2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/drivers/media/dvb-frontends/itd1000.c
Sakari Ailus bcb63314e2 [media] media: Drop FSF's postal address from the source code files
Drop the FSF's postal address from the source code files that typically
contain mostly the license text. Of the 628 removed instances, 578 are
outdated.

The patch has been created with the following command without manual edits:

git grep -l "675 Mass Ave\|59 Temple Place\|51 Franklin St" -- \
	drivers/media/ include/media|while read i; do i=$i perl -e '
open(F,"< $ENV{i}");
$a=join("", <F>);
$a =~ s/[ \t]*\*\n.*You should.*\n.*along with.*\n.*(\n.*USA.*$)?\n//m
	&& $a =~ s/(^.*)Or, (point your browser to) /$1To obtain the license, $2\n$1/m;
close(F);
open(F, "> $ENV{i}");
print F $a;
close(F);'; done

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
2017-01-27 11:38:09 -02:00

406 lines
11 KiB
C

/*
* Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
*
* Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "itd1000.h"
#include "itd1000_priv.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define itd_dbg(args...) do { \
if (debug) { \
printk(KERN_DEBUG "ITD1000: " args);\
} \
} while (0)
#define itd_warn(args...) do { \
printk(KERN_WARNING "ITD1000: " args); \
} while (0)
#define itd_info(args...) do { \
printk(KERN_INFO "ITD1000: " args); \
} while (0)
/* don't write more than one byte with flexcop behind */
static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
{
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
};
if (1 + len > sizeof(buf)) {
printk(KERN_WARNING
"itd1000: i2c wr reg=%04x: len=%d is too big!\n",
reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], v, len);
/* itd_dbg("wr %02x: %02x\n", reg, v[0]); */
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "itd1000 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
{
u8 val;
struct i2c_msg msg[2] = {
{ .addr = state->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
};
/* ugly flexcop workaround */
itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
if (i2c_transfer(state->i2c, msg, 2) != 2) {
itd_warn("itd1000 I2C read failed\n");
return -EREMOTEIO;
}
return val;
}
static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
{
int ret = itd1000_write_regs(state, r, &v, 1);
state->shadow[r] = v;
return ret;
}
static struct {
u32 symbol_rate;
u8 pgaext : 4; /* PLLFH */
u8 bbgvmin : 4; /* BBGVMIN */
} itd1000_lpf_pga[] = {
{ 0, 0x8, 0x3 },
{ 5200000, 0x8, 0x3 },
{ 12200000, 0x4, 0x3 },
{ 15400000, 0x2, 0x3 },
{ 19800000, 0x2, 0x3 },
{ 21500000, 0x2, 0x3 },
{ 24500000, 0x2, 0x3 },
{ 28400000, 0x2, 0x3 },
{ 33400000, 0x2, 0x3 },
{ 34400000, 0x1, 0x4 },
{ 34400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 40400000, 0x1, 0x4 },
{ 45400000, 0x1, 0x4 },
};
static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
{
u8 i;
u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
u8 bw = itd1000_read_reg(state, BW) & 0xf0;
itd_dbg("symbol_rate = %d\n", symbol_rate);
/* not sure what is that ? - starting to download the table */
itd1000_write_reg(state, CON1, con1 | (1 << 1));
for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
itd1000_write_reg(state, BW, bw | (i & 0x0f));
break;
}
itd1000_write_reg(state, CON1, con1 | (0 << 1));
}
static struct {
u8 vcorg;
u32 fmax_rg;
} itd1000_vcorg[] = {
{ 1, 920000 },
{ 2, 971000 },
{ 3, 1031000 },
{ 4, 1091000 },
{ 5, 1171000 },
{ 6, 1281000 },
{ 7, 1381000 },
{ 8, 500000 }, /* this is intentional. */
{ 9, 1451000 },
{ 10, 1531000 },
{ 11, 1631000 },
{ 12, 1741000 },
{ 13, 1891000 },
{ 14, 2071000 },
{ 15, 2250000 },
};
static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
{
u8 i;
u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
u8 adcout;
/* reserved bit again (reset ?) */
itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
if (freq_khz < itd1000_vcorg[i].fmax_rg) {
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
msleep(1);
adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
if (adcout > 13) {
if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
} else if (adcout < 2) {
if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
}
break;
}
}
}
static const struct {
u32 freq;
u8 values[10]; /* RFTR, RFST1 - RFST9 */
} itd1000_fre_values[] = {
{ 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
{ 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
};
#define FREF 16
static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
{
int i, j;
u32 plln, pllf;
u64 tmp;
plln = (freq_khz * 1000) / 2 / FREF;
/* Compute the factional part times 1000 */
tmp = plln % 1000000;
plln /= 1000000;
tmp *= 1048576;
do_div(tmp, 1000000);
pllf = (u32) tmp;
state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */
itd1000_write_reg(state, PLLNL, plln & 0xff);
itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
if (freq_khz <= itd1000_fre_values[i].freq) {
itd_dbg("fre_values: %d\n", i);
itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
for (j = 0; j < 9; j++)
itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
break;
}
}
itd1000_set_vco(state, freq_khz);
}
static int itd1000_set_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct itd1000_state *state = fe->tuner_priv;
u8 pllcon1;
itd1000_set_lo(state, c->frequency);
itd1000_set_lpf_bw(state, c->symbol_rate);
pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
itd1000_write_reg(state, PLLCON1, pllcon1);
return 0;
}
static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct itd1000_state *state = fe->tuner_priv;
*frequency = state->frequency;
return 0;
}
static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
return 0;
}
static u8 itd1000_init_tab[][2] = {
{ PLLCON1, 0x65 }, /* Register does not change */
{ PLLNH, 0x80 }, /* Bits [7:6] do not change */
{ RESERVED_0X6D, 0x3b },
{ VCO_CHP2_I2C, 0x12 },
{ 0x72, 0xf9 }, /* No such regsister defined */
{ RESERVED_0X73, 0xff },
{ RESERVED_0X74, 0xb2 },
{ RESERVED_0X75, 0xc7 },
{ EXTGVBBRF, 0xf0 },
{ DIVAGCCK, 0x80 },
{ BBTR, 0xa0 },
{ RESERVED_0X7E, 0x4f },
{ 0x82, 0x88 }, /* No such regsister defined */
{ 0x83, 0x80 }, /* No such regsister defined */
{ 0x84, 0x80 }, /* No such regsister defined */
{ RESERVED_0X85, 0x74 },
{ RESERVED_0X86, 0xff },
{ RESERVED_0X88, 0x02 },
{ RESERVED_0X89, 0x16 },
{ RFST0, 0x1f },
{ RESERVED_0X94, 0x66 },
{ RESERVED_0X95, 0x66 },
{ RESERVED_0X96, 0x77 },
{ RESERVED_0X97, 0x99 },
{ RESERVED_0X98, 0xff },
{ RESERVED_0X99, 0xfc },
{ RESERVED_0X9A, 0xba },
{ RESERVED_0X9B, 0xaa },
};
static u8 itd1000_reinit_tab[][2] = {
{ VCO_CHP1_I2C, 0x8a },
{ BW, 0x87 },
{ GVBB_I2C, 0x03 },
{ BBGVMIN, 0x03 },
{ CON1, 0x2e },
};
static int itd1000_init(struct dvb_frontend *fe)
{
struct itd1000_state *state = fe->tuner_priv;
int i;
for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
return 0;
}
static int itd1000_sleep(struct dvb_frontend *fe)
{
return 0;
}
static void itd1000_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
}
static const struct dvb_tuner_ops itd1000_tuner_ops = {
.info = {
.name = "Integrant ITD1000",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 125, /* kHz for QPSK frontends */
},
.release = itd1000_release,
.init = itd1000_init,
.sleep = itd1000_sleep,
.set_params = itd1000_set_parameters,
.get_frequency = itd1000_get_frequency,
.get_bandwidth = itd1000_get_bandwidth
};
struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
{
struct itd1000_state *state = NULL;
u8 i = 0;
state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
if (state == NULL)
return NULL;
state->cfg = cfg;
state->i2c = i2c;
i = itd1000_read_reg(state, 0);
if (i != 0) {
kfree(state);
return NULL;
}
itd_info("successfully identified (ID: %d)\n", i);
memset(state->shadow, 0xff, sizeof(state->shadow));
for (i = 0x65; i < 0x9c; i++)
state->shadow[i] = itd1000_read_reg(state, i);
memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL(itd1000_attach);
MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
MODULE_DESCRIPTION("Integrant ITD1000 driver");
MODULE_LICENSE("GPL");