2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/drivers/hwmon/emc2103.c
Julia Lawall 4cd0183dcf hwmon: (emc2103) use permission-specific DEVICE_ATTR variants
Use DEVICE_ATTR_RO for read only attributes and DEVICE_ATTR_RW for
read/write attributes. This simplifies the source code, improves
readbility, and reduces the chance of inconsistencies.

The conversion was done automatically using coccinelle. It was validated
by compiling both the old and the new source code and comparing its text,
data, and bss size.

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
[groeck: Updated description]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2017-01-02 10:19:45 -08:00

694 lines
20 KiB
C

/*
* emc2103.c - Support for SMSC EMC2103
* Copyright (c) 2010 SMSC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses scanned */
static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
#define REG_CONF1 0x20
#define REG_TEMP_MAX_ALARM 0x24
#define REG_TEMP_MIN_ALARM 0x25
#define REG_FAN_CONF1 0x42
#define REG_FAN_TARGET_LO 0x4c
#define REG_FAN_TARGET_HI 0x4d
#define REG_FAN_TACH_HI 0x4e
#define REG_FAN_TACH_LO 0x4f
#define REG_PRODUCT_ID 0xfd
#define REG_MFG_ID 0xfe
/* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
#define FAN_RPM_FACTOR 3932160
/*
* 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
* in anti-parallel mode, and in this configuration both can be read
* independently (so we have 4 temperature inputs). The device can't
* detect if it's connected in this mode, so we have to manually enable
* it. Default is to leave the device in the state it's already in (-1).
* This parameter allows APD mode to be optionally forced on or off
*/
static int apd = -1;
module_param(apd, bint, 0);
MODULE_PARM_DESC(apd, "Set to zero to disable anti-parallel diode mode");
struct temperature {
s8 degrees;
u8 fraction; /* 0-7 multiples of 0.125 */
};
struct emc2103_data {
struct i2c_client *client;
const struct attribute_group *groups[4];
struct mutex update_lock;
bool valid; /* registers are valid */
bool fan_rpm_control;
int temp_count; /* num of temp sensors */
unsigned long last_updated; /* in jiffies */
struct temperature temp[4]; /* internal + 3 external */
s8 temp_min[4]; /* no fractional part */
s8 temp_max[4]; /* no fractional part */
u8 temp_min_alarm;
u8 temp_max_alarm;
u8 fan_multiplier;
u16 fan_tach;
u16 fan_target;
};
static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
{
int status = i2c_smbus_read_byte_data(client, i2c_reg);
if (status < 0) {
dev_warn(&client->dev, "reg 0x%02x, err %d\n",
i2c_reg, status);
} else {
*output = status;
}
return status;
}
static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
struct temperature *temp)
{
u8 degrees, fractional;
if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
return;
if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
return;
temp->degrees = degrees;
temp->fraction = (fractional & 0xe0) >> 5;
}
static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
u8 hi_addr, u8 lo_addr)
{
u8 high_byte, lo_byte;
if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
return;
if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
return;
*output = ((u16)high_byte << 5) | (lo_byte >> 3);
}
static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
{
u8 high_byte = (new_target & 0x1fe0) >> 5;
u8 low_byte = (new_target & 0x001f) << 3;
i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
}
static void read_fan_config_from_i2c(struct i2c_client *client)
{
struct emc2103_data *data = i2c_get_clientdata(client);
u8 conf1;
if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
return;
data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
data->fan_rpm_control = (conf1 & 0x80) != 0;
}
static struct emc2103_data *emc2103_update_device(struct device *dev)
{
struct emc2103_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
int i;
for (i = 0; i < data->temp_count; i++) {
read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
read_u8_from_i2c(client, REG_TEMP_MIN[i],
&data->temp_min[i]);
read_u8_from_i2c(client, REG_TEMP_MAX[i],
&data->temp_max[i]);
}
read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
&data->temp_min_alarm);
read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
&data->temp_max_alarm);
read_fan_from_i2c(client, &data->fan_tach,
REG_FAN_TACH_HI, REG_FAN_TACH_LO);
read_fan_from_i2c(client, &data->fan_target,
REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
read_fan_config_from_i2c(client);
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
return data;
}
static ssize_t
show_temp(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
int millidegrees = data->temp[nr].degrees * 1000
+ data->temp[nr].fraction * 125;
return sprintf(buf, "%d\n", millidegrees);
}
static ssize_t
show_temp_min(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
int millidegrees = data->temp_min[nr] * 1000;
return sprintf(buf, "%d\n", millidegrees);
}
static ssize_t
show_temp_max(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
int millidegrees = data->temp_max[nr] * 1000;
return sprintf(buf, "%d\n", millidegrees);
}
static ssize_t
show_temp_fault(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
bool fault = (data->temp[nr].degrees == -128);
return sprintf(buf, "%d\n", fault ? 1 : 0);
}
static ssize_t
show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
bool alarm = data->temp_min_alarm & (1 << nr);
return sprintf(buf, "%d\n", alarm ? 1 : 0);
}
static ssize_t
show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = emc2103_update_device(dev);
bool alarm = data->temp_max_alarm & (1 << nr);
return sprintf(buf, "%d\n", alarm ? 1 : 0);
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int result = kstrtol(buf, 10, &val);
if (result < 0)
return result;
val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
mutex_lock(&data->update_lock);
data->temp_min[nr] = val;
i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(da)->index;
struct emc2103_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int result = kstrtol(buf, 10, &val);
if (result < 0)
return result;
val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
mutex_lock(&data->update_lock);
data->temp_max[nr] = val;
i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
fan1_input_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct emc2103_data *data = emc2103_update_device(dev);
int rpm = 0;
if (data->fan_tach != 0)
rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
return sprintf(buf, "%d\n", rpm);
}
static ssize_t
fan1_div_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct emc2103_data *data = emc2103_update_device(dev);
int fan_div = 8 / data->fan_multiplier;
return sprintf(buf, "%d\n", fan_div);
}
/*
* Note: we also update the fan target here, because its value is
* determined in part by the fan clock divider. This follows the principle
* of least surprise; the user doesn't expect the fan target to change just
* because the divider changed.
*/
static ssize_t fan1_div_store(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct emc2103_data *data = emc2103_update_device(dev);
struct i2c_client *client = data->client;
int new_range_bits, old_div = 8 / data->fan_multiplier;
long new_div;
int status = kstrtol(buf, 10, &new_div);
if (status < 0)
return status;
if (new_div == old_div) /* No change */
return count;
switch (new_div) {
case 1:
new_range_bits = 3;
break;
case 2:
new_range_bits = 2;
break;
case 4:
new_range_bits = 1;
break;
case 8:
new_range_bits = 0;
break;
default:
return -EINVAL;
}
mutex_lock(&data->update_lock);
status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
if (status < 0) {
dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
REG_FAN_CONF1, status);
mutex_unlock(&data->update_lock);
return status;
}
status &= 0x9F;
status |= (new_range_bits << 5);
i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
data->fan_multiplier = 8 / new_div;
/* update fan target if high byte is not disabled */
if ((data->fan_target & 0x1fe0) != 0x1fe0) {
u16 new_target = (data->fan_target * old_div) / new_div;
data->fan_target = min(new_target, (u16)0x1fff);
write_fan_target_to_i2c(client, data->fan_target);
}
/* invalidate data to force re-read from hardware */
data->valid = false;
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
fan1_target_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct emc2103_data *data = emc2103_update_device(dev);
int rpm = 0;
/* high byte of 0xff indicates disabled so return 0 */
if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
/ data->fan_target;
return sprintf(buf, "%d\n", rpm);
}
static ssize_t fan1_target_store(struct device *dev,
struct device_attribute *da, const char *buf,
size_t count)
{
struct emc2103_data *data = emc2103_update_device(dev);
struct i2c_client *client = data->client;
unsigned long rpm_target;
int result = kstrtoul(buf, 10, &rpm_target);
if (result < 0)
return result;
/* Datasheet states 16384 as maximum RPM target (table 3.2) */
rpm_target = clamp_val(rpm_target, 0, 16384);
mutex_lock(&data->update_lock);
if (rpm_target == 0)
data->fan_target = 0x1fff;
else
data->fan_target = clamp_val(
(FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
0, 0x1fff);
write_fan_target_to_i2c(client, data->fan_target);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
fan1_fault_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct emc2103_data *data = emc2103_update_device(dev);
bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
return sprintf(buf, "%d\n", fault ? 1 : 0);
}
static ssize_t
pwm1_enable_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct emc2103_data *data = emc2103_update_device(dev);
return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
}
static ssize_t pwm1_enable_store(struct device *dev,
struct device_attribute *da, const char *buf,
size_t count)
{
struct emc2103_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long new_value;
u8 conf_reg;
int result = kstrtol(buf, 10, &new_value);
if (result < 0)
return result;
mutex_lock(&data->update_lock);
switch (new_value) {
case 0:
data->fan_rpm_control = false;
break;
case 3:
data->fan_rpm_control = true;
break;
default:
count = -EINVAL;
goto err;
}
result = read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
if (result) {
count = result;
goto err;
}
if (data->fan_rpm_control)
conf_reg |= 0x80;
else
conf_reg &= ~0x80;
i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
err:
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min,
set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm,
NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm,
NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min,
set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm,
NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm,
NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min,
set_temp_min, 2);
static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
set_temp_max, 2);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm,
NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm,
NULL, 2);
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min,
set_temp_min, 3);
static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
set_temp_max, 3);
static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm,
NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm,
NULL, 3);
static DEVICE_ATTR_RO(fan1_input);
static DEVICE_ATTR_RW(fan1_div);
static DEVICE_ATTR_RW(fan1_target);
static DEVICE_ATTR_RO(fan1_fault);
static DEVICE_ATTR_RW(pwm1_enable);
/* sensors present on all models */
static struct attribute *emc2103_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&dev_attr_fan1_input.attr,
&dev_attr_fan1_div.attr,
&dev_attr_fan1_target.attr,
&dev_attr_fan1_fault.attr,
&dev_attr_pwm1_enable.attr,
NULL
};
/* extra temperature sensors only present on 2103-2 and 2103-4 */
static struct attribute *emc2103_attributes_temp3[] = {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
NULL
};
/* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
static struct attribute *emc2103_attributes_temp4[] = {
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_fault.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group emc2103_group = {
.attrs = emc2103_attributes,
};
static const struct attribute_group emc2103_temp3_group = {
.attrs = emc2103_attributes_temp3,
};
static const struct attribute_group emc2103_temp4_group = {
.attrs = emc2103_attributes_temp4,
};
static int
emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct emc2103_data *data;
struct device *hwmon_dev;
int status, idx = 0;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
data = devm_kzalloc(&client->dev, sizeof(struct emc2103_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
mutex_init(&data->update_lock);
/* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
if (status == 0x24) {
/* 2103-1 only has 1 external diode */
data->temp_count = 2;
} else {
/* 2103-2 and 2103-4 have 3 or 4 external diodes */
status = i2c_smbus_read_byte_data(client, REG_CONF1);
if (status < 0) {
dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
status);
return status;
}
/* detect current state of hardware */
data->temp_count = (status & 0x01) ? 4 : 3;
/* force APD state if module parameter is set */
if (apd == 0) {
/* force APD mode off */
data->temp_count = 3;
status &= ~(0x01);
i2c_smbus_write_byte_data(client, REG_CONF1, status);
} else if (apd == 1) {
/* force APD mode on */
data->temp_count = 4;
status |= 0x01;
i2c_smbus_write_byte_data(client, REG_CONF1, status);
}
}
/* sysfs hooks */
data->groups[idx++] = &emc2103_group;
if (data->temp_count >= 3)
data->groups[idx++] = &emc2103_temp3_group;
if (data->temp_count == 4)
data->groups[idx++] = &emc2103_temp4_group;
hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
client->name, data,
data->groups);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
dev_info(&client->dev, "%s: sensor '%s'\n",
dev_name(hwmon_dev), client->name);
return 0;
}
static const struct i2c_device_id emc2103_ids[] = {
{ "emc2103", 0, },
{ /* LIST END */ }
};
MODULE_DEVICE_TABLE(i2c, emc2103_ids);
/* Return 0 if detection is successful, -ENODEV otherwise */
static int
emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = new_client->adapter;
int manufacturer, product;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
if (manufacturer != 0x5D)
return -ENODEV;
product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
if ((product != 0x24) && (product != 0x26))
return -ENODEV;
strlcpy(info->type, "emc2103", I2C_NAME_SIZE);
return 0;
}
static struct i2c_driver emc2103_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "emc2103",
},
.probe = emc2103_probe,
.id_table = emc2103_ids,
.detect = emc2103_detect,
.address_list = normal_i2c,
};
module_i2c_driver(emc2103_driver);
MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
MODULE_LICENSE("GPL");