != current->mm)
|
|
return; /* execve failed, no additional info */
|
|
|
|
p = (const char __user *)axi->mm->arg_start;
|
|
|
|
audit_log_format(*ab, "argc=%d", axi->argc);
|
|
|
|
/*
|
|
* we need some kernel buffer to hold the userspace args. Just
|
|
* allocate one big one rather than allocating one of the right size
|
|
* for every single argument inside audit_log_single_execve_arg()
|
|
* should be <8k allocation so should be pretty safe.
|
|
*/
|
|
buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
|
|
if (!buf) {
|
|
audit_panic("out of memory for argv string\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < axi->argc; i++) {
|
|
len = audit_log_single_execve_arg(context, ab, i,
|
|
&len_sent, p, buf);
|
|
if (len <= 0)
|
|
break;
|
|
p += len;
|
|
}
|
|
kfree(buf);
|
|
}
|
|
|
|
static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
|
|
{
|
|
int i;
|
|
|
|
audit_log_format(ab, " %s=", prefix);
|
|
CAP_FOR_EACH_U32(i) {
|
|
audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
|
|
}
|
|
}
|
|
|
|
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
|
|
{
|
|
kernel_cap_t *perm = &name->fcap.permitted;
|
|
kernel_cap_t *inh = &name->fcap.inheritable;
|
|
int log = 0;
|
|
|
|
if (!cap_isclear(*perm)) {
|
|
audit_log_cap(ab, "cap_fp", perm);
|
|
log = 1;
|
|
}
|
|
if (!cap_isclear(*inh)) {
|
|
audit_log_cap(ab, "cap_fi", inh);
|
|
log = 1;
|
|
}
|
|
|
|
if (log)
|
|
audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
|
|
}
|
|
|
|
static void show_special(struct audit_context *context, int *call_panic)
|
|
{
|
|
struct audit_buffer *ab;
|
|
int i;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, context->type);
|
|
if (!ab)
|
|
return;
|
|
|
|
switch (context->type) {
|
|
case AUDIT_SOCKETCALL: {
|
|
int nargs = context->socketcall.nargs;
|
|
audit_log_format(ab, "nargs=%d", nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
audit_log_format(ab, " a%d=%lx", i,
|
|
context->socketcall.args[i]);
|
|
break; }
|
|
case AUDIT_IPC: {
|
|
u32 osid = context->ipc.osid;
|
|
|
|
audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
|
|
context->ipc.uid, context->ipc.gid, context->ipc.mode);
|
|
if (osid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if (security_secid_to_secctx(osid, &ctx, &len)) {
|
|
audit_log_format(ab, " osid=%u", osid);
|
|
*call_panic = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
if (context->ipc.has_perm) {
|
|
audit_log_end(ab);
|
|
ab = audit_log_start(context, GFP_KERNEL,
|
|
AUDIT_IPC_SET_PERM);
|
|
audit_log_format(ab,
|
|
"qbytes=%lx ouid=%u ogid=%u mode=%#o",
|
|
context->ipc.qbytes,
|
|
context->ipc.perm_uid,
|
|
context->ipc.perm_gid,
|
|
context->ipc.perm_mode);
|
|
if (!ab)
|
|
return;
|
|
}
|
|
break; }
|
|
case AUDIT_MQ_OPEN: {
|
|
audit_log_format(ab,
|
|
"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
|
|
"mq_msgsize=%ld mq_curmsgs=%ld",
|
|
context->mq_open.oflag, context->mq_open.mode,
|
|
context->mq_open.attr.mq_flags,
|
|
context->mq_open.attr.mq_maxmsg,
|
|
context->mq_open.attr.mq_msgsize,
|
|
context->mq_open.attr.mq_curmsgs);
|
|
break; }
|
|
case AUDIT_MQ_SENDRECV: {
|
|
audit_log_format(ab,
|
|
"mqdes=%d msg_len=%zd msg_prio=%u "
|
|
"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
|
|
context->mq_sendrecv.mqdes,
|
|
context->mq_sendrecv.msg_len,
|
|
context->mq_sendrecv.msg_prio,
|
|
context->mq_sendrecv.abs_timeout.tv_sec,
|
|
context->mq_sendrecv.abs_timeout.tv_nsec);
|
|
break; }
|
|
case AUDIT_MQ_NOTIFY: {
|
|
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
|
|
context->mq_notify.mqdes,
|
|
context->mq_notify.sigev_signo);
|
|
break; }
|
|
case AUDIT_MQ_GETSETATTR: {
|
|
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
|
|
audit_log_format(ab,
|
|
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
|
|
"mq_curmsgs=%ld ",
|
|
context->mq_getsetattr.mqdes,
|
|
attr->mq_flags, attr->mq_maxmsg,
|
|
attr->mq_msgsize, attr->mq_curmsgs);
|
|
break; }
|
|
case AUDIT_CAPSET: {
|
|
audit_log_format(ab, "pid=%d", context->capset.pid);
|
|
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
|
|
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
|
|
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
|
|
break; }
|
|
case AUDIT_MMAP: {
|
|
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
|
|
context->mmap.flags);
|
|
break; }
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
|
|
{
|
|
const struct cred *cred;
|
|
int i, call_panic = 0;
|
|
struct audit_buffer *ab;
|
|
struct audit_aux_data *aux;
|
|
const char *tty;
|
|
|
|
/* tsk == current */
|
|
context->pid = tsk->pid;
|
|
if (!context->ppid)
|
|
context->ppid = sys_getppid();
|
|
cred = current_cred();
|
|
context->uid = cred->uid;
|
|
context->gid = cred->gid;
|
|
context->euid = cred->euid;
|
|
context->suid = cred->suid;
|
|
context->fsuid = cred->fsuid;
|
|
context->egid = cred->egid;
|
|
context->sgid = cred->sgid;
|
|
context->fsgid = cred->fsgid;
|
|
context->personality = tsk->personality;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
|
|
if (!ab)
|
|
return; /* audit_panic has been called */
|
|
audit_log_format(ab, "arch=%x syscall=%d",
|
|
context->arch, context->major);
|
|
if (context->personality != PER_LINUX)
|
|
audit_log_format(ab, " per=%lx", context->personality);
|
|
if (context->return_valid)
|
|
audit_log_format(ab, " success=%s exit=%ld",
|
|
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
|
|
context->return_code);
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
|
|
tty = tsk->signal->tty->name;
|
|
else
|
|
tty = "(none)";
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
audit_log_format(ab,
|
|
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
|
|
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
|
|
" euid=%u suid=%u fsuid=%u"
|
|
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
|
|
context->argv[0],
|
|
context->argv[1],
|
|
context->argv[2],
|
|
context->argv[3],
|
|
context->name_count,
|
|
context->ppid,
|
|
context->pid,
|
|
tsk->loginuid,
|
|
context->uid,
|
|
context->gid,
|
|
context->euid, context->suid, context->fsuid,
|
|
context->egid, context->sgid, context->fsgid, tty,
|
|
tsk->sessionid);
|
|
|
|
|
|
audit_log_task_info(ab, tsk);
|
|
audit_log_key(ab, context->filterkey);
|
|
audit_log_end(ab);
|
|
|
|
for (aux = context->aux; aux; aux = aux->next) {
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, aux->type);
|
|
if (!ab)
|
|
continue; /* audit_panic has been called */
|
|
|
|
switch (aux->type) {
|
|
|
|
case AUDIT_EXECVE: {
|
|
struct audit_aux_data_execve *axi = (void *)aux;
|
|
audit_log_execve_info(context, &ab, axi);
|
|
break; }
|
|
|
|
case AUDIT_BPRM_FCAPS: {
|
|
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
|
|
audit_log_format(ab, "fver=%x", axs->fcap_ver);
|
|
audit_log_cap(ab, "fp", &axs->fcap.permitted);
|
|
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
|
|
audit_log_format(ab, " fe=%d", axs->fcap.fE);
|
|
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
|
|
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
|
|
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
|
|
audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
|
|
audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
|
|
audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
|
|
break; }
|
|
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
if (context->type)
|
|
show_special(context, &call_panic);
|
|
|
|
if (context->fds[0] >= 0) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
|
|
if (ab) {
|
|
audit_log_format(ab, "fd0=%d fd1=%d",
|
|
context->fds[0], context->fds[1]);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
if (context->sockaddr_len) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
|
|
if (ab) {
|
|
audit_log_format(ab, "saddr=");
|
|
audit_log_n_hex(ab, (void *)context->sockaddr,
|
|
context->sockaddr_len);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
for (aux = context->aux_pids; aux; aux = aux->next) {
|
|
struct audit_aux_data_pids *axs = (void *)aux;
|
|
|
|
for (i = 0; i < axs->pid_count; i++)
|
|
if (audit_log_pid_context(context, axs->target_pid[i],
|
|
axs->target_auid[i],
|
|
axs->target_uid[i],
|
|
axs->target_sessionid[i],
|
|
axs->target_sid[i],
|
|
axs->target_comm[i]))
|
|
call_panic = 1;
|
|
}
|
|
|
|
if (context->target_pid &&
|
|
audit_log_pid_context(context, context->target_pid,
|
|
context->target_auid, context->target_uid,
|
|
context->target_sessionid,
|
|
context->target_sid, context->target_comm))
|
|
call_panic = 1;
|
|
|
|
if (context->pwd.dentry && context->pwd.mnt) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
|
|
if (ab) {
|
|
audit_log_d_path(ab, "cwd=", &context->pwd);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
for (i = 0; i < context->name_count; i++) {
|
|
struct audit_names *n = &context->names[i];
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
|
|
if (!ab)
|
|
continue; /* audit_panic has been called */
|
|
|
|
audit_log_format(ab, "item=%d", i);
|
|
|
|
if (n->name) {
|
|
switch(n->name_len) {
|
|
case AUDIT_NAME_FULL:
|
|
/* log the full path */
|
|
audit_log_format(ab, " name=");
|
|
audit_log_untrustedstring(ab, n->name);
|
|
break;
|
|
case 0:
|
|
/* name was specified as a relative path and the
|
|
* directory component is the cwd */
|
|
audit_log_d_path(ab, "name=", &context->pwd);
|
|
break;
|
|
default:
|
|
/* log the name's directory component */
|
|
audit_log_format(ab, " name=");
|
|
audit_log_n_untrustedstring(ab, n->name,
|
|
n->name_len);
|
|
}
|
|
} else
|
|
audit_log_format(ab, " name=(null)");
|
|
|
|
if (n->ino != (unsigned long)-1) {
|
|
audit_log_format(ab, " inode=%lu"
|
|
" dev=%02x:%02x mode=%#o"
|
|
" ouid=%u ogid=%u rdev=%02x:%02x",
|
|
n->ino,
|
|
MAJOR(n->dev),
|
|
MINOR(n->dev),
|
|
n->mode,
|
|
n->uid,
|
|
n->gid,
|
|
MAJOR(n->rdev),
|
|
MINOR(n->rdev));
|
|
}
|
|
if (n->osid != 0) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if (security_secid_to_secctx(
|
|
n->osid, &ctx, &len)) {
|
|
audit_log_format(ab, " osid=%u", n->osid);
|
|
call_panic = 2;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
|
|
audit_log_fcaps(ab, n);
|
|
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
/* Send end of event record to help user space know we are finished */
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
|
|
if (ab)
|
|
audit_log_end(ab);
|
|
if (call_panic)
|
|
audit_panic("error converting sid to string");
|
|
}
|
|
|
|
/**
|
|
* audit_free - free a per-task audit context
|
|
* @tsk: task whose audit context block to free
|
|
*
|
|
* Called from copy_process and do_exit
|
|
*/
|
|
void audit_free(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context;
|
|
|
|
context = audit_get_context(tsk, 0, 0);
|
|
if (likely(!context))
|
|
return;
|
|
|
|
/* Check for system calls that do not go through the exit
|
|
* function (e.g., exit_group), then free context block.
|
|
* We use GFP_ATOMIC here because we might be doing this
|
|
* in the context of the idle thread */
|
|
/* that can happen only if we are called from do_exit() */
|
|
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
|
|
audit_log_exit(context, tsk);
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(&context->killed_trees);
|
|
|
|
audit_free_context(context);
|
|
}
|
|
|
|
/**
|
|
* audit_syscall_entry - fill in an audit record at syscall entry
|
|
* @arch: architecture type
|
|
* @major: major syscall type (function)
|
|
* @a1: additional syscall register 1
|
|
* @a2: additional syscall register 2
|
|
* @a3: additional syscall register 3
|
|
* @a4: additional syscall register 4
|
|
*
|
|
* Fill in audit context at syscall entry. This only happens if the
|
|
* audit context was created when the task was created and the state or
|
|
* filters demand the audit context be built. If the state from the
|
|
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
|
|
* then the record will be written at syscall exit time (otherwise, it
|
|
* will only be written if another part of the kernel requests that it
|
|
* be written).
|
|
*/
|
|
void audit_syscall_entry(int arch, int major,
|
|
unsigned long a1, unsigned long a2,
|
|
unsigned long a3, unsigned long a4)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *context = tsk->audit_context;
|
|
enum audit_state state;
|
|
|
|
if (unlikely(!context))
|
|
return;
|
|
|
|
/*
|
|
* This happens only on certain architectures that make system
|
|
* calls in kernel_thread via the entry.S interface, instead of
|
|
* with direct calls. (If you are porting to a new
|
|
* architecture, hitting this condition can indicate that you
|
|
* got the _exit/_leave calls backward in entry.S.)
|
|
*
|
|
* i386 no
|
|
* x86_64 no
|
|
* ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
|
|
*
|
|
* This also happens with vm86 emulation in a non-nested manner
|
|
* (entries without exits), so this case must be caught.
|
|
*/
|
|
if (context->in_syscall) {
|
|
struct audit_context *newctx;
|
|
|
|
#if AUDIT_DEBUG
|
|
printk(KERN_ERR
|
|
"audit(:%d) pid=%d in syscall=%d;"
|
|
" entering syscall=%d\n",
|
|
context->serial, tsk->pid, context->major, major);
|
|
#endif
|
|
newctx = audit_alloc_context(context->state);
|
|
if (newctx) {
|
|
newctx->previous = context;
|
|
context = newctx;
|
|
tsk->audit_context = newctx;
|
|
} else {
|
|
/* If we can't alloc a new context, the best we
|
|
* can do is to leak memory (any pending putname
|
|
* will be lost). The only other alternative is
|
|
* to abandon auditing. */
|
|
audit_zero_context(context, context->state);
|
|
}
|
|
}
|
|
BUG_ON(context->in_syscall || context->name_count);
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
context->arch = arch;
|
|
context->major = major;
|
|
context->argv[0] = a1;
|
|
context->argv[1] = a2;
|
|
context->argv[2] = a3;
|
|
context->argv[3] = a4;
|
|
|
|
state = context->state;
|
|
context->dummy = !audit_n_rules;
|
|
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
|
|
context->prio = 0;
|
|
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
|
|
}
|
|
if (likely(state == AUDIT_DISABLED))
|
|
return;
|
|
|
|
context->serial = 0;
|
|
context->ctime = CURRENT_TIME;
|
|
context->in_syscall = 1;
|
|
context->current_state = state;
|
|
context->ppid = 0;
|
|
}
|
|
|
|
void audit_finish_fork(struct task_struct *child)
|
|
{
|
|
struct audit_context *ctx = current->audit_context;
|
|
struct audit_context *p = child->audit_context;
|
|
if (!p || !ctx)
|
|
return;
|
|
if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
|
|
return;
|
|
p->arch = ctx->arch;
|
|
p->major = ctx->major;
|
|
memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
|
|
p->ctime = ctx->ctime;
|
|
p->dummy = ctx->dummy;
|
|
p->in_syscall = ctx->in_syscall;
|
|
p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
|
|
p->ppid = current->pid;
|
|
p->prio = ctx->prio;
|
|
p->current_state = ctx->current_state;
|
|
}
|
|
|
|
/**
|
|
* audit_syscall_exit - deallocate audit context after a system call
|
|
* @valid: success/failure flag
|
|
* @return_code: syscall return value
|
|
*
|
|
* Tear down after system call. If the audit context has been marked as
|
|
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
|
|
* filtering, or because some other part of the kernel write an audit
|
|
* message), then write out the syscall information. In call cases,
|
|
* free the names stored from getname().
|
|
*/
|
|
void audit_syscall_exit(int valid, long return_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *context;
|
|
|
|
context = audit_get_context(tsk, valid, return_code);
|
|
|
|
if (likely(!context))
|
|
return;
|
|
|
|
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
|
|
audit_log_exit(context, tsk);
|
|
|
|
context->in_syscall = 0;
|
|
context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
|
|
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(&context->killed_trees);
|
|
|
|
if (context->previous) {
|
|
struct audit_context *new_context = context->previous;
|
|
context->previous = NULL;
|
|
audit_free_context(context);
|
|
tsk->audit_context = new_context;
|
|
} else {
|
|
audit_free_names(context);
|
|
unroll_tree_refs(context, NULL, 0);
|
|
audit_free_aux(context);
|
|
context->aux = NULL;
|
|
context->aux_pids = NULL;
|
|
context->target_pid = 0;
|
|
context->target_sid = 0;
|
|
context->sockaddr_len = 0;
|
|
context->type = 0;
|
|
context->fds[0] = -1;
|
|
if (context->state != AUDIT_RECORD_CONTEXT) {
|
|
kfree(context->filterkey);
|
|
context->filterkey = NULL;
|
|
}
|
|
tsk->audit_context = context;
|
|
}
|
|
}
|
|
|
|
static inline void handle_one(const struct inode *inode)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
struct audit_chunk *chunk;
|
|
int count;
|
|
if (likely(hlist_empty(&inode->i_fsnotify_marks)))
|
|
return;
|
|
context = current->audit_context;
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
rcu_read_lock();
|
|
chunk = audit_tree_lookup(inode);
|
|
rcu_read_unlock();
|
|
if (!chunk)
|
|
return;
|
|
if (likely(put_tree_ref(context, chunk)))
|
|
return;
|
|
if (unlikely(!grow_tree_refs(context))) {
|
|
printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
|
|
audit_set_auditable(context);
|
|
audit_put_chunk(chunk);
|
|
unroll_tree_refs(context, p, count);
|
|
return;
|
|
}
|
|
put_tree_ref(context, chunk);
|
|
#endif
|
|
}
|
|
|
|
static void handle_path(const struct dentry *dentry)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
const struct dentry *d, *parent;
|
|
struct audit_chunk *drop;
|
|
unsigned long seq;
|
|
int count;
|
|
|
|
context = current->audit_context;
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
retry:
|
|
drop = NULL;
|
|
d = dentry;
|
|
rcu_read_lock();
|
|
seq = read_seqbegin(&rename_lock);
|
|
for(;;) {
|
|
struct inode *inode = d->d_inode;
|
|
if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
|
|
struct audit_chunk *chunk;
|
|
chunk = audit_tree_lookup(inode);
|
|
if (chunk) {
|
|
if (unlikely(!put_tree_ref(context, chunk))) {
|
|
drop = chunk;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
parent = d->d_parent;
|
|
if (parent == d)
|
|
break;
|
|
d = parent;
|
|
}
|
|
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
|
|
rcu_read_unlock();
|
|
if (!drop) {
|
|
/* just a race with rename */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
audit_put_chunk(drop);
|
|
if (grow_tree_refs(context)) {
|
|
/* OK, got more space */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
/* too bad */
|
|
printk(KERN_WARNING
|
|
"out of memory, audit has lost a tree reference\n");
|
|
unroll_tree_refs(context, p, count);
|
|
audit_set_auditable(context);
|
|
return;
|
|
}
|
|
rcu_read_unlock();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* audit_getname - add a name to the list
|
|
* @name: name to add
|
|
*
|
|
* Add a name to the list of audit names for this context.
|
|
* Called from fs/namei.c:getname().
|
|
*/
|
|
void __audit_getname(const char *name)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (IS_ERR(name) || !name)
|
|
return;
|
|
|
|
if (!context->in_syscall) {
|
|
#if AUDIT_DEBUG == 2
|
|
printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
|
|
__FILE__, __LINE__, context->serial, name);
|
|
dump_stack();
|
|
#endif
|
|
return;
|
|
}
|
|
BUG_ON(context->name_count >= AUDIT_NAMES);
|
|
context->names[context->name_count].name = name;
|
|
context->names[context->name_count].name_len = AUDIT_NAME_FULL;
|
|
context->names[context->name_count].name_put = 1;
|
|
context->names[context->name_count].ino = (unsigned long)-1;
|
|
context->names[context->name_count].osid = 0;
|
|
++context->name_count;
|
|
if (!context->pwd.dentry)
|
|
get_fs_pwd(current->fs, &context->pwd);
|
|
}
|
|
|
|
/* audit_putname - intercept a putname request
|
|
* @name: name to intercept and delay for putname
|
|
*
|
|
* If we have stored the name from getname in the audit context,
|
|
* then we delay the putname until syscall exit.
|
|
* Called from include/linux/fs.h:putname().
|
|
*/
|
|
void audit_putname(const char *name)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
BUG_ON(!context);
|
|
if (!context->in_syscall) {
|
|
#if AUDIT_DEBUG == 2
|
|
printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
|
|
__FILE__, __LINE__, context->serial, name);
|
|
if (context->name_count) {
|
|
int i;
|
|
for (i = 0; i < context->name_count; i++)
|
|
printk(KERN_ERR "name[%d] = %p = %s\n", i,
|
|
context->names[i].name,
|
|
context->names[i].name ?: "(null)");
|
|
}
|
|
#endif
|
|
__putname(name);
|
|
}
|
|
#if AUDIT_DEBUG
|
|
else {
|
|
++context->put_count;
|
|
if (context->put_count > context->name_count) {
|
|
printk(KERN_ERR "%s:%d(:%d): major=%d"
|
|
" in_syscall=%d putname(%p) name_count=%d"
|
|
" put_count=%d\n",
|
|
__FILE__, __LINE__,
|
|
context->serial, context->major,
|
|
context->in_syscall, name, context->name_count,
|
|
context->put_count);
|
|
dump_stack();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int audit_inc_name_count(struct audit_context *context,
|
|
const struct inode *inode)
|
|
{
|
|
if (context->name_count >= AUDIT_NAMES) {
|
|
if (inode)
|
|
printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
|
|
"dev=%02x:%02x, inode=%lu\n",
|
|
MAJOR(inode->i_sb->s_dev),
|
|
MINOR(inode->i_sb->s_dev),
|
|
inode->i_ino);
|
|
|
|
else
|
|
printk(KERN_DEBUG "name_count maxed, losing inode data\n");
|
|
return 1;
|
|
}
|
|
context->name_count++;
|
|
#if AUDIT_DEBUG
|
|
context->ino_count++;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
|
|
{
|
|
struct cpu_vfs_cap_data caps;
|
|
int rc;
|
|
|
|
memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
|
|
memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
|
|
name->fcap.fE = 0;
|
|
name->fcap_ver = 0;
|
|
|
|
if (!dentry)
|
|
return 0;
|
|
|
|
rc = get_vfs_caps_from_disk(dentry, &caps);
|
|
if (rc)
|
|
return rc;
|
|
|
|
name->fcap.permitted = caps.permitted;
|
|
name->fcap.inheritable = caps.inheritable;
|
|
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
|
|
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Copy inode data into an audit_names. */
|
|
static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
|
|
const struct inode *inode)
|
|
{
|
|
name->ino = inode->i_ino;
|
|
name->dev = inode->i_sb->s_dev;
|
|
name->mode = inode->i_mode;
|
|
name->uid = inode->i_uid;
|
|
name->gid = inode->i_gid;
|
|
name->rdev = inode->i_rdev;
|
|
security_inode_getsecid(inode, &name->osid);
|
|
audit_copy_fcaps(name, dentry);
|
|
}
|
|
|
|
/**
|
|
* audit_inode - store the inode and device from a lookup
|
|
* @name: name being audited
|
|
* @dentry: dentry being audited
|
|
*
|
|
* Called from fs/namei.c:path_lookup().
|
|
*/
|
|
void __audit_inode(const char *name, const struct dentry *dentry)
|
|
{
|
|
int idx;
|
|
struct audit_context *context = current->audit_context;
|
|
const struct inode *inode = dentry->d_inode;
|
|
|
|
if (!context->in_syscall)
|
|
return;
|
|
if (context->name_count
|
|
&& context->names[context->name_count-1].name
|
|
&& context->names[context->name_count-1].name == name)
|
|
idx = context->name_count - 1;
|
|
else if (context->name_count > 1
|
|
&& context->names[context->name_count-2].name
|
|
&& context->names[context->name_count-2].name == name)
|
|
idx = context->name_count - 2;
|
|
else {
|
|
/* FIXME: how much do we care about inodes that have no
|
|
* associated name? */
|
|
if (audit_inc_name_count(context, inode))
|
|
return;
|
|
idx = context->name_count - 1;
|
|
context->names[idx].name = NULL;
|
|
}
|
|
handle_path(dentry);
|
|
audit_copy_inode(&context->names[idx], dentry, inode);
|
|
}
|
|
|
|
/**
|
|
* audit_inode_child - collect inode info for created/removed objects
|
|
* @dentry: dentry being audited
|
|
* @parent: inode of dentry parent
|
|
*
|
|
* For syscalls that create or remove filesystem objects, audit_inode
|
|
* can only collect information for the filesystem object's parent.
|
|
* This call updates the audit context with the child's information.
|
|
* Syscalls that create a new filesystem object must be hooked after
|
|
* the object is created. Syscalls that remove a filesystem object
|
|
* must be hooked prior, in order to capture the target inode during
|
|
* unsuccessful attempts.
|
|
*/
|
|
void __audit_inode_child(const struct dentry *dentry,
|
|
const struct inode *parent)
|
|
{
|
|
int idx;
|
|
struct audit_context *context = current->audit_context;
|
|
const char *found_parent = NULL, *found_child = NULL;
|
|
const struct inode *inode = dentry->d_inode;
|
|
const char *dname = dentry->d_name.name;
|
|
int dirlen = 0;
|
|
|
|
if (!context->in_syscall)
|
|
return;
|
|
|
|
if (inode)
|
|
handle_one(inode);
|
|
|
|
/* parent is more likely, look for it first */
|
|
for (idx = 0; idx < context->name_count; idx++) {
|
|
struct audit_names *n = &context->names[idx];
|
|
|
|
if (!n->name)
|
|
continue;
|
|
|
|
if (n->ino == parent->i_ino &&
|
|
!audit_compare_dname_path(dname, n->name, &dirlen)) {
|
|
n->name_len = dirlen; /* update parent data in place */
|
|
found_parent = n->name;
|
|
goto add_names;
|
|
}
|
|
}
|
|
|
|
/* no matching parent, look for matching child */
|
|
for (idx = 0; idx < context->name_count; idx++) {
|
|
struct audit_names *n = &context->names[idx];
|
|
|
|
if (!n->name)
|
|
continue;
|
|
|
|
/* strcmp() is the more likely scenario */
|
|
if (!strcmp(dname, n->name) ||
|
|
!audit_compare_dname_path(dname, n->name, &dirlen)) {
|
|
if (inode)
|
|
audit_copy_inode(n, NULL, inode);
|
|
else
|
|
n->ino = (unsigned long)-1;
|
|
found_child = n->name;
|
|
goto add_names;
|
|
}
|
|
}
|
|
|
|
add_names:
|
|
if (!found_parent) {
|
|
if (audit_inc_name_count(context, parent))
|
|
return;
|
|
idx = context->name_count - 1;
|
|
context->names[idx].name = NULL;
|
|
audit_copy_inode(&context->names[idx], NULL, parent);
|
|
}
|
|
|
|
if (!found_child) {
|
|
if (audit_inc_name_count(context, inode))
|
|
return;
|
|
idx = context->name_count - 1;
|
|
|
|
/* Re-use the name belonging to the slot for a matching parent
|
|
* directory. All names for this context are relinquished in
|
|
* audit_free_names() */
|
|
if (found_parent) {
|
|
context->names[idx].name = found_parent;
|
|
context->names[idx].name_len = AUDIT_NAME_FULL;
|
|
/* don't call __putname() */
|
|
context->names[idx].name_put = 0;
|
|
} else {
|
|
context->names[idx].name = NULL;
|
|
}
|
|
|
|
if (inode)
|
|
audit_copy_inode(&context->names[idx], NULL, inode);
|
|
else
|
|
context->names[idx].ino = (unsigned long)-1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__audit_inode_child);
|
|
|
|
/**
|
|
* auditsc_get_stamp - get local copies of audit_context values
|
|
* @ctx: audit_context for the task
|
|
* @t: timespec to store time recorded in the audit_context
|
|
* @serial: serial value that is recorded in the audit_context
|
|
*
|
|
* Also sets the context as auditable.
|
|
*/
|
|
int auditsc_get_stamp(struct audit_context *ctx,
|
|
struct timespec *t, unsigned int *serial)
|
|
{
|
|
if (!ctx->in_syscall)
|
|
return 0;
|
|
if (!ctx->serial)
|
|
ctx->serial = audit_serial();
|
|
t->tv_sec = ctx->ctime.tv_sec;
|
|
t->tv_nsec = ctx->ctime.tv_nsec;
|
|
*serial = ctx->serial;
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_RECORD_CONTEXT;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* global counter which is incremented every time something logs in */
|
|
static atomic_t session_id = ATOMIC_INIT(0);
|
|
|
|
/**
|
|
* audit_set_loginuid - set a task's audit_context loginuid
|
|
* @task: task whose audit context is being modified
|
|
* @loginuid: loginuid value
|
|
*
|
|
* Returns 0.
|
|
*
|
|
* Called (set) from fs/proc/base.c::proc_loginuid_write().
|
|
*/
|
|
int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
|
|
{
|
|
unsigned int sessionid = atomic_inc_return(&session_id);
|
|
struct audit_context *context = task->audit_context;
|
|
|
|
if (context && context->in_syscall) {
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
|
|
if (ab) {
|
|
audit_log_format(ab, "login pid=%d uid=%u "
|
|
"old auid=%u new auid=%u"
|
|
" old ses=%u new ses=%u",
|
|
task->pid, task_uid(task),
|
|
task->loginuid, loginuid,
|
|
task->sessionid, sessionid);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
task->sessionid = sessionid;
|
|
task->loginuid = loginuid;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_open - record audit data for a POSIX MQ open
|
|
* @oflag: open flag
|
|
* @mode: mode bits
|
|
* @attr: queue attributes
|
|
*
|
|
*/
|
|
void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (attr)
|
|
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
|
|
else
|
|
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
|
|
|
|
context->mq_open.oflag = oflag;
|
|
context->mq_open.mode = mode;
|
|
|
|
context->type = AUDIT_MQ_OPEN;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
|
|
* @mqdes: MQ descriptor
|
|
* @msg_len: Message length
|
|
* @msg_prio: Message priority
|
|
* @abs_timeout: Message timeout in absolute time
|
|
*
|
|
*/
|
|
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
|
|
const struct timespec *abs_timeout)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
struct timespec *p = &context->mq_sendrecv.abs_timeout;
|
|
|
|
if (abs_timeout)
|
|
memcpy(p, abs_timeout, sizeof(struct timespec));
|
|
else
|
|
memset(p, 0, sizeof(struct timespec));
|
|
|
|
context->mq_sendrecv.mqdes = mqdes;
|
|
context->mq_sendrecv.msg_len = msg_len;
|
|
context->mq_sendrecv.msg_prio = msg_prio;
|
|
|
|
context->type = AUDIT_MQ_SENDRECV;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_notify - record audit data for a POSIX MQ notify
|
|
* @mqdes: MQ descriptor
|
|
* @notification: Notification event
|
|
*
|
|
*/
|
|
|
|
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (notification)
|
|
context->mq_notify.sigev_signo = notification->sigev_signo;
|
|
else
|
|
context->mq_notify.sigev_signo = 0;
|
|
|
|
context->mq_notify.mqdes = mqdes;
|
|
context->type = AUDIT_MQ_NOTIFY;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
|
|
* @mqdes: MQ descriptor
|
|
* @mqstat: MQ flags
|
|
*
|
|
*/
|
|
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->mq_getsetattr.mqdes = mqdes;
|
|
context->mq_getsetattr.mqstat = *mqstat;
|
|
context->type = AUDIT_MQ_GETSETATTR;
|
|
}
|
|
|
|
/**
|
|
* audit_ipc_obj - record audit data for ipc object
|
|
* @ipcp: ipc permissions
|
|
*
|
|
*/
|
|
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->ipc.uid = ipcp->uid;
|
|
context->ipc.gid = ipcp->gid;
|
|
context->ipc.mode = ipcp->mode;
|
|
context->ipc.has_perm = 0;
|
|
security_ipc_getsecid(ipcp, &context->ipc.osid);
|
|
context->type = AUDIT_IPC;
|
|
}
|
|
|
|
/**
|
|
* audit_ipc_set_perm - record audit data for new ipc permissions
|
|
* @qbytes: msgq bytes
|
|
* @uid: msgq user id
|
|
* @gid: msgq group id
|
|
* @mode: msgq mode (permissions)
|
|
*
|
|
* Called only after audit_ipc_obj().
|
|
*/
|
|
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
context->ipc.qbytes = qbytes;
|
|
context->ipc.perm_uid = uid;
|
|
context->ipc.perm_gid = gid;
|
|
context->ipc.perm_mode = mode;
|
|
context->ipc.has_perm = 1;
|
|
}
|
|
|
|
int audit_bprm(struct linux_binprm *bprm)
|
|
{
|
|
struct audit_aux_data_execve *ax;
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (likely(!audit_enabled || !context || context->dummy))
|
|
return 0;
|
|
|
|
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
|
|
if (!ax)
|
|
return -ENOMEM;
|
|
|
|
ax->argc = bprm->argc;
|
|
ax->envc = bprm->envc;
|
|
ax->mm = bprm->mm;
|
|
ax->d.type = AUDIT_EXECVE;
|
|
ax->d.next = context->aux;
|
|
context->aux = (void *)ax;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* audit_socketcall - record audit data for sys_socketcall
|
|
* @nargs: number of args
|
|
* @args: args array
|
|
*
|
|
*/
|
|
void audit_socketcall(int nargs, unsigned long *args)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (likely(!context || context->dummy))
|
|
return;
|
|
|
|
context->type = AUDIT_SOCKETCALL;
|
|
context->socketcall.nargs = nargs;
|
|
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
|
|
}
|
|
|
|
/**
|
|
* __audit_fd_pair - record audit data for pipe and socketpair
|
|
* @fd1: the first file descriptor
|
|
* @fd2: the second file descriptor
|
|
*
|
|
*/
|
|
void __audit_fd_pair(int fd1, int fd2)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->fds[0] = fd1;
|
|
context->fds[1] = fd2;
|
|
}
|
|
|
|
/**
|
|
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
|
|
* @len: data length in user space
|
|
* @a: data address in kernel space
|
|
*
|
|
* Returns 0 for success or NULL context or < 0 on error.
|
|
*/
|
|
int audit_sockaddr(int len, void *a)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (likely(!context || context->dummy))
|
|
return 0;
|
|
|
|
if (!context->sockaddr) {
|
|
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
context->sockaddr = p;
|
|
}
|
|
|
|
context->sockaddr_len = len;
|
|
memcpy(context->sockaddr, a, len);
|
|
return 0;
|
|
}
|
|
|
|
void __audit_ptrace(struct task_struct *t)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
context->target_pid = t->pid;
|
|
context->target_auid = audit_get_loginuid(t);
|
|
context->target_uid = task_uid(t);
|
|
context->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &context->target_sid);
|
|
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
|
|
}
|
|
|
|
/**
|
|
* audit_signal_info - record signal info for shutting down audit subsystem
|
|
* @sig: signal value
|
|
* @t: task being signaled
|
|
*
|
|
* If the audit subsystem is being terminated, record the task (pid)
|
|
* and uid that is doing that.
|
|
*/
|
|
int __audit_signal_info(int sig, struct task_struct *t)
|
|
{
|
|
struct audit_aux_data_pids *axp;
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *ctx = tsk->audit_context;
|
|
uid_t uid = current_uid(), t_uid = task_uid(t);
|
|
|
|
if (audit_pid && t->tgid == audit_pid) {
|
|
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
|
|
audit_sig_pid = tsk->pid;
|
|
if (tsk->loginuid != -1)
|
|
audit_sig_uid = tsk->loginuid;
|
|
else
|
|
audit_sig_uid = uid;
|
|
security_task_getsecid(tsk, &audit_sig_sid);
|
|
}
|
|
if (!audit_signals || audit_dummy_context())
|
|
return 0;
|
|
}
|
|
|
|
/* optimize the common case by putting first signal recipient directly
|
|
* in audit_context */
|
|
if (!ctx->target_pid) {
|
|
ctx->target_pid = t->tgid;
|
|
ctx->target_auid = audit_get_loginuid(t);
|
|
ctx->target_uid = t_uid;
|
|
ctx->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &ctx->target_sid);
|
|
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
|
|
return 0;
|
|
}
|
|
|
|
axp = (void *)ctx->aux_pids;
|
|
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
|
|
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
|
|
if (!axp)
|
|
return -ENOMEM;
|
|
|
|
axp->d.type = AUDIT_OBJ_PID;
|
|
axp->d.next = ctx->aux_pids;
|
|
ctx->aux_pids = (void *)axp;
|
|
}
|
|
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
|
|
|
|
axp->target_pid[axp->pid_count] = t->tgid;
|
|
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
|
|
axp->target_uid[axp->pid_count] = t_uid;
|
|
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
|
|
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
|
|
axp->pid_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
|
|
* @bprm: pointer to the bprm being processed
|
|
* @new: the proposed new credentials
|
|
* @old: the old credentials
|
|
*
|
|
* Simply check if the proc already has the caps given by the file and if not
|
|
* store the priv escalation info for later auditing at the end of the syscall
|
|
*
|
|
* -Eric
|
|
*/
|
|
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
|
|
const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_aux_data_bprm_fcaps *ax;
|
|
struct audit_context *context = current->audit_context;
|
|
struct cpu_vfs_cap_data vcaps;
|
|
struct dentry *dentry;
|
|
|
|
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
|
|
if (!ax)
|
|
return -ENOMEM;
|
|
|
|
ax->d.type = AUDIT_BPRM_FCAPS;
|
|
ax->d.next = context->aux;
|
|
context->aux = (void *)ax;
|
|
|
|
dentry = dget(bprm->file->f_dentry);
|
|
get_vfs_caps_from_disk(dentry, &vcaps);
|
|
dput(dentry);
|
|
|
|
ax->fcap.permitted = vcaps.permitted;
|
|
ax->fcap.inheritable = vcaps.inheritable;
|
|
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
|
|
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
|
|
|
|
ax->old_pcap.permitted = old->cap_permitted;
|
|
ax->old_pcap.inheritable = old->cap_inheritable;
|
|
ax->old_pcap.effective = old->cap_effective;
|
|
|
|
ax->new_pcap.permitted = new->cap_permitted;
|
|
ax->new_pcap.inheritable = new->cap_inheritable;
|
|
ax->new_pcap.effective = new->cap_effective;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_capset - store information about the arguments to the capset syscall
|
|
* @pid: target pid of the capset call
|
|
* @new: the new credentials
|
|
* @old: the old (current) credentials
|
|
*
|
|
* Record the aguments userspace sent to sys_capset for later printing by the
|
|
* audit system if applicable
|
|
*/
|
|
void __audit_log_capset(pid_t pid,
|
|
const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->capset.pid = pid;
|
|
context->capset.cap.effective = new->cap_effective;
|
|
context->capset.cap.inheritable = new->cap_effective;
|
|
context->capset.cap.permitted = new->cap_permitted;
|
|
context->type = AUDIT_CAPSET;
|
|
}
|
|
|
|
void __audit_mmap_fd(int fd, int flags)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->mmap.fd = fd;
|
|
context->mmap.flags = flags;
|
|
context->type = AUDIT_MMAP;
|
|
}
|
|
|
|
/**
|
|
* audit_core_dumps - record information about processes that end abnormally
|
|
* @signr: signal value
|
|
*
|
|
* If a process ends with a core dump, something fishy is going on and we
|
|
* should record the event for investigation.
|
|
*/
|
|
void audit_core_dumps(long signr)
|
|
{
|
|
struct audit_buffer *ab;
|
|
u32 sid;
|
|
uid_t auid = audit_get_loginuid(current), uid;
|
|
gid_t gid;
|
|
unsigned int sessionid = audit_get_sessionid(current);
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
if (signr == SIGQUIT) /* don't care for those */
|
|
return;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
|
|
current_uid_gid(&uid, &gid);
|
|
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
|
|
auid, uid, gid, sessionid);
|
|
security_task_getsecid(current, &sid);
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
if (security_secid_to_secctx(sid, &ctx, &len))
|
|
audit_log_format(ab, " ssid=%u", sid);
|
|
else {
|
|
audit_log_format(ab, " subj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
audit_log_format(ab, " pid=%d comm=", current->pid);
|
|
audit_log_untrustedstring(ab, current->comm);
|
|
audit_log_format(ab, " sig=%ld", signr);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
struct list_head *audit_killed_trees(void)
|
|
{
|
|
struct audit_context *ctx = current->audit_context;
|
|
if (likely(!ctx || !ctx->in_syscall))
|
|
return NULL;
|
|
return &ctx->killed_trees;
|
|
}
|