2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/fs/dax.c
Linus Torvalds 9ec3a646fe Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
 "d_inode() annotations from David Howells (sat in for-next since before
  the beginning of merge window) + four assorted fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  RCU pathwalk breakage when running into a symlink overmounting something
  fix I_DIO_WAKEUP definition
  direct-io: only inc/dec inode->i_dio_count for file systems
  fs/9p: fix readdir()
  VFS: assorted d_backing_inode() annotations
  VFS: fs/inode.c helpers: d_inode() annotations
  VFS: fs/cachefiles: d_backing_inode() annotations
  VFS: fs library helpers: d_inode() annotations
  VFS: assorted weird filesystems: d_inode() annotations
  VFS: normal filesystems (and lustre): d_inode() annotations
  VFS: security/: d_inode() annotations
  VFS: security/: d_backing_inode() annotations
  VFS: net/: d_inode() annotations
  VFS: net/unix: d_backing_inode() annotations
  VFS: kernel/: d_inode() annotations
  VFS: audit: d_backing_inode() annotations
  VFS: Fix up some ->d_inode accesses in the chelsio driver
  VFS: Cachefiles should perform fs modifications on the top layer only
  VFS: AF_UNIX sockets should call mknod on the top layer only
2015-04-26 17:22:07 -07:00

551 lines
15 KiB
C

/*
* fs/dax.c - Direct Access filesystem code
* Copyright (c) 2013-2014 Intel Corporation
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/uio.h>
#include <linux/vmstat.h>
int dax_clear_blocks(struct inode *inode, sector_t block, long size)
{
struct block_device *bdev = inode->i_sb->s_bdev;
sector_t sector = block << (inode->i_blkbits - 9);
might_sleep();
do {
void *addr;
unsigned long pfn;
long count;
count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
if (count < 0)
return count;
BUG_ON(size < count);
while (count > 0) {
unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
if (pgsz > count)
pgsz = count;
if (pgsz < PAGE_SIZE)
memset(addr, 0, pgsz);
else
clear_page(addr);
addr += pgsz;
size -= pgsz;
count -= pgsz;
BUG_ON(pgsz & 511);
sector += pgsz / 512;
cond_resched();
}
} while (size);
return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_blocks);
static long dax_get_addr(struct buffer_head *bh, void **addr, unsigned blkbits)
{
unsigned long pfn;
sector_t sector = bh->b_blocknr << (blkbits - 9);
return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
}
static void dax_new_buf(void *addr, unsigned size, unsigned first, loff_t pos,
loff_t end)
{
loff_t final = end - pos + first; /* The final byte of the buffer */
if (first > 0)
memset(addr, 0, first);
if (final < size)
memset(addr + final, 0, size - final);
}
static bool buffer_written(struct buffer_head *bh)
{
return buffer_mapped(bh) && !buffer_unwritten(bh);
}
/*
* When ext4 encounters a hole, it returns without modifying the buffer_head
* which means that we can't trust b_size. To cope with this, we set b_state
* to 0 before calling get_block and, if any bit is set, we know we can trust
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
* and would save us time calling get_block repeatedly.
*/
static bool buffer_size_valid(struct buffer_head *bh)
{
return bh->b_state != 0;
}
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
loff_t start, loff_t end, get_block_t get_block,
struct buffer_head *bh)
{
ssize_t retval = 0;
loff_t pos = start;
loff_t max = start;
loff_t bh_max = start;
void *addr;
bool hole = false;
if (iov_iter_rw(iter) != WRITE)
end = min(end, i_size_read(inode));
while (pos < end) {
unsigned len;
if (pos == max) {
unsigned blkbits = inode->i_blkbits;
sector_t block = pos >> blkbits;
unsigned first = pos - (block << blkbits);
long size;
if (pos == bh_max) {
bh->b_size = PAGE_ALIGN(end - pos);
bh->b_state = 0;
retval = get_block(inode, block, bh,
iov_iter_rw(iter) == WRITE);
if (retval)
break;
if (!buffer_size_valid(bh))
bh->b_size = 1 << blkbits;
bh_max = pos - first + bh->b_size;
} else {
unsigned done = bh->b_size -
(bh_max - (pos - first));
bh->b_blocknr += done >> blkbits;
bh->b_size -= done;
}
hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
if (hole) {
addr = NULL;
size = bh->b_size - first;
} else {
retval = dax_get_addr(bh, &addr, blkbits);
if (retval < 0)
break;
if (buffer_unwritten(bh) || buffer_new(bh))
dax_new_buf(addr, retval, first, pos,
end);
addr += first;
size = retval - first;
}
max = min(pos + size, end);
}
if (iov_iter_rw(iter) == WRITE)
len = copy_from_iter(addr, max - pos, iter);
else if (!hole)
len = copy_to_iter(addr, max - pos, iter);
else
len = iov_iter_zero(max - pos, iter);
if (!len)
break;
pos += len;
addr += len;
}
return (pos == start) ? retval : pos - start;
}
/**
* dax_do_io - Perform I/O to a DAX file
* @iocb: The control block for this I/O
* @inode: The file which the I/O is directed at
* @iter: The addresses to do I/O from or to
* @pos: The file offset where the I/O starts
* @get_block: The filesystem method used to translate file offsets to blocks
* @end_io: A filesystem callback for I/O completion
* @flags: See below
*
* This function uses the same locking scheme as do_blockdev_direct_IO:
* If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
* caller for writes. For reads, we take and release the i_mutex ourselves.
* If DIO_LOCKING is not set, the filesystem takes care of its own locking.
* As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
* is in progress.
*/
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
struct iov_iter *iter, loff_t pos, get_block_t get_block,
dio_iodone_t end_io, int flags)
{
struct buffer_head bh;
ssize_t retval = -EINVAL;
loff_t end = pos + iov_iter_count(iter);
memset(&bh, 0, sizeof(bh));
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
struct address_space *mapping = inode->i_mapping;
mutex_lock(&inode->i_mutex);
retval = filemap_write_and_wait_range(mapping, pos, end - 1);
if (retval) {
mutex_unlock(&inode->i_mutex);
goto out;
}
}
/* Protects against truncate */
inode_dio_begin(inode);
retval = dax_io(inode, iter, pos, end, get_block, &bh);
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
mutex_unlock(&inode->i_mutex);
if ((retval > 0) && end_io)
end_io(iocb, pos, retval, bh.b_private);
inode_dio_end(inode);
out:
return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
/*
* The user has performed a load from a hole in the file. Allocating
* a new page in the file would cause excessive storage usage for
* workloads with sparse files. We allocate a page cache page instead.
* We'll kick it out of the page cache if it's ever written to,
* otherwise it will simply fall out of the page cache under memory
* pressure without ever having been dirtied.
*/
static int dax_load_hole(struct address_space *mapping, struct page *page,
struct vm_fault *vmf)
{
unsigned long size;
struct inode *inode = mapping->host;
if (!page)
page = find_or_create_page(mapping, vmf->pgoff,
GFP_KERNEL | __GFP_ZERO);
if (!page)
return VM_FAULT_OOM;
/* Recheck i_size under page lock to avoid truncate race */
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size) {
unlock_page(page);
page_cache_release(page);
return VM_FAULT_SIGBUS;
}
vmf->page = page;
return VM_FAULT_LOCKED;
}
static int copy_user_bh(struct page *to, struct buffer_head *bh,
unsigned blkbits, unsigned long vaddr)
{
void *vfrom, *vto;
if (dax_get_addr(bh, &vfrom, blkbits) < 0)
return -EIO;
vto = kmap_atomic(to);
copy_user_page(vto, vfrom, vaddr, to);
kunmap_atomic(vto);
return 0;
}
static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct address_space *mapping = inode->i_mapping;
sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
unsigned long vaddr = (unsigned long)vmf->virtual_address;
void *addr;
unsigned long pfn;
pgoff_t size;
int error;
i_mmap_lock_read(mapping);
/*
* Check truncate didn't happen while we were allocating a block.
* If it did, this block may or may not be still allocated to the
* file. We can't tell the filesystem to free it because we can't
* take i_mutex here. In the worst case, the file still has blocks
* allocated past the end of the file.
*/
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
error = -EIO;
goto out;
}
error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
if (error < 0)
goto out;
if (error < PAGE_SIZE) {
error = -EIO;
goto out;
}
if (buffer_unwritten(bh) || buffer_new(bh))
clear_page(addr);
error = vm_insert_mixed(vma, vaddr, pfn);
out:
i_mmap_unlock_read(mapping);
if (bh->b_end_io)
bh->b_end_io(bh, 1);
return error;
}
static int do_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head bh;
unsigned long vaddr = (unsigned long)vmf->virtual_address;
unsigned blkbits = inode->i_blkbits;
sector_t block;
pgoff_t size;
int error;
int major = 0;
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
memset(&bh, 0, sizeof(bh));
block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
bh.b_size = PAGE_SIZE;
repeat:
page = find_get_page(mapping, vmf->pgoff);
if (page) {
if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
page_cache_release(page);
return VM_FAULT_RETRY;
}
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
/*
* We have a struct page covering a hole in the file
* from a read fault and we've raced with a truncate
*/
error = -EIO;
goto unlock_page;
}
}
error = get_block(inode, block, &bh, 0);
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO; /* fs corruption? */
if (error)
goto unlock_page;
if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
if (vmf->flags & FAULT_FLAG_WRITE) {
error = get_block(inode, block, &bh, 1);
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
major = VM_FAULT_MAJOR;
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO;
if (error)
goto unlock_page;
} else {
return dax_load_hole(mapping, page, vmf);
}
}
if (vmf->cow_page) {
struct page *new_page = vmf->cow_page;
if (buffer_written(&bh))
error = copy_user_bh(new_page, &bh, blkbits, vaddr);
else
clear_user_highpage(new_page, vaddr);
if (error)
goto unlock_page;
vmf->page = page;
if (!page) {
i_mmap_lock_read(mapping);
/* Check we didn't race with truncate */
size = (i_size_read(inode) + PAGE_SIZE - 1) >>
PAGE_SHIFT;
if (vmf->pgoff >= size) {
i_mmap_unlock_read(mapping);
error = -EIO;
goto out;
}
}
return VM_FAULT_LOCKED;
}
/* Check we didn't race with a read fault installing a new page */
if (!page && major)
page = find_lock_page(mapping, vmf->pgoff);
if (page) {
unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
PAGE_CACHE_SIZE, 0);
delete_from_page_cache(page);
unlock_page(page);
page_cache_release(page);
}
error = dax_insert_mapping(inode, &bh, vma, vmf);
out:
if (error == -ENOMEM)
return VM_FAULT_OOM | major;
/* -EBUSY is fine, somebody else faulted on the same PTE */
if ((error < 0) && (error != -EBUSY))
return VM_FAULT_SIGBUS | major;
return VM_FAULT_NOPAGE | major;
unlock_page:
if (page) {
unlock_page(page);
page_cache_release(page);
}
goto out;
}
/**
* dax_fault - handle a page fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
*
* When a page fault occurs, filesystems may call this helper in their
* fault handler for DAX files.
*/
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block)
{
int result;
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
if (vmf->flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(sb);
file_update_time(vma->vm_file);
}
result = do_dax_fault(vma, vmf, get_block);
if (vmf->flags & FAULT_FLAG_WRITE)
sb_end_pagefault(sb);
return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
/**
* dax_pfn_mkwrite - handle first write to DAX page
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
*
*/
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
sb_start_pagefault(sb);
file_update_time(vma->vm_file);
sb_end_pagefault(sb);
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
/**
* dax_zero_page_range - zero a range within a page of a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @length: The number of bytes to zero
* @get_block: The filesystem method used to translate file offsets to blocks
*
* This function can be called by a filesystem when it is zeroing part of a
* page in a DAX file. This is intended for hole-punch operations. If
* you are truncating a file, the helper function dax_truncate_page() may be
* more convenient.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
get_block_t get_block)
{
struct buffer_head bh;
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
int err;
/* Block boundary? Nothing to do */
if (!length)
return 0;
BUG_ON((offset + length) > PAGE_CACHE_SIZE);
memset(&bh, 0, sizeof(bh));
bh.b_size = PAGE_CACHE_SIZE;
err = get_block(inode, index, &bh, 0);
if (err < 0)
return err;
if (buffer_written(&bh)) {
void *addr;
err = dax_get_addr(&bh, &addr, inode->i_blkbits);
if (err < 0)
return err;
memset(addr + offset, 0, length);
}
return 0;
}
EXPORT_SYMBOL_GPL(dax_zero_page_range);
/**
* dax_truncate_page - handle a partial page being truncated in a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @get_block: The filesystem method used to translate file offsets to blocks
*
* Similar to block_truncate_page(), this function can be called by a
* filesystem when it is truncating a DAX file to handle the partial page.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
unsigned length = PAGE_CACHE_ALIGN(from) - from;
return dax_zero_page_range(inode, from, length, get_block);
}
EXPORT_SYMBOL_GPL(dax_truncate_page);