2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 05:04:00 +08:00
linux-next/mm/readahead.c
NeilBrown fe55d563d4 remove inode_congested()
inode_congested() reports if the backing-device for the inode is
congested.  No bdi reports congestion any more, so this always returns
'false'.

So remove inode_congested() and related functions, and remove the call
sites, assuming that inode_congested() always returns 'false'.

Link: https://lkml.kernel.org/r/164549983741.9187.2174285592262191311.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:01 -07:00

825 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/readahead.c - address_space-level file readahead.
*
* Copyright (C) 2002, Linus Torvalds
*
* 09Apr2002 Andrew Morton
* Initial version.
*/
/**
* DOC: Readahead Overview
*
* Readahead is used to read content into the page cache before it is
* explicitly requested by the application. Readahead only ever
* attempts to read pages that are not yet in the page cache. If a
* page is present but not up-to-date, readahead will not try to read
* it. In that case a simple ->readpage() will be requested.
*
* Readahead is triggered when an application read request (whether a
* systemcall or a page fault) finds that the requested page is not in
* the page cache, or that it is in the page cache and has the
* %PG_readahead flag set. This flag indicates that the page was loaded
* as part of a previous read-ahead request and now that it has been
* accessed, it is time for the next read-ahead.
*
* Each readahead request is partly synchronous read, and partly async
* read-ahead. This is reflected in the struct file_ra_state which
* contains ->size being to total number of pages, and ->async_size
* which is the number of pages in the async section. The first page in
* this async section will have %PG_readahead set as a trigger for a
* subsequent read ahead. Once a series of sequential reads has been
* established, there should be no need for a synchronous component and
* all read ahead request will be fully asynchronous.
*
* When either of the triggers causes a readahead, three numbers need to
* be determined: the start of the region, the size of the region, and
* the size of the async tail.
*
* The start of the region is simply the first page address at or after
* the accessed address, which is not currently populated in the page
* cache. This is found with a simple search in the page cache.
*
* The size of the async tail is determined by subtracting the size that
* was explicitly requested from the determined request size, unless
* this would be less than zero - then zero is used. NOTE THIS
* CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
* PAGE.
*
* The size of the region is normally determined from the size of the
* previous readahead which loaded the preceding pages. This may be
* discovered from the struct file_ra_state for simple sequential reads,
* or from examining the state of the page cache when multiple
* sequential reads are interleaved. Specifically: where the readahead
* was triggered by the %PG_readahead flag, the size of the previous
* readahead is assumed to be the number of pages from the triggering
* page to the start of the new readahead. In these cases, the size of
* the previous readahead is scaled, often doubled, for the new
* readahead, though see get_next_ra_size() for details.
*
* If the size of the previous read cannot be determined, the number of
* preceding pages in the page cache is used to estimate the size of
* a previous read. This estimate could easily be misled by random
* reads being coincidentally adjacent, so it is ignored unless it is
* larger than the current request, and it is not scaled up, unless it
* is at the start of file.
*
* In general read ahead is accelerated at the start of the file, as
* reads from there are often sequential. There are other minor
* adjustments to the read ahead size in various special cases and these
* are best discovered by reading the code.
*
* The above calculation determines the readahead, to which any requested
* read size may be added.
*
* Readahead requests are sent to the filesystem using the ->readahead()
* address space operation, for which mpage_readahead() is a canonical
* implementation. ->readahead() should normally initiate reads on all
* pages, but may fail to read any or all pages without causing an IO
* error. The page cache reading code will issue a ->readpage() request
* for any page which ->readahead() does not provided, and only an error
* from this will be final.
*
* ->readahead() will generally call readahead_page() repeatedly to get
* each page from those prepared for read ahead. It may fail to read a
* page by:
*
* * not calling readahead_page() sufficiently many times, effectively
* ignoring some pages, as might be appropriate if the path to
* storage is congested.
*
* * failing to actually submit a read request for a given page,
* possibly due to insufficient resources, or
*
* * getting an error during subsequent processing of a request.
*
* In the last two cases, the page should be unlocked to indicate that
* the read attempt has failed. In the first case the page will be
* unlocked by the caller.
*
* Those pages not in the final ``async_size`` of the request should be
* considered to be important and ->readahead() should not fail them due
* to congestion or temporary resource unavailability, but should wait
* for necessary resources (e.g. memory or indexing information) to
* become available. Pages in the final ``async_size`` may be
* considered less urgent and failure to read them is more acceptable.
* In this case it is best to use delete_from_page_cache() to remove the
* pages from the page cache as is automatically done for pages that
* were not fetched with readahead_page(). This will allow a
* subsequent synchronous read ahead request to try them again. If they
* are left in the page cache, then they will be read individually using
* ->readpage().
*
*/
#include <linux/kernel.h>
#include <linux/dax.h>
#include <linux/gfp.h>
#include <linux/export.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/pagevec.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/mm_inline.h>
#include <linux/blk-cgroup.h>
#include <linux/fadvise.h>
#include <linux/sched/mm.h>
#include "internal.h"
/*
* Initialise a struct file's readahead state. Assumes that the caller has
* memset *ra to zero.
*/
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
ra->prev_pos = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);
/*
* see if a page needs releasing upon read_cache_pages() failure
* - the caller of read_cache_pages() may have set PG_private or PG_fscache
* before calling, such as the NFS fs marking pages that are cached locally
* on disk, thus we need to give the fs a chance to clean up in the event of
* an error
*/
static void read_cache_pages_invalidate_page(struct address_space *mapping,
struct page *page)
{
if (page_has_private(page)) {
if (!trylock_page(page))
BUG();
page->mapping = mapping;
do_invalidatepage(page, 0, PAGE_SIZE);
page->mapping = NULL;
unlock_page(page);
}
put_page(page);
}
/*
* release a list of pages, invalidating them first if need be
*/
static void read_cache_pages_invalidate_pages(struct address_space *mapping,
struct list_head *pages)
{
struct page *victim;
while (!list_empty(pages)) {
victim = lru_to_page(pages);
list_del(&victim->lru);
read_cache_pages_invalidate_page(mapping, victim);
}
}
/**
* read_cache_pages - populate an address space with some pages & start reads against them
* @mapping: the address_space
* @pages: The address of a list_head which contains the target pages. These
* pages have their ->index populated and are otherwise uninitialised.
* @filler: callback routine for filling a single page.
* @data: private data for the callback routine.
*
* Hides the details of the LRU cache etc from the filesystems.
*
* Returns: %0 on success, error return by @filler otherwise
*/
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
int (*filler)(void *, struct page *), void *data)
{
struct page *page;
int ret = 0;
while (!list_empty(pages)) {
page = lru_to_page(pages);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping, page->index,
readahead_gfp_mask(mapping))) {
read_cache_pages_invalidate_page(mapping, page);
continue;
}
put_page(page);
ret = filler(data, page);
if (unlikely(ret)) {
read_cache_pages_invalidate_pages(mapping, pages);
break;
}
task_io_account_read(PAGE_SIZE);
}
return ret;
}
EXPORT_SYMBOL(read_cache_pages);
static void read_pages(struct readahead_control *rac, struct list_head *pages,
bool skip_page)
{
const struct address_space_operations *aops = rac->mapping->a_ops;
struct page *page;
struct blk_plug plug;
if (!readahead_count(rac))
goto out;
blk_start_plug(&plug);
if (aops->readahead) {
aops->readahead(rac);
/*
* Clean up the remaining pages. The sizes in ->ra
* maybe be used to size next read-ahead, so make sure
* they accurately reflect what happened.
*/
while ((page = readahead_page(rac))) {
rac->ra->size -= 1;
if (rac->ra->async_size > 0) {
rac->ra->async_size -= 1;
delete_from_page_cache(page);
}
unlock_page(page);
put_page(page);
}
} else if (aops->readpages) {
aops->readpages(rac->file, rac->mapping, pages,
readahead_count(rac));
/* Clean up the remaining pages */
put_pages_list(pages);
rac->_index += rac->_nr_pages;
rac->_nr_pages = 0;
} else {
while ((page = readahead_page(rac))) {
aops->readpage(rac->file, page);
put_page(page);
}
}
blk_finish_plug(&plug);
BUG_ON(!list_empty(pages));
BUG_ON(readahead_count(rac));
out:
if (skip_page)
rac->_index++;
}
/**
* page_cache_ra_unbounded - Start unchecked readahead.
* @ractl: Readahead control.
* @nr_to_read: The number of pages to read.
* @lookahead_size: Where to start the next readahead.
*
* This function is for filesystems to call when they want to start
* readahead beyond a file's stated i_size. This is almost certainly
* not the function you want to call. Use page_cache_async_readahead()
* or page_cache_sync_readahead() instead.
*
* Context: File is referenced by caller. Mutexes may be held by caller.
* May sleep, but will not reenter filesystem to reclaim memory.
*/
void page_cache_ra_unbounded(struct readahead_control *ractl,
unsigned long nr_to_read, unsigned long lookahead_size)
{
struct address_space *mapping = ractl->mapping;
unsigned long index = readahead_index(ractl);
LIST_HEAD(page_pool);
gfp_t gfp_mask = readahead_gfp_mask(mapping);
unsigned long i;
/*
* Partway through the readahead operation, we will have added
* locked pages to the page cache, but will not yet have submitted
* them for I/O. Adding another page may need to allocate memory,
* which can trigger memory reclaim. Telling the VM we're in
* the middle of a filesystem operation will cause it to not
* touch file-backed pages, preventing a deadlock. Most (all?)
* filesystems already specify __GFP_NOFS in their mapping's
* gfp_mask, but let's be explicit here.
*/
unsigned int nofs = memalloc_nofs_save();
filemap_invalidate_lock_shared(mapping);
/*
* Preallocate as many pages as we will need.
*/
for (i = 0; i < nr_to_read; i++) {
struct folio *folio = xa_load(&mapping->i_pages, index + i);
if (folio && !xa_is_value(folio)) {
/*
* Page already present? Kick off the current batch
* of contiguous pages before continuing with the
* next batch. This page may be the one we would
* have intended to mark as Readahead, but we don't
* have a stable reference to this page, and it's
* not worth getting one just for that.
*/
read_pages(ractl, &page_pool, true);
i = ractl->_index + ractl->_nr_pages - index - 1;
continue;
}
folio = filemap_alloc_folio(gfp_mask, 0);
if (!folio)
break;
if (mapping->a_ops->readpages) {
folio->index = index + i;
list_add(&folio->lru, &page_pool);
} else if (filemap_add_folio(mapping, folio, index + i,
gfp_mask) < 0) {
folio_put(folio);
read_pages(ractl, &page_pool, true);
i = ractl->_index + ractl->_nr_pages - index - 1;
continue;
}
if (i == nr_to_read - lookahead_size)
folio_set_readahead(folio);
ractl->_nr_pages++;
}
/*
* Now start the IO. We ignore I/O errors - if the page is not
* uptodate then the caller will launch readpage again, and
* will then handle the error.
*/
read_pages(ractl, &page_pool, false);
filemap_invalidate_unlock_shared(mapping);
memalloc_nofs_restore(nofs);
}
EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
/*
* do_page_cache_ra() actually reads a chunk of disk. It allocates
* the pages first, then submits them for I/O. This avoids the very bad
* behaviour which would occur if page allocations are causing VM writeback.
* We really don't want to intermingle reads and writes like that.
*/
void do_page_cache_ra(struct readahead_control *ractl,
unsigned long nr_to_read, unsigned long lookahead_size)
{
struct inode *inode = ractl->mapping->host;
unsigned long index = readahead_index(ractl);
loff_t isize = i_size_read(inode);
pgoff_t end_index; /* The last page we want to read */
if (isize == 0)
return;
end_index = (isize - 1) >> PAGE_SHIFT;
if (index > end_index)
return;
/* Don't read past the page containing the last byte of the file */
if (nr_to_read > end_index - index)
nr_to_read = end_index - index + 1;
page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
}
/*
* Chunk the readahead into 2 megabyte units, so that we don't pin too much
* memory at once.
*/
void force_page_cache_ra(struct readahead_control *ractl,
unsigned long nr_to_read)
{
struct address_space *mapping = ractl->mapping;
struct file_ra_state *ra = ractl->ra;
struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
unsigned long max_pages, index;
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
!mapping->a_ops->readahead))
return;
/*
* If the request exceeds the readahead window, allow the read to
* be up to the optimal hardware IO size
*/
index = readahead_index(ractl);
max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
while (nr_to_read) {
unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
if (this_chunk > nr_to_read)
this_chunk = nr_to_read;
ractl->_index = index;
do_page_cache_ra(ractl, this_chunk, 0);
index += this_chunk;
nr_to_read -= this_chunk;
}
}
/*
* Set the initial window size, round to next power of 2 and square
* for small size, x 4 for medium, and x 2 for large
* for 128k (32 page) max ra
* 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
*/
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
unsigned long newsize = roundup_pow_of_two(size);
if (newsize <= max / 32)
newsize = newsize * 4;
else if (newsize <= max / 4)
newsize = newsize * 2;
else
newsize = max;
return newsize;
}
/*
* Get the previous window size, ramp it up, and
* return it as the new window size.
*/
static unsigned long get_next_ra_size(struct file_ra_state *ra,
unsigned long max)
{
unsigned long cur = ra->size;
if (cur < max / 16)
return 4 * cur;
if (cur <= max / 2)
return 2 * cur;
return max;
}
/*
* On-demand readahead design.
*
* The fields in struct file_ra_state represent the most-recently-executed
* readahead attempt:
*
* |<----- async_size ---------|
* |------------------- size -------------------->|
* |==================#===========================|
* ^start ^page marked with PG_readahead
*
* To overlap application thinking time and disk I/O time, we do
* `readahead pipelining': Do not wait until the application consumed all
* readahead pages and stalled on the missing page at readahead_index;
* Instead, submit an asynchronous readahead I/O as soon as there are
* only async_size pages left in the readahead window. Normally async_size
* will be equal to size, for maximum pipelining.
*
* In interleaved sequential reads, concurrent streams on the same fd can
* be invalidating each other's readahead state. So we flag the new readahead
* page at (start+size-async_size) with PG_readahead, and use it as readahead
* indicator. The flag won't be set on already cached pages, to avoid the
* readahead-for-nothing fuss, saving pointless page cache lookups.
*
* prev_pos tracks the last visited byte in the _previous_ read request.
* It should be maintained by the caller, and will be used for detecting
* small random reads. Note that the readahead algorithm checks loosely
* for sequential patterns. Hence interleaved reads might be served as
* sequential ones.
*
* There is a special-case: if the first page which the application tries to
* read happens to be the first page of the file, it is assumed that a linear
* read is about to happen and the window is immediately set to the initial size
* based on I/O request size and the max_readahead.
*
* The code ramps up the readahead size aggressively at first, but slow down as
* it approaches max_readhead.
*/
/*
* Count contiguously cached pages from @index-1 to @index-@max,
* this count is a conservative estimation of
* - length of the sequential read sequence, or
* - thrashing threshold in memory tight systems
*/
static pgoff_t count_history_pages(struct address_space *mapping,
pgoff_t index, unsigned long max)
{
pgoff_t head;
rcu_read_lock();
head = page_cache_prev_miss(mapping, index - 1, max);
rcu_read_unlock();
return index - 1 - head;
}
/*
* page cache context based read-ahead
*/
static int try_context_readahead(struct address_space *mapping,
struct file_ra_state *ra,
pgoff_t index,
unsigned long req_size,
unsigned long max)
{
pgoff_t size;
size = count_history_pages(mapping, index, max);
/*
* not enough history pages:
* it could be a random read
*/
if (size <= req_size)
return 0;
/*
* starts from beginning of file:
* it is a strong indication of long-run stream (or whole-file-read)
*/
if (size >= index)
size *= 2;
ra->start = index;
ra->size = min(size + req_size, max);
ra->async_size = 1;
return 1;
}
/*
* A minimal readahead algorithm for trivial sequential/random reads.
*/
static void ondemand_readahead(struct readahead_control *ractl,
bool hit_readahead_marker, unsigned long req_size)
{
struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
struct file_ra_state *ra = ractl->ra;
unsigned long max_pages = ra->ra_pages;
unsigned long add_pages;
unsigned long index = readahead_index(ractl);
pgoff_t prev_index;
/*
* If the request exceeds the readahead window, allow the read to
* be up to the optimal hardware IO size
*/
if (req_size > max_pages && bdi->io_pages > max_pages)
max_pages = min(req_size, bdi->io_pages);
/*
* start of file
*/
if (!index)
goto initial_readahead;
/*
* It's the expected callback index, assume sequential access.
* Ramp up sizes, and push forward the readahead window.
*/
if ((index == (ra->start + ra->size - ra->async_size) ||
index == (ra->start + ra->size))) {
ra->start += ra->size;
ra->size = get_next_ra_size(ra, max_pages);
ra->async_size = ra->size;
goto readit;
}
/*
* Hit a marked page without valid readahead state.
* E.g. interleaved reads.
* Query the pagecache for async_size, which normally equals to
* readahead size. Ramp it up and use it as the new readahead size.
*/
if (hit_readahead_marker) {
pgoff_t start;
rcu_read_lock();
start = page_cache_next_miss(ractl->mapping, index + 1,
max_pages);
rcu_read_unlock();
if (!start || start - index > max_pages)
return;
ra->start = start;
ra->size = start - index; /* old async_size */
ra->size += req_size;
ra->size = get_next_ra_size(ra, max_pages);
ra->async_size = ra->size;
goto readit;
}
/*
* oversize read
*/
if (req_size > max_pages)
goto initial_readahead;
/*
* sequential cache miss
* trivial case: (index - prev_index) == 1
* unaligned reads: (index - prev_index) == 0
*/
prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
if (index - prev_index <= 1UL)
goto initial_readahead;
/*
* Query the page cache and look for the traces(cached history pages)
* that a sequential stream would leave behind.
*/
if (try_context_readahead(ractl->mapping, ra, index, req_size,
max_pages))
goto readit;
/*
* standalone, small random read
* Read as is, and do not pollute the readahead state.
*/
do_page_cache_ra(ractl, req_size, 0);
return;
initial_readahead:
ra->start = index;
ra->size = get_init_ra_size(req_size, max_pages);
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
readit:
/*
* Will this read hit the readahead marker made by itself?
* If so, trigger the readahead marker hit now, and merge
* the resulted next readahead window into the current one.
* Take care of maximum IO pages as above.
*/
if (index == ra->start && ra->size == ra->async_size) {
add_pages = get_next_ra_size(ra, max_pages);
if (ra->size + add_pages <= max_pages) {
ra->async_size = add_pages;
ra->size += add_pages;
} else {
ra->size = max_pages;
ra->async_size = max_pages >> 1;
}
}
ractl->_index = ra->start;
do_page_cache_ra(ractl, ra->size, ra->async_size);
}
void page_cache_sync_ra(struct readahead_control *ractl,
unsigned long req_count)
{
bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
/*
* Even if read-ahead is disabled, issue this request as read-ahead
* as we'll need it to satisfy the requested range. The forced
* read-ahead will do the right thing and limit the read to just the
* requested range, which we'll set to 1 page for this case.
*/
if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
if (!ractl->file)
return;
req_count = 1;
do_forced_ra = true;
}
/* be dumb */
if (do_forced_ra) {
force_page_cache_ra(ractl, req_count);
return;
}
/* do read-ahead */
ondemand_readahead(ractl, false, req_count);
}
EXPORT_SYMBOL_GPL(page_cache_sync_ra);
void page_cache_async_ra(struct readahead_control *ractl,
struct folio *folio, unsigned long req_count)
{
/* no read-ahead */
if (!ractl->ra->ra_pages)
return;
/*
* Same bit is used for PG_readahead and PG_reclaim.
*/
if (folio_test_writeback(folio))
return;
folio_clear_readahead(folio);
if (blk_cgroup_congested())
return;
/* do read-ahead */
ondemand_readahead(ractl, true, req_count);
}
EXPORT_SYMBOL_GPL(page_cache_async_ra);
ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
{
ssize_t ret;
struct fd f;
ret = -EBADF;
f = fdget(fd);
if (!f.file || !(f.file->f_mode & FMODE_READ))
goto out;
/*
* The readahead() syscall is intended to run only on files
* that can execute readahead. If readahead is not possible
* on this file, then we must return -EINVAL.
*/
ret = -EINVAL;
if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
!S_ISREG(file_inode(f.file)->i_mode))
goto out;
ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
out:
fdput(f);
return ret;
}
SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
{
return ksys_readahead(fd, offset, count);
}
/**
* readahead_expand - Expand a readahead request
* @ractl: The request to be expanded
* @new_start: The revised start
* @new_len: The revised size of the request
*
* Attempt to expand a readahead request outwards from the current size to the
* specified size by inserting locked pages before and after the current window
* to increase the size to the new window. This may involve the insertion of
* THPs, in which case the window may get expanded even beyond what was
* requested.
*
* The algorithm will stop if it encounters a conflicting page already in the
* pagecache and leave a smaller expansion than requested.
*
* The caller must check for this by examining the revised @ractl object for a
* different expansion than was requested.
*/
void readahead_expand(struct readahead_control *ractl,
loff_t new_start, size_t new_len)
{
struct address_space *mapping = ractl->mapping;
struct file_ra_state *ra = ractl->ra;
pgoff_t new_index, new_nr_pages;
gfp_t gfp_mask = readahead_gfp_mask(mapping);
new_index = new_start / PAGE_SIZE;
/* Expand the leading edge downwards */
while (ractl->_index > new_index) {
unsigned long index = ractl->_index - 1;
struct page *page = xa_load(&mapping->i_pages, index);
if (page && !xa_is_value(page))
return; /* Page apparently present */
page = __page_cache_alloc(gfp_mask);
if (!page)
return;
if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
put_page(page);
return;
}
ractl->_nr_pages++;
ractl->_index = page->index;
}
new_len += new_start - readahead_pos(ractl);
new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
/* Expand the trailing edge upwards */
while (ractl->_nr_pages < new_nr_pages) {
unsigned long index = ractl->_index + ractl->_nr_pages;
struct page *page = xa_load(&mapping->i_pages, index);
if (page && !xa_is_value(page))
return; /* Page apparently present */
page = __page_cache_alloc(gfp_mask);
if (!page)
return;
if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
put_page(page);
return;
}
ractl->_nr_pages++;
if (ra) {
ra->size++;
ra->async_size++;
}
}
}
EXPORT_SYMBOL(readahead_expand);