2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/security/commoncap.c
Serge E. Hallyn 094972840f file capabilities: simplify signal check
Simplify the uid equivalence check in cap_task_kill().  Anyone can kill a
process owned by the same uid.

Without this patch wireshark is reported to fail.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:12:13 -08:00

640 lines
16 KiB
C

/* Common capabilities, needed by capability.o and root_plug.o
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
#include <linux/mount.h>
#include <linux/sched.h>
/* Global security state */
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
EXPORT_SYMBOL(securebits);
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
{
NETLINK_CB(skb).eff_cap = current->cap_effective;
return 0;
}
int cap_netlink_recv(struct sk_buff *skb, int cap)
{
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
return -EPERM;
return 0;
}
EXPORT_SYMBOL(cap_netlink_recv);
/*
* NOTE WELL: cap_capable() cannot be used like the kernel's capable()
* function. That is, it has the reverse semantics: cap_capable()
* returns 0 when a task has a capability, but the kernel's capable()
* returns 1 for this case.
*/
int cap_capable (struct task_struct *tsk, int cap)
{
/* Derived from include/linux/sched.h:capable. */
if (cap_raised(tsk->cap_effective, cap))
return 0;
return -EPERM;
}
int cap_settime(struct timespec *ts, struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
int cap_ptrace (struct task_struct *parent, struct task_struct *child)
{
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
!__capable(parent, CAP_SYS_PTRACE))
return -EPERM;
return 0;
}
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
/* Derived from kernel/capability.c:sys_capget. */
*effective = target->cap_effective;
*inheritable = target->cap_inheritable;
*permitted = target->cap_permitted;
return 0;
}
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
static inline int cap_block_setpcap(struct task_struct *target)
{
/*
* No support for remote process capability manipulation with
* filesystem capability support.
*/
return (target != current);
}
static inline int cap_inh_is_capped(void)
{
/*
* Return 1 if changes to the inheritable set are limited
* to the old permitted set. That is, if the current task
* does *not* possess the CAP_SETPCAP capability.
*/
return (cap_capable(current, CAP_SETPCAP) != 0);
}
#else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
static inline int cap_inh_is_capped(void) { return 1; }
#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
if (cap_block_setpcap(target)) {
return -EPERM;
}
if (cap_inh_is_capped()
&& !cap_issubset(*inheritable,
cap_combine(target->cap_inheritable,
current->cap_permitted))) {
/* incapable of using this inheritable set */
return -EPERM;
}
if (!cap_issubset(*inheritable,
cap_combine(target->cap_inheritable,
current->cap_bset))) {
/* no new pI capabilities outside bounding set */
return -EPERM;
}
/* verify restrictions on target's new Permitted set */
if (!cap_issubset (*permitted,
cap_combine (target->cap_permitted,
current->cap_permitted))) {
return -EPERM;
}
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
if (!cap_issubset (*effective, *permitted)) {
return -EPERM;
}
return 0;
}
void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
target->cap_effective = *effective;
target->cap_inheritable = *inheritable;
target->cap_permitted = *permitted;
}
static inline void bprm_clear_caps(struct linux_binprm *bprm)
{
cap_clear(bprm->cap_inheritable);
cap_clear(bprm->cap_permitted);
bprm->cap_effective = false;
}
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
int cap_inode_need_killpriv(struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
int error;
if (!inode->i_op || !inode->i_op->getxattr)
return 0;
error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
if (error <= 0)
return 0;
return 1;
}
int cap_inode_killpriv(struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
if (!inode->i_op || !inode->i_op->removexattr)
return 0;
return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
}
static inline int cap_from_disk(struct vfs_cap_data *caps,
struct linux_binprm *bprm, unsigned size)
{
__u32 magic_etc;
unsigned tocopy, i;
if (size < sizeof(magic_etc))
return -EINVAL;
magic_etc = le32_to_cpu(caps->magic_etc);
switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
case VFS_CAP_REVISION_1:
if (size != XATTR_CAPS_SZ_1)
return -EINVAL;
tocopy = VFS_CAP_U32_1;
break;
case VFS_CAP_REVISION_2:
if (size != XATTR_CAPS_SZ_2)
return -EINVAL;
tocopy = VFS_CAP_U32_2;
break;
default:
return -EINVAL;
}
if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
bprm->cap_effective = true;
} else {
bprm->cap_effective = false;
}
for (i = 0; i < tocopy; ++i) {
bprm->cap_permitted.cap[i] =
le32_to_cpu(caps->data[i].permitted);
bprm->cap_inheritable.cap[i] =
le32_to_cpu(caps->data[i].inheritable);
}
while (i < VFS_CAP_U32) {
bprm->cap_permitted.cap[i] = 0;
bprm->cap_inheritable.cap[i] = 0;
i++;
}
return 0;
}
/* Locate any VFS capabilities: */
static int get_file_caps(struct linux_binprm *bprm)
{
struct dentry *dentry;
int rc = 0;
struct vfs_cap_data vcaps;
struct inode *inode;
if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
bprm_clear_caps(bprm);
return 0;
}
dentry = dget(bprm->file->f_dentry);
inode = dentry->d_inode;
if (!inode->i_op || !inode->i_op->getxattr)
goto out;
rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
XATTR_CAPS_SZ);
if (rc == -ENODATA || rc == -EOPNOTSUPP) {
/* no data, that's ok */
rc = 0;
goto out;
}
if (rc < 0)
goto out;
rc = cap_from_disk(&vcaps, bprm, rc);
if (rc)
printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
__FUNCTION__, rc, bprm->filename);
out:
dput(dentry);
if (rc)
bprm_clear_caps(bprm);
return rc;
}
#else
int cap_inode_need_killpriv(struct dentry *dentry)
{
return 0;
}
int cap_inode_killpriv(struct dentry *dentry)
{
return 0;
}
static inline int get_file_caps(struct linux_binprm *bprm)
{
bprm_clear_caps(bprm);
return 0;
}
#endif
int cap_bprm_set_security (struct linux_binprm *bprm)
{
int ret;
ret = get_file_caps(bprm);
if (ret)
printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
__FUNCTION__, ret, bprm->filename);
/* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we raise all three
* capability sets for the file.
*
* If only the real uid is 0, we only raise the inheritable
* and permitted sets of the executable file.
*/
if (!issecure (SECURE_NOROOT)) {
if (bprm->e_uid == 0 || current->uid == 0) {
cap_set_full (bprm->cap_inheritable);
cap_set_full (bprm->cap_permitted);
}
if (bprm->e_uid == 0)
bprm->cap_effective = true;
}
return ret;
}
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
/* Derived from fs/exec.c:compute_creds. */
kernel_cap_t new_permitted, working;
new_permitted = cap_intersect(bprm->cap_permitted,
current->cap_bset);
working = cap_intersect(bprm->cap_inheritable,
current->cap_inheritable);
new_permitted = cap_combine(new_permitted, working);
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
!cap_issubset (new_permitted, current->cap_permitted)) {
set_dumpable(current->mm, suid_dumpable);
current->pdeath_signal = 0;
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
if (!capable(CAP_SETUID)) {
bprm->e_uid = current->uid;
bprm->e_gid = current->gid;
}
if (!capable (CAP_SETPCAP)) {
new_permitted = cap_intersect (new_permitted,
current->cap_permitted);
}
}
}
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
/* For init, we want to retain the capabilities set
* in the init_task struct. Thus we skip the usual
* capability rules */
if (!is_global_init(current)) {
current->cap_permitted = new_permitted;
if (bprm->cap_effective)
current->cap_effective = new_permitted;
else
cap_clear(current->cap_effective);
}
/* AUD: Audit candidate if current->cap_effective is set */
current->keep_capabilities = 0;
}
int cap_bprm_secureexec (struct linux_binprm *bprm)
{
if (current->uid != 0) {
if (bprm->cap_effective)
return 1;
if (!cap_isclear(bprm->cap_permitted))
return 1;
if (!cap_isclear(bprm->cap_inheritable))
return 1;
}
return (current->euid != current->uid ||
current->egid != current->gid);
}
int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
size_t size, int flags)
{
if (!strcmp(name, XATTR_NAME_CAPS)) {
if (!capable(CAP_SETFCAP))
return -EPERM;
return 0;
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_inode_removexattr(struct dentry *dentry, char *name)
{
if (!strcmp(name, XATTR_NAME_CAPS)) {
if (!capable(CAP_SETFCAP))
return -EPERM;
return 0;
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/* moved from kernel/sys.c. */
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
int old_suid)
{
if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
(current->uid != 0 && current->euid != 0 && current->suid != 0) &&
!current->keep_capabilities) {
cap_clear (current->cap_permitted);
cap_clear (current->cap_effective);
}
if (old_euid == 0 && current->euid != 0) {
cap_clear (current->cap_effective);
}
if (old_euid != 0 && current->euid == 0) {
current->cap_effective = current->cap_permitted;
}
}
int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
cap_emulate_setxuid (old_ruid, old_euid, old_suid);
}
break;
case LSM_SETID_FS:
{
uid_t old_fsuid = old_ruid;
/* Copied from kernel/sys.c:setfsuid. */
/*
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
if (old_fsuid == 0 && current->fsuid != 0) {
current->cap_effective =
cap_drop_fs_set(
current->cap_effective);
}
if (old_fsuid != 0 && current->fsuid == 0) {
current->cap_effective =
cap_raise_fs_set(
current->cap_effective,
current->cap_permitted);
}
}
break;
}
default:
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
/*
* Rationale: code calling task_setscheduler, task_setioprio, and
* task_setnice, assumes that
* . if capable(cap_sys_nice), then those actions should be allowed
* . if not capable(cap_sys_nice), but acting on your own processes,
* then those actions should be allowed
* This is insufficient now since you can call code without suid, but
* yet with increased caps.
* So we check for increased caps on the target process.
*/
static inline int cap_safe_nice(struct task_struct *p)
{
if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
!__capable(current, CAP_SYS_NICE))
return -EPERM;
return 0;
}
int cap_task_setscheduler (struct task_struct *p, int policy,
struct sched_param *lp)
{
return cap_safe_nice(p);
}
int cap_task_setioprio (struct task_struct *p, int ioprio)
{
return cap_safe_nice(p);
}
int cap_task_setnice (struct task_struct *p, int nice)
{
return cap_safe_nice(p);
}
int cap_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid)
{
if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
return 0;
/*
* Running a setuid root program raises your capabilities.
* Killing your own setuid root processes was previously
* allowed.
* We must preserve legacy signal behavior in this case.
*/
if (p->uid == current->uid)
return 0;
/* sigcont is permitted within same session */
if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
return 0;
if (secid)
/*
* Signal sent as a particular user.
* Capabilities are ignored. May be wrong, but it's the
* only thing we can do at the moment.
* Used only by usb drivers?
*/
return 0;
if (cap_issubset(p->cap_permitted, current->cap_permitted))
return 0;
if (capable(CAP_KILL))
return 0;
return -EPERM;
}
/*
* called from kernel/sys.c for prctl(PR_CABSET_DROP)
* done without task_capability_lock() because it introduces
* no new races - i.e. only another task doing capget() on
* this task could get inconsistent info. There can be no
* racing writer bc a task can only change its own caps.
*/
long cap_prctl_drop(unsigned long cap)
{
if (!capable(CAP_SETPCAP))
return -EPERM;
if (!cap_valid(cap))
return -EINVAL;
cap_lower(current->cap_bset, cap);
return 0;
}
#else
int cap_task_setscheduler (struct task_struct *p, int policy,
struct sched_param *lp)
{
return 0;
}
int cap_task_setioprio (struct task_struct *p, int ioprio)
{
return 0;
}
int cap_task_setnice (struct task_struct *p, int nice)
{
return 0;
}
int cap_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid)
{
return 0;
}
#endif
void cap_task_reparent_to_init (struct task_struct *p)
{
cap_set_init_eff(p->cap_effective);
cap_clear(p->cap_inheritable);
cap_set_full(p->cap_permitted);
p->keep_capabilities = 0;
return;
}
int cap_syslog (int type)
{
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
{
int cap_sys_admin = 0;
if (cap_capable(current, CAP_SYS_ADMIN) == 0)
cap_sys_admin = 1;
return __vm_enough_memory(mm, pages, cap_sys_admin);
}