2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/fs/dcookies.c
Robert Richter fe47ae7f53 oprofile, dcookies: Fix possible circular locking dependency
The lockdep warning below detects a possible A->B/B->A locking
dependency of mm->mmap_sem and dcookie_mutex. The order in
sync_buffer() is mm->mmap_sem/dcookie_mutex, while in
sys_lookup_dcookie() it is vice versa.

Fixing it in sys_lookup_dcookie() by unlocking dcookie_mutex before
copy_to_user().

oprofiled/4432 is trying to acquire lock:
 (&mm->mmap_sem){++++++}, at: [<ffffffff810b444b>] might_fault+0x53/0xa3

but task is already holding lock:
 (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (dcookie_mutex){+.+.+.}:
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff814634f0>] mutex_lock_nested+0x63/0x309
       [<ffffffff81124e5c>] get_dcookie+0x30/0x144
       [<ffffffffa0000fba>] sync_buffer+0x196/0x3ec [oprofile]
       [<ffffffffa0001226>] task_exit_notify+0x16/0x1a [oprofile]
       [<ffffffff81467b96>] notifier_call_chain+0x37/0x63
       [<ffffffff8105803d>] __blocking_notifier_call_chain+0x50/0x67
       [<ffffffff81058068>] blocking_notifier_call_chain+0x14/0x16
       [<ffffffff8105a718>] profile_task_exit+0x1a/0x1c
       [<ffffffff81039e8f>] do_exit+0x2a/0x6fc
       [<ffffffff8103a5e4>] do_group_exit+0x83/0xae
       [<ffffffff8103a626>] sys_exit_group+0x17/0x1b
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

-> #0 (&mm->mmap_sem){++++++}:
       [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff810b4478>] might_fault+0x80/0xa3
       [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

other info that might help us debug this:

1 lock held by oprofiled/4432:
 #0:  (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

stack backtrace:
Pid: 4432, comm: oprofiled Not tainted 2.6.39-00008-ge5a450d #9
Call Trace:
 [<ffffffff81063193>] print_circular_bug+0xae/0xbc
 [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
 [<ffffffff8102ef13>] ? get_parent_ip+0x11/0x42
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff810d7d54>] ? path_put+0x22/0x27
 [<ffffffff810b4478>] might_fault+0x80/0xa3
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
 [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

References: https://bugzilla.kernel.org/show_bug.cgi?id=13809
Cc: <stable@kernel.org> # .27+
Signed-off-by: Robert Richter <robert.richter@amd.com>
2011-05-31 16:33:35 +02:00

346 lines
6.8 KiB
C

/*
* dcookies.c
*
* Copyright 2002 John Levon <levon@movementarian.org>
*
* Persistent cookie-path mappings. These are used by
* profilers to convert a per-task EIP value into something
* non-transitory that can be processed at a later date.
* This is done by locking the dentry/vfsmnt pair in the
* kernel until released by the tasks needing the persistent
* objects. The tag is simply an unsigned long that refers
* to the pair and can be looked up from userspace.
*/
#include <linux/syscalls.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/mount.h>
#include <linux/capability.h>
#include <linux/dcache.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/dcookies.h>
#include <linux/mutex.h>
#include <linux/path.h>
#include <asm/uaccess.h>
/* The dcookies are allocated from a kmem_cache and
* hashed onto a small number of lists. None of the
* code here is particularly performance critical
*/
struct dcookie_struct {
struct path path;
struct list_head hash_list;
};
static LIST_HEAD(dcookie_users);
static DEFINE_MUTEX(dcookie_mutex);
static struct kmem_cache *dcookie_cache __read_mostly;
static struct list_head *dcookie_hashtable __read_mostly;
static size_t hash_size __read_mostly;
static inline int is_live(void)
{
return !(list_empty(&dcookie_users));
}
/* The dentry is locked, its address will do for the cookie */
static inline unsigned long dcookie_value(struct dcookie_struct * dcs)
{
return (unsigned long)dcs->path.dentry;
}
static size_t dcookie_hash(unsigned long dcookie)
{
return (dcookie >> L1_CACHE_SHIFT) & (hash_size - 1);
}
static struct dcookie_struct * find_dcookie(unsigned long dcookie)
{
struct dcookie_struct *found = NULL;
struct dcookie_struct * dcs;
struct list_head * pos;
struct list_head * list;
list = dcookie_hashtable + dcookie_hash(dcookie);
list_for_each(pos, list) {
dcs = list_entry(pos, struct dcookie_struct, hash_list);
if (dcookie_value(dcs) == dcookie) {
found = dcs;
break;
}
}
return found;
}
static void hash_dcookie(struct dcookie_struct * dcs)
{
struct list_head * list = dcookie_hashtable + dcookie_hash(dcookie_value(dcs));
list_add(&dcs->hash_list, list);
}
static struct dcookie_struct *alloc_dcookie(struct path *path)
{
struct dcookie_struct *dcs = kmem_cache_alloc(dcookie_cache,
GFP_KERNEL);
struct dentry *d;
if (!dcs)
return NULL;
d = path->dentry;
spin_lock(&d->d_lock);
d->d_flags |= DCACHE_COOKIE;
spin_unlock(&d->d_lock);
dcs->path = *path;
path_get(path);
hash_dcookie(dcs);
return dcs;
}
/* This is the main kernel-side routine that retrieves the cookie
* value for a dentry/vfsmnt pair.
*/
int get_dcookie(struct path *path, unsigned long *cookie)
{
int err = 0;
struct dcookie_struct * dcs;
mutex_lock(&dcookie_mutex);
if (!is_live()) {
err = -EINVAL;
goto out;
}
if (path->dentry->d_flags & DCACHE_COOKIE) {
dcs = find_dcookie((unsigned long)path->dentry);
} else {
dcs = alloc_dcookie(path);
if (!dcs) {
err = -ENOMEM;
goto out;
}
}
*cookie = dcookie_value(dcs);
out:
mutex_unlock(&dcookie_mutex);
return err;
}
/* And here is where the userspace process can look up the cookie value
* to retrieve the path.
*/
SYSCALL_DEFINE(lookup_dcookie)(u64 cookie64, char __user * buf, size_t len)
{
unsigned long cookie = (unsigned long)cookie64;
int err = -EINVAL;
char * kbuf;
char * path;
size_t pathlen;
struct dcookie_struct * dcs;
/* we could leak path information to users
* without dir read permission without this
*/
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&dcookie_mutex);
if (!is_live()) {
err = -EINVAL;
goto out;
}
if (!(dcs = find_dcookie(cookie)))
goto out;
err = -ENOMEM;
kbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!kbuf)
goto out;
/* FIXME: (deleted) ? */
path = d_path(&dcs->path, kbuf, PAGE_SIZE);
mutex_unlock(&dcookie_mutex);
if (IS_ERR(path)) {
err = PTR_ERR(path);
goto out_free;
}
err = -ERANGE;
pathlen = kbuf + PAGE_SIZE - path;
if (pathlen <= len) {
err = pathlen;
if (copy_to_user(buf, path, pathlen))
err = -EFAULT;
}
out_free:
kfree(kbuf);
return err;
out:
mutex_unlock(&dcookie_mutex);
return err;
}
#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
asmlinkage long SyS_lookup_dcookie(u64 cookie64, long buf, long len)
{
return SYSC_lookup_dcookie(cookie64, (char __user *) buf, (size_t) len);
}
SYSCALL_ALIAS(sys_lookup_dcookie, SyS_lookup_dcookie);
#endif
static int dcookie_init(void)
{
struct list_head * d;
unsigned int i, hash_bits;
int err = -ENOMEM;
dcookie_cache = kmem_cache_create("dcookie_cache",
sizeof(struct dcookie_struct),
0, 0, NULL);
if (!dcookie_cache)
goto out;
dcookie_hashtable = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!dcookie_hashtable)
goto out_kmem;
err = 0;
/*
* Find the power-of-two list-heads that can fit into the allocation..
* We don't guarantee that "sizeof(struct list_head)" is necessarily
* a power-of-two.
*/
hash_size = PAGE_SIZE / sizeof(struct list_head);
hash_bits = 0;
do {
hash_bits++;
} while ((hash_size >> hash_bits) != 0);
hash_bits--;
/*
* Re-calculate the actual number of entries and the mask
* from the number of bits we can fit.
*/
hash_size = 1UL << hash_bits;
/* And initialize the newly allocated array */
d = dcookie_hashtable;
i = hash_size;
do {
INIT_LIST_HEAD(d);
d++;
i--;
} while (i);
out:
return err;
out_kmem:
kmem_cache_destroy(dcookie_cache);
goto out;
}
static void free_dcookie(struct dcookie_struct * dcs)
{
struct dentry *d = dcs->path.dentry;
spin_lock(&d->d_lock);
d->d_flags &= ~DCACHE_COOKIE;
spin_unlock(&d->d_lock);
path_put(&dcs->path);
kmem_cache_free(dcookie_cache, dcs);
}
static void dcookie_exit(void)
{
struct list_head * list;
struct list_head * pos;
struct list_head * pos2;
struct dcookie_struct * dcs;
size_t i;
for (i = 0; i < hash_size; ++i) {
list = dcookie_hashtable + i;
list_for_each_safe(pos, pos2, list) {
dcs = list_entry(pos, struct dcookie_struct, hash_list);
list_del(&dcs->hash_list);
free_dcookie(dcs);
}
}
kfree(dcookie_hashtable);
kmem_cache_destroy(dcookie_cache);
}
struct dcookie_user {
struct list_head next;
};
struct dcookie_user * dcookie_register(void)
{
struct dcookie_user * user;
mutex_lock(&dcookie_mutex);
user = kmalloc(sizeof(struct dcookie_user), GFP_KERNEL);
if (!user)
goto out;
if (!is_live() && dcookie_init())
goto out_free;
list_add(&user->next, &dcookie_users);
out:
mutex_unlock(&dcookie_mutex);
return user;
out_free:
kfree(user);
user = NULL;
goto out;
}
void dcookie_unregister(struct dcookie_user * user)
{
mutex_lock(&dcookie_mutex);
list_del(&user->next);
kfree(user);
if (!is_live())
dcookie_exit();
mutex_unlock(&dcookie_mutex);
}
EXPORT_SYMBOL_GPL(dcookie_register);
EXPORT_SYMBOL_GPL(dcookie_unregister);
EXPORT_SYMBOL_GPL(get_dcookie);