2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-27 08:05:27 +08:00
linux-next/drivers/cpufreq/cpufreq_ondemand.c
Stratos Karafotis 6393d6a102 cpufreq: ondemand: Eliminate the deadband effect
Currently, ondemand calculates the target frequency proportional to load
using the formula:
	Target frequency = C * load
	where C = policy->cpuinfo.max_freq / 100

Though, in many cases, the minimum available frequency is pretty high and
the above calculation introduces a dead band from load 0 to
100 * policy->cpuinfo.min_freq / policy->cpuinfo.max_freq where the target
frequency is always calculated to less than policy->cpuinfo.min_freq and
the minimum frequency is selected.

For example: on Intel i7-3770 @ 3.4GHz the policy->cpuinfo.min_freq = 1600000
and the policy->cpuinfo.max_freq = 3400000 (without turbo). Thus, the CPU
starts to scale up at a load above 47.
On quad core 1500MHz Krait the policy->cpuinfo.min_freq = 384000
and the policy->cpuinfo.max_freq = 1512000. Thus, the CPU starts to scale
at load above 25.

Change the calculation of target frequency to eliminate the above effect using
the formula:

	Target frequency = A + B * load
	where A = policy->cpuinfo.min_freq and
	      B = (policy->cpuinfo.max_freq - policy->cpuinfo->min_freq) / 100

This will map load values 0 to 100 linearly to cpuinfo.min_freq to
cpuinfo.max_freq.

Also, use the CPUFREQ_RELATION_C in __cpufreq_driver_target to select the
closest frequency in frequency_table. This is necessary to avoid selection
of minimum frequency only when load equals to 0. It will also help for selection
of frequencies using a more 'fair' criterion.

Tables below show the difference in selected frequency for specific values
of load without and with this patch. On Intel i7-3770 @ 3.40GHz:
	Without			With
Load	Target	Selected	Target	Selected
0	0	1600000		1600000	1600000
5	170050	1600000		1690050	1700000
10	340100	1600000		1780100	1700000
15	510150	1600000		1870150	1900000
20	680200	1600000		1960200	2000000
25	850250	1600000		2050250	2100000
30	1020300	1600000		2140300	2100000
35	1190350	1600000		2230350	2200000
40	1360400	1600000		2320400	2400000
45	1530450	1600000		2410450	2400000
50	1700500	1900000		2500500	2500000
55	1870550	1900000		2590550	2600000
60	2040600	2100000		2680600	2600000
65	2210650	2400000		2770650	2800000
70	2380700	2400000		2860700	2800000
75	2550750	2600000		2950750	3000000
80	2720800	2800000		3040800	3000000
85	2890850	2900000		3130850	3100000
90	3060900	3100000		3220900	3300000
95	3230950	3300000		3310950	3300000
100	3401000	3401000		3401000	3401000

On ARM quad core 1500MHz Krait:
	Without			With
Load	Target	Selected	Target	Selected
0	0	384000		384000	384000
5	75600	384000		440400	486000
10	151200	384000		496800	486000
15	226800	384000		553200	594000
20	302400	384000		609600	594000
25	378000	384000		666000	702000
30	453600	486000		722400	702000
35	529200	594000		778800	810000
40	604800	702000		835200	810000
45	680400	702000		891600	918000
50	756000	810000		948000	918000
55	831600	918000		1004400	1026000
60	907200	918000		1060800	1026000
65	982800	1026000		1117200	1134000
70	1058400	1134000		1173600	1134000
75	1134000	1134000		1230000	1242000
80	1209600	1242000		1286400	1242000
85	1285200	1350000		1342800	1350000
90	1360800	1458000		1399200	1350000
95	1436400	1458000		1455600	1458000
100	1512000	1512000		1512000	1512000

Tested on Intel i7-3770 CPU @ 3.40GHz and on ARM quad core 1500MHz Krait
(Android smartphone).
Benchmarks on Intel i7 shows a performance improvement on low and medium
work loads with lower power consumption. Specifics:

Phoronix Linux Kernel Compilation 3.1:
Time: -0.40%, energy: -0.07%
Phoronix Apache:
Time: -4.98%, energy: -2.35%
Phoronix FFMPEG:
Time: -6.29%, energy: -4.02%

Also, running mp3 decoding (very low load) shows no differences with and
without this patch.

Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-07-21 13:43:19 +02:00

632 lines
17 KiB
C

/*
* drivers/cpufreq/cpufreq_ondemand.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/tick.h>
#include "cpufreq_governor.h"
/* On-demand governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
#define MIN_FREQUENCY_UP_THRESHOLD (11)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
static struct od_ops od_ops;
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static struct cpufreq_governor cpufreq_gov_ondemand;
#endif
static unsigned int default_powersave_bias;
static void ondemand_powersave_bias_init_cpu(int cpu)
{
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
/*
* Not all CPUs want IO time to be accounted as busy; this depends on how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (android.com) claims this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) and later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 0;
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next, unsigned int relation)
{
unsigned int freq_req, freq_reduc, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
policy->cpu);
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static void ondemand_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
ondemand_powersave_bias_init_cpu(i);
}
}
static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
{
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
if (od_tuners->powersave_bias)
freq = od_ops.powersave_bias_target(policy, freq,
CPUFREQ_RELATION_H);
else if (policy->cur == policy->max)
return;
__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Else, we adjust the frequency
* proportional to load.
*/
static void od_check_cpu(int cpu, unsigned int load)
{
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
dbs_info->freq_lo = 0;
/* Check for frequency increase */
if (load > od_tuners->up_threshold) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
dbs_info->rate_mult =
od_tuners->sampling_down_factor;
dbs_freq_increase(policy, policy->max);
} else {
/* Calculate the next frequency proportional to load */
unsigned int freq_next, min_f, max_f;
min_f = policy->cpuinfo.min_freq;
max_f = policy->cpuinfo.max_freq;
freq_next = min_f + load * (max_f - min_f) / 100;
/* No longer fully busy, reset rate_mult */
dbs_info->rate_mult = 1;
if (!od_tuners->powersave_bias) {
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_C);
return;
}
freq_next = od_ops.powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
}
}
static void od_dbs_timer(struct work_struct *work)
{
struct od_cpu_dbs_info_s *dbs_info =
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
cpu);
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
int delay = 0, sample_type = core_dbs_info->sample_type;
bool modify_all = true;
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
modify_all = false;
goto max_delay;
}
/* Common NORMAL_SAMPLE setup */
core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
if (sample_type == OD_SUB_SAMPLE) {
delay = core_dbs_info->freq_lo_jiffies;
__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
} else {
dbs_check_cpu(dbs_data, cpu);
if (core_dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
core_dbs_info->sample_type = OD_SUB_SAMPLE;
delay = core_dbs_info->freq_hi_jiffies;
}
}
max_delay:
if (!delay)
delay = delay_for_sampling_rate(od_tuners->sampling_rate
* core_dbs_info->rate_mult);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
}
/************************** sysfs interface ************************/
static struct common_dbs_data od_dbs_cdata;
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updating
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
* original sampling_rate was 1 second and the requested new sampling rate is 10
* ms because the user needs immediate reaction from ondemand governor, but not
* sure if higher frequency will be required or not, then, the governor may
* change the sampling rate too late; up to 1 second later. Thus, if we are
* reducing the sampling rate, we need to make the new value effective
* immediately.
*/
static void update_sampling_rate(struct dbs_data *dbs_data,
unsigned int new_rate)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
int cpu;
od_tuners->sampling_rate = new_rate = max(new_rate,
dbs_data->min_sampling_rate);
for_each_online_cpu(cpu) {
struct cpufreq_policy *policy;
struct od_cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
if (policy->governor != &cpufreq_gov_ondemand) {
cpufreq_cpu_put(policy);
continue;
}
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->cdbs.timer_mutex);
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->cdbs.work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
cancel_delayed_work_sync(&dbs_info->cdbs.work);
mutex_lock(&dbs_info->cdbs.timer_mutex);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
usecs_to_jiffies(new_rate), true);
}
mutex_unlock(&dbs_info->cdbs.timer_mutex);
}
}
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(dbs_data, input);
return count;
}
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
od_tuners->io_is_busy = !!input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
}
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
od_tuners->up_threshold = input;
return count;
}
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
od_tuners->sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == od_tuners->ignore_nice_load) { /* nothing to do */
return count;
}
od_tuners->ignore_nice_load = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct od_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(od_cpu_dbs_info, j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
if (od_tuners->ignore_nice_load)
dbs_info->cdbs.prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1000)
input = 1000;
od_tuners->powersave_bias = input;
ondemand_powersave_bias_init();
return count;
}
show_store_one(od, sampling_rate);
show_store_one(od, io_is_busy);
show_store_one(od, up_threshold);
show_store_one(od, sampling_down_factor);
show_store_one(od, ignore_nice_load);
show_store_one(od, powersave_bias);
declare_show_sampling_rate_min(od);
gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(io_is_busy);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(ignore_nice_load);
gov_sys_pol_attr_rw(powersave_bias);
gov_sys_pol_attr_ro(sampling_rate_min);
static struct attribute *dbs_attributes_gov_sys[] = {
&sampling_rate_min_gov_sys.attr,
&sampling_rate_gov_sys.attr,
&up_threshold_gov_sys.attr,
&sampling_down_factor_gov_sys.attr,
&ignore_nice_load_gov_sys.attr,
&powersave_bias_gov_sys.attr,
&io_is_busy_gov_sys.attr,
NULL
};
static struct attribute_group od_attr_group_gov_sys = {
.attrs = dbs_attributes_gov_sys,
.name = "ondemand",
};
static struct attribute *dbs_attributes_gov_pol[] = {
&sampling_rate_min_gov_pol.attr,
&sampling_rate_gov_pol.attr,
&up_threshold_gov_pol.attr,
&sampling_down_factor_gov_pol.attr,
&ignore_nice_load_gov_pol.attr,
&powersave_bias_gov_pol.attr,
&io_is_busy_gov_pol.attr,
NULL
};
static struct attribute_group od_attr_group_gov_pol = {
.attrs = dbs_attributes_gov_pol,
.name = "ondemand",
};
/************************** sysfs end ************************/
static int od_init(struct dbs_data *dbs_data)
{
struct od_dbs_tuners *tuners;
u64 idle_time;
int cpu;
tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
if (!tuners) {
pr_err("%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
} else {
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
/* For correct statistics, we need 10 ticks for each measure */
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
jiffies_to_usecs(10);
}
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
tuners->ignore_nice_load = 0;
tuners->powersave_bias = default_powersave_bias;
tuners->io_is_busy = should_io_be_busy();
dbs_data->tuners = tuners;
mutex_init(&dbs_data->mutex);
return 0;
}
static void od_exit(struct dbs_data *dbs_data)
{
kfree(dbs_data->tuners);
}
define_get_cpu_dbs_routines(od_cpu_dbs_info);
static struct od_ops od_ops = {
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
.powersave_bias_target = generic_powersave_bias_target,
.freq_increase = dbs_freq_increase,
};
static struct common_dbs_data od_dbs_cdata = {
.governor = GOV_ONDEMAND,
.attr_group_gov_sys = &od_attr_group_gov_sys,
.attr_group_gov_pol = &od_attr_group_gov_pol,
.get_cpu_cdbs = get_cpu_cdbs,
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
.gov_dbs_timer = od_dbs_timer,
.gov_check_cpu = od_check_cpu,
.gov_ops = &od_ops,
.init = od_init,
.exit = od_exit,
};
static void od_set_powersave_bias(unsigned int powersave_bias)
{
struct cpufreq_policy *policy;
struct dbs_data *dbs_data;
struct od_dbs_tuners *od_tuners;
unsigned int cpu;
cpumask_t done;
default_powersave_bias = powersave_bias;
cpumask_clear(&done);
get_online_cpus();
for_each_online_cpu(cpu) {
if (cpumask_test_cpu(cpu, &done))
continue;
policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
if (!policy)
continue;
cpumask_or(&done, &done, policy->cpus);
if (policy->governor != &cpufreq_gov_ondemand)
continue;
dbs_data = policy->governor_data;
od_tuners = dbs_data->tuners;
od_tuners->powersave_bias = default_powersave_bias;
}
put_online_cpus();
}
void od_register_powersave_bias_handler(unsigned int (*f)
(struct cpufreq_policy *, unsigned int, unsigned int),
unsigned int powersave_bias)
{
od_ops.powersave_bias_target = f;
od_set_powersave_bias(powersave_bias);
}
EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
void od_unregister_powersave_bias_handler(void)
{
od_ops.powersave_bias_target = generic_powersave_bias_target;
od_set_powersave_bias(0);
}
EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
.name = "ondemand",
.governor = od_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
return cpufreq_register_governor(&cpufreq_gov_ondemand);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);