2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 07:04:00 +08:00
linux-next/drivers/net/sb1250-mac.c
Yoann Padioleau 0da2f0f164 potential compiler error, irqfunc caller sites update
In 7d12e780e0 David Howells performed
this evolution:
 "IRQ: Maintain regs pointer globally rather than passing to IRQ handlers"

He correctly updated many of the function definitions that were using this
extra regs pointer parameter but forgot to update some caller sites of
those functions.  The reason the modifications was not properly done on all
drivers is that some drivers were rarely compiled because they are for
AMIGA, or that some code sites were inside #ifdefs where the option is not
set or inside #if 0.

Here is the semantic patch that found the occurences
and fixed the problem.

@ rule1 @
identifier fn;
identifier irq, dev_id;
typedef irqreturn_t;
@@

static irqreturn_t fn(int irq, void *dev_id)
{
   ...
}

@@
identifier rule1.fn;
expression E1, E2, E3;
@@

 fn(E1, E2
-   ,E3
   )

Signed-off-by: Yoann Padioleau <padator@wanadoo.fr>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-06 10:23:43 -07:00

3053 lines
74 KiB
C

/*
* Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*
* This driver is designed for the Broadcom SiByte SOC built-in
* Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/processor.h> /* Processor type for cache alignment. */
#include <asm/io.h>
#include <asm/cache.h>
/* This is only here until the firmware is ready. In that case,
the firmware leaves the ethernet address in the register for us. */
#ifdef CONFIG_SIBYTE_STANDALONE
#define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
#define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
#define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
#define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
#endif
/* These identify the driver base version and may not be removed. */
#if 0
static char version1[] __devinitdata =
"sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
#endif
/* Operational parameters that usually are not changed. */
#define CONFIG_SBMAC_COALESCE
#define MAX_UNITS 4 /* More are supported, limit only on options */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (2*HZ)
MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
/* A few user-configurable values which may be modified when a driver
module is loaded. */
/* 1 normal messages, 0 quiet .. 7 verbose. */
static int debug = 1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug messages");
/* mii status msgs */
static int noisy_mii = 1;
module_param(noisy_mii, int, S_IRUGO);
MODULE_PARM_DESC(noisy_mii, "MII status messages");
/* Used to pass the media type, etc.
Both 'options[]' and 'full_duplex[]' should exist for driver
interoperability.
The media type is usually passed in 'options[]'.
*/
#ifdef MODULE
static int options[MAX_UNITS] = {-1, -1, -1, -1};
module_param_array(options, int, NULL, S_IRUGO);
MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
module_param_array(full_duplex, int, NULL, S_IRUGO);
MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
#endif
#ifdef CONFIG_SBMAC_COALESCE
static int int_pktcnt_tx = 255;
module_param(int_pktcnt_tx, int, S_IRUGO);
MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
static int int_timeout_tx = 255;
module_param(int_timeout_tx, int, S_IRUGO);
MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
static int int_pktcnt_rx = 64;
module_param(int_pktcnt_rx, int, S_IRUGO);
MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
static int int_timeout_rx = 64;
module_param(int_timeout_rx, int, S_IRUGO);
MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
#endif
#include <asm/sibyte/sb1250.h>
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
#include <asm/sibyte/bcm1480_regs.h>
#include <asm/sibyte/bcm1480_int.h>
#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
#include <asm/sibyte/sb1250_regs.h>
#include <asm/sibyte/sb1250_int.h>
#else
#error invalid SiByte MAC configuation
#endif
#include <asm/sibyte/sb1250_scd.h>
#include <asm/sibyte/sb1250_mac.h>
#include <asm/sibyte/sb1250_dma.h>
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
#define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
#define UNIT_INT(n) (K_INT_MAC_0 + (n))
#else
#error invalid SiByte MAC configuation
#endif
/**********************************************************************
* Simple types
********************************************************************* */
typedef enum { sbmac_speed_auto, sbmac_speed_10,
sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
sbmac_duplex_full } sbmac_duplex_t;
typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
sbmac_state_broken } sbmac_state_t;
/**********************************************************************
* Macros
********************************************************************* */
#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
(d)->sbdma_dscrtable : (d)->f+1)
#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
#define SBMAC_MAX_TXDESCR 256
#define SBMAC_MAX_RXDESCR 256
#define ETHER_ALIGN 2
#define ETHER_ADDR_LEN 6
#define ENET_PACKET_SIZE 1518
/*#define ENET_PACKET_SIZE 9216 */
/**********************************************************************
* DMA Descriptor structure
********************************************************************* */
typedef struct sbdmadscr_s {
uint64_t dscr_a;
uint64_t dscr_b;
} sbdmadscr_t;
typedef unsigned long paddr_t;
/**********************************************************************
* DMA Controller structure
********************************************************************* */
typedef struct sbmacdma_s {
/*
* This stuff is used to identify the channel and the registers
* associated with it.
*/
struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
int sbdma_channel; /* channel number */
int sbdma_txdir; /* direction (1=transmit) */
int sbdma_maxdescr; /* total # of descriptors in ring */
#ifdef CONFIG_SBMAC_COALESCE
int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
int sbdma_int_timeout; /* # usec rx/tx interrupt */
#endif
volatile void __iomem *sbdma_config0; /* DMA config register 0 */
volatile void __iomem *sbdma_config1; /* DMA config register 1 */
volatile void __iomem *sbdma_dscrbase; /* Descriptor base address */
volatile void __iomem *sbdma_dscrcnt; /* Descriptor count register */
volatile void __iomem *sbdma_curdscr; /* current descriptor address */
volatile void __iomem *sbdma_oodpktlost;/* pkt drop (rx only) */
/*
* This stuff is for maintenance of the ring
*/
sbdmadscr_t *sbdma_dscrtable_unaligned;
sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
} sbmacdma_t;
/**********************************************************************
* Ethernet softc structure
********************************************************************* */
struct sbmac_softc {
/*
* Linux-specific things
*/
struct net_device *sbm_dev; /* pointer to linux device */
spinlock_t sbm_lock; /* spin lock */
struct timer_list sbm_timer; /* for monitoring MII */
struct net_device_stats sbm_stats;
int sbm_devflags; /* current device flags */
int sbm_phy_oldbmsr;
int sbm_phy_oldanlpar;
int sbm_phy_oldk1stsr;
int sbm_phy_oldlinkstat;
int sbm_buffersize;
unsigned char sbm_phys[2];
/*
* Controller-specific things
*/
void __iomem *sbm_base; /* MAC's base address */
sbmac_state_t sbm_state; /* current state */
volatile void __iomem *sbm_macenable; /* MAC Enable Register */
volatile void __iomem *sbm_maccfg; /* MAC Configuration Register */
volatile void __iomem *sbm_fifocfg; /* FIFO configuration register */
volatile void __iomem *sbm_framecfg; /* Frame configuration register */
volatile void __iomem *sbm_rxfilter; /* receive filter register */
volatile void __iomem *sbm_isr; /* Interrupt status register */
volatile void __iomem *sbm_imr; /* Interrupt mask register */
volatile void __iomem *sbm_mdio; /* MDIO register */
sbmac_speed_t sbm_speed; /* current speed */
sbmac_duplex_t sbm_duplex; /* current duplex */
sbmac_fc_t sbm_fc; /* current flow control setting */
unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
sbmacdma_t sbm_rxdma;
int rx_hw_checksum;
int sbe_idx;
};
/**********************************************************************
* Externs
********************************************************************* */
/**********************************************************************
* Prototypes
********************************************************************* */
static void sbdma_initctx(sbmacdma_t *d,
struct sbmac_softc *s,
int chan,
int txrx,
int maxdescr);
static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
static void sbdma_emptyring(sbmacdma_t *d);
static void sbdma_fillring(sbmacdma_t *d);
static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d, int work_to_do, int poll);
static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll);
static int sbmac_initctx(struct sbmac_softc *s);
static void sbmac_channel_start(struct sbmac_softc *s);
static void sbmac_channel_stop(struct sbmac_softc *s);
static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
static uint64_t sbmac_addr2reg(unsigned char *ptr);
static irqreturn_t sbmac_intr(int irq,void *dev_instance);
static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
static void sbmac_setmulti(struct sbmac_softc *sc);
static int sbmac_init(struct net_device *dev, int idx);
static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
static int sbmac_open(struct net_device *dev);
static void sbmac_timer(unsigned long data);
static void sbmac_tx_timeout (struct net_device *dev);
static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
static void sbmac_set_rx_mode(struct net_device *dev);
static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int sbmac_close(struct net_device *dev);
static int sbmac_poll(struct net_device *poll_dev, int *budget);
static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
static int sbmac_mii_probe(struct net_device *dev);
static void sbmac_mii_sync(struct sbmac_softc *s);
static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
unsigned int regval);
/**********************************************************************
* Globals
********************************************************************* */
static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
/**********************************************************************
* MDIO constants
********************************************************************* */
#define MII_COMMAND_START 0x01
#define MII_COMMAND_READ 0x02
#define MII_COMMAND_WRITE 0x01
#define MII_COMMAND_ACK 0x02
#define BMCR_RESET 0x8000
#define BMCR_LOOPBACK 0x4000
#define BMCR_SPEED0 0x2000
#define BMCR_ANENABLE 0x1000
#define BMCR_POWERDOWN 0x0800
#define BMCR_ISOLATE 0x0400
#define BMCR_RESTARTAN 0x0200
#define BMCR_DUPLEX 0x0100
#define BMCR_COLTEST 0x0080
#define BMCR_SPEED1 0x0040
#define BMCR_SPEED1000 BMCR_SPEED1
#define BMCR_SPEED100 BMCR_SPEED0
#define BMCR_SPEED10 0
#define BMSR_100BT4 0x8000
#define BMSR_100BT_FDX 0x4000
#define BMSR_100BT_HDX 0x2000
#define BMSR_10BT_FDX 0x1000
#define BMSR_10BT_HDX 0x0800
#define BMSR_100BT2_FDX 0x0400
#define BMSR_100BT2_HDX 0x0200
#define BMSR_1000BT_XSR 0x0100
#define BMSR_PRESUP 0x0040
#define BMSR_ANCOMPLT 0x0020
#define BMSR_REMFAULT 0x0010
#define BMSR_AUTONEG 0x0008
#define BMSR_LINKSTAT 0x0004
#define BMSR_JABDETECT 0x0002
#define BMSR_EXTCAPAB 0x0001
#define PHYIDR1 0x2000
#define PHYIDR2 0x5C60
#define ANAR_NP 0x8000
#define ANAR_RF 0x2000
#define ANAR_ASYPAUSE 0x0800
#define ANAR_PAUSE 0x0400
#define ANAR_T4 0x0200
#define ANAR_TXFD 0x0100
#define ANAR_TXHD 0x0080
#define ANAR_10FD 0x0040
#define ANAR_10HD 0x0020
#define ANAR_PSB 0x0001
#define ANLPAR_NP 0x8000
#define ANLPAR_ACK 0x4000
#define ANLPAR_RF 0x2000
#define ANLPAR_ASYPAUSE 0x0800
#define ANLPAR_PAUSE 0x0400
#define ANLPAR_T4 0x0200
#define ANLPAR_TXFD 0x0100
#define ANLPAR_TXHD 0x0080
#define ANLPAR_10FD 0x0040
#define ANLPAR_10HD 0x0020
#define ANLPAR_PSB 0x0001 /* 802.3 */
#define ANER_PDF 0x0010
#define ANER_LPNPABLE 0x0008
#define ANER_NPABLE 0x0004
#define ANER_PAGERX 0x0002
#define ANER_LPANABLE 0x0001
#define ANNPTR_NP 0x8000
#define ANNPTR_MP 0x2000
#define ANNPTR_ACK2 0x1000
#define ANNPTR_TOGTX 0x0800
#define ANNPTR_CODE 0x0008
#define ANNPRR_NP 0x8000
#define ANNPRR_MP 0x2000
#define ANNPRR_ACK3 0x1000
#define ANNPRR_TOGTX 0x0800
#define ANNPRR_CODE 0x0008
#define K1TCR_TESTMODE 0x0000
#define K1TCR_MSMCE 0x1000
#define K1TCR_MSCV 0x0800
#define K1TCR_RPTR 0x0400
#define K1TCR_1000BT_FDX 0x200
#define K1TCR_1000BT_HDX 0x100
#define K1STSR_MSMCFLT 0x8000
#define K1STSR_MSCFGRES 0x4000
#define K1STSR_LRSTAT 0x2000
#define K1STSR_RRSTAT 0x1000
#define K1STSR_LP1KFD 0x0800
#define K1STSR_LP1KHD 0x0400
#define K1STSR_LPASMDIR 0x0200
#define K1SCR_1KX_FDX 0x8000
#define K1SCR_1KX_HDX 0x4000
#define K1SCR_1KT_FDX 0x2000
#define K1SCR_1KT_HDX 0x1000
#define STRAP_PHY1 0x0800
#define STRAP_NCMODE 0x0400
#define STRAP_MANMSCFG 0x0200
#define STRAP_ANENABLE 0x0100
#define STRAP_MSVAL 0x0080
#define STRAP_1KHDXADV 0x0010
#define STRAP_1KFDXADV 0x0008
#define STRAP_100ADV 0x0004
#define STRAP_SPEEDSEL 0x0000
#define STRAP_SPEED100 0x0001
#define PHYSUP_SPEED1000 0x10
#define PHYSUP_SPEED100 0x08
#define PHYSUP_SPEED10 0x00
#define PHYSUP_LINKUP 0x04
#define PHYSUP_FDX 0x02
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define MII_PHYIDR1 0x02
#define MII_PHYIDR2 0x03
#define MII_K1STSR 0x0A /* 1K Status Register (ro) */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
#define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
#define ENABLE 1
#define DISABLE 0
/**********************************************************************
* SBMAC_MII_SYNC(s)
*
* Synchronize with the MII - send a pattern of bits to the MII
* that will guarantee that it is ready to accept a command.
*
* Input parameters:
* s - sbmac structure
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_mii_sync(struct sbmac_softc *s)
{
int cnt;
uint64_t bits;
int mac_mdio_genc;
mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
__raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
for (cnt = 0; cnt < 32; cnt++) {
__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
}
}
/**********************************************************************
* SBMAC_MII_SENDDATA(s,data,bitcnt)
*
* Send some bits to the MII. The bits to be sent are right-
* justified in the 'data' parameter.
*
* Input parameters:
* s - sbmac structure
* data - data to send
* bitcnt - number of bits to send
********************************************************************* */
static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
{
int i;
uint64_t bits;
unsigned int curmask;
int mac_mdio_genc;
mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT;
__raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
curmask = 1 << (bitcnt - 1);
for (i = 0; i < bitcnt; i++) {
if (data & curmask)
bits |= M_MAC_MDIO_OUT;
else bits &= ~M_MAC_MDIO_OUT;
__raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
curmask >>= 1;
}
}
/**********************************************************************
* SBMAC_MII_READ(s,phyaddr,regidx)
*
* Read a PHY register.
*
* Input parameters:
* s - sbmac structure
* phyaddr - PHY's address
* regidx = index of register to read
*
* Return value:
* value read, or 0 if an error occurred.
********************************************************************* */
static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
{
int idx;
int error;
int regval;
int mac_mdio_genc;
/*
* Synchronize ourselves so that the PHY knows the next
* thing coming down is a command
*/
sbmac_mii_sync(s);
/*
* Send the data to the PHY. The sequence is
* a "start" command (2 bits)
* a "read" command (2 bits)
* the PHY addr (5 bits)
* the register index (5 bits)
*/
sbmac_mii_senddata(s,MII_COMMAND_START, 2);
sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
sbmac_mii_senddata(s,phyaddr, 5);
sbmac_mii_senddata(s,regidx, 5);
mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
/*
* Switch the port around without a clock transition.
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
/*
* Send out a clock pulse to signal we want the status
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
/*
* If an error occurred, the PHY will signal '1' back
*/
error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
/*
* Issue an 'idle' clock pulse, but keep the direction
* the same.
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
regval = 0;
for (idx = 0; idx < 16; idx++) {
regval <<= 1;
if (error == 0) {
if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
regval |= 1;
}
__raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
}
/* Switch back to output */
__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
if (error == 0)
return regval;
return 0;
}
/**********************************************************************
* SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
*
* Write a value to a PHY register.
*
* Input parameters:
* s - sbmac structure
* phyaddr - PHY to use
* regidx - register within the PHY
* regval - data to write to register
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
unsigned int regval)
{
int mac_mdio_genc;
sbmac_mii_sync(s);
sbmac_mii_senddata(s,MII_COMMAND_START,2);
sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
sbmac_mii_senddata(s,phyaddr, 5);
sbmac_mii_senddata(s,regidx, 5);
sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
sbmac_mii_senddata(s,regval,16);
mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
}
/**********************************************************************
* SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
*
* Initialize a DMA channel context. Since there are potentially
* eight DMA channels per MAC, it's nice to do this in a standard
* way.
*
* Input parameters:
* d - sbmacdma_t structure (DMA channel context)
* s - sbmac_softc structure (pointer to a MAC)
* chan - channel number (0..1 right now)
* txrx - Identifies DMA_TX or DMA_RX for channel direction
* maxdescr - number of descriptors
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_initctx(sbmacdma_t *d,
struct sbmac_softc *s,
int chan,
int txrx,
int maxdescr)
{
#ifdef CONFIG_SBMAC_COALESCE
int int_pktcnt, int_timeout;
#endif
/*
* Save away interesting stuff in the structure
*/
d->sbdma_eth = s;
d->sbdma_channel = chan;
d->sbdma_txdir = txrx;
#if 0
/* RMON clearing */
s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
#endif
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
__raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
/*
* initialize register pointers
*/
d->sbdma_config0 =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
d->sbdma_config1 =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
d->sbdma_dscrbase =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
d->sbdma_dscrcnt =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
d->sbdma_curdscr =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
if (d->sbdma_txdir)
d->sbdma_oodpktlost = NULL;
else
d->sbdma_oodpktlost =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
/*
* Allocate memory for the ring
*/
d->sbdma_maxdescr = maxdescr;
d->sbdma_dscrtable_unaligned =
d->sbdma_dscrtable = (sbdmadscr_t *)
kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
/*
* The descriptor table must be aligned to at least 16 bytes or the
* MAC will corrupt it.
*/
d->sbdma_dscrtable = (sbdmadscr_t *)
ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
/*
* And context table
*/
d->sbdma_ctxtable = (struct sk_buff **)
kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
#ifdef CONFIG_SBMAC_COALESCE
/*
* Setup Rx/Tx DMA coalescing defaults
*/
int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
if ( int_pktcnt ) {
d->sbdma_int_pktcnt = int_pktcnt;
} else {
d->sbdma_int_pktcnt = 1;
}
int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
if ( int_timeout ) {
d->sbdma_int_timeout = int_timeout;
} else {
d->sbdma_int_timeout = 0;
}
#endif
}
/**********************************************************************
* SBDMA_CHANNEL_START(d)
*
* Initialize the hardware registers for a DMA channel.
*
* Input parameters:
* d - DMA channel to init (context must be previously init'd
* rxtx - DMA_RX or DMA_TX depending on what type of channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
{
/*
* Turn on the DMA channel
*/
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
0, d->sbdma_config1);
__raw_writeq(M_DMA_EOP_INT_EN |
V_DMA_RINGSZ(d->sbdma_maxdescr) |
V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
0, d->sbdma_config0);
#else
__raw_writeq(0, d->sbdma_config1);
__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
0, d->sbdma_config0);
#endif
__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
/*
* Initialize ring pointers
*/
d->sbdma_addptr = d->sbdma_dscrtable;
d->sbdma_remptr = d->sbdma_dscrtable;
}
/**********************************************************************
* SBDMA_CHANNEL_STOP(d)
*
* Initialize the hardware registers for a DMA channel.
*
* Input parameters:
* d - DMA channel to init (context must be previously init'd
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_channel_stop(sbmacdma_t *d)
{
/*
* Turn off the DMA channel
*/
__raw_writeq(0, d->sbdma_config1);
__raw_writeq(0, d->sbdma_dscrbase);
__raw_writeq(0, d->sbdma_config0);
/*
* Zero ring pointers
*/
d->sbdma_addptr = NULL;
d->sbdma_remptr = NULL;
}
static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
{
unsigned long addr;
unsigned long newaddr;
addr = (unsigned long) skb->data;
newaddr = (addr + power2 - 1) & ~(power2 - 1);
skb_reserve(skb,newaddr-addr+offset);
}
/**********************************************************************
* SBDMA_ADD_RCVBUFFER(d,sb)
*
* Add a buffer to the specified DMA channel. For receive channels,
* this queues a buffer for inbound packets.
*
* Input parameters:
* d - DMA channel descriptor
* sb - sk_buff to add, or NULL if we should allocate one
*
* Return value:
* 0 if buffer could not be added (ring is full)
* 1 if buffer added successfully
********************************************************************* */
static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
{
sbdmadscr_t *dsc;
sbdmadscr_t *nextdsc;
struct sk_buff *sb_new = NULL;
int pktsize = ENET_PACKET_SIZE;
/* get pointer to our current place in the ring */
dsc = d->sbdma_addptr;
nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
/*
* figure out if the ring is full - if the next descriptor
* is the same as the one that we're going to remove from
* the ring, the ring is full
*/
if (nextdsc == d->sbdma_remptr) {
return -ENOSPC;
}
/*
* Allocate a sk_buff if we don't already have one.
* If we do have an sk_buff, reset it so that it's empty.
*
* Note: sk_buffs don't seem to be guaranteed to have any sort
* of alignment when they are allocated. Therefore, allocate enough
* extra space to make sure that:
*
* 1. the data does not start in the middle of a cache line.
* 2. The data does not end in the middle of a cache line
* 3. The buffer can be aligned such that the IP addresses are
* naturally aligned.
*
* Remember, the SOCs MAC writes whole cache lines at a time,
* without reading the old contents first. So, if the sk_buff's
* data portion starts in the middle of a cache line, the SOC
* DMA will trash the beginning (and ending) portions.
*/
if (sb == NULL) {
sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
if (sb_new == NULL) {
printk(KERN_INFO "%s: sk_buff allocation failed\n",
d->sbdma_eth->sbm_dev->name);
return -ENOBUFS;
}
sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
}
else {
sb_new = sb;
/*
* nothing special to reinit buffer, it's already aligned
* and sb->data already points to a good place.
*/
}
/*
* fill in the descriptor
*/
#ifdef CONFIG_SBMAC_COALESCE
/*
* Do not interrupt per DMA transfer.
*/
dsc->dscr_a = virt_to_phys(sb_new->data) |
V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
#else
dsc->dscr_a = virt_to_phys(sb_new->data) |
V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
M_DMA_DSCRA_INTERRUPT;
#endif
/* receiving: no options */
dsc->dscr_b = 0;
/*
* fill in the context
*/
d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
/*
* point at next packet
*/
d->sbdma_addptr = nextdsc;
/*
* Give the buffer to the DMA engine.
*/
__raw_writeq(1, d->sbdma_dscrcnt);
return 0; /* we did it */
}
/**********************************************************************
* SBDMA_ADD_TXBUFFER(d,sb)
*
* Add a transmit buffer to the specified DMA channel, causing a
* transmit to start.
*
* Input parameters:
* d - DMA channel descriptor
* sb - sk_buff to add
*
* Return value:
* 0 transmit queued successfully
* otherwise error code
********************************************************************* */
static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
{
sbdmadscr_t *dsc;
sbdmadscr_t *nextdsc;
uint64_t phys;
uint64_t ncb;
int length;
/* get pointer to our current place in the ring */
dsc = d->sbdma_addptr;
nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
/*
* figure out if the ring is full - if the next descriptor
* is the same as the one that we're going to remove from
* the ring, the ring is full
*/
if (nextdsc == d->sbdma_remptr) {
return -ENOSPC;
}
/*
* Under Linux, it's not necessary to copy/coalesce buffers
* like it is on NetBSD. We think they're all contiguous,
* but that may not be true for GBE.
*/
length = sb->len;
/*
* fill in the descriptor. Note that the number of cache
* blocks in the descriptor is the number of blocks
* *spanned*, so we need to add in the offset (if any)
* while doing the calculation.
*/
phys = virt_to_phys(sb->data);
ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
dsc->dscr_a = phys |
V_DMA_DSCRA_A_SIZE(ncb) |
#ifndef CONFIG_SBMAC_COALESCE
M_DMA_DSCRA_INTERRUPT |
#endif
M_DMA_ETHTX_SOP;
/* transmitting: set outbound options and length */
dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
V_DMA_DSCRB_PKT_SIZE(length);
/*
* fill in the context
*/
d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
/*
* point at next packet
*/
d->sbdma_addptr = nextdsc;
/*
* Give the buffer to the DMA engine.
*/
__raw_writeq(1, d->sbdma_dscrcnt);
return 0; /* we did it */
}
/**********************************************************************
* SBDMA_EMPTYRING(d)
*
* Free all allocated sk_buffs on the specified DMA channel;
*
* Input parameters:
* d - DMA channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_emptyring(sbmacdma_t *d)
{
int idx;
struct sk_buff *sb;
for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
sb = d->sbdma_ctxtable[idx];
if (sb) {
dev_kfree_skb(sb);
d->sbdma_ctxtable[idx] = NULL;
}
}
}
/**********************************************************************
* SBDMA_FILLRING(d)
*
* Fill the specified DMA channel (must be receive channel)
* with sk_buffs
*
* Input parameters:
* d - DMA channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_fillring(sbmacdma_t *d)
{
int idx;
for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
if (sbdma_add_rcvbuffer(d,NULL) != 0)
break;
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sbmac_netpoll(struct net_device *netdev)
{
struct sbmac_softc *sc = netdev_priv(netdev);
int irq = sc->sbm_dev->irq;
__raw_writeq(0, sc->sbm_imr);
sbmac_intr(irq, netdev);
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
sc->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
#endif
}
#endif
/**********************************************************************
* SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
*
* Process "completed" receive buffers on the specified DMA channel.
*
* Input parameters:
* sc - softc structure
* d - DMA channel context
* work_to_do - no. of packets to process before enabling interrupt
* again (for NAPI)
* poll - 1: using polling (for NAPI)
*
* Return value:
* nothing
********************************************************************* */
static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d,
int work_to_do, int poll)
{
int curidx;
int hwidx;
sbdmadscr_t *dsc;
struct sk_buff *sb;
int len;
int work_done = 0;
int dropped = 0;
prefetch(d);
again:
/* Check if the HW dropped any frames */
sc->sbm_stats.rx_fifo_errors
+= __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
while (work_to_do-- > 0) {
/*
* figure out where we are (as an index) and where
* the hardware is (also as an index)
*
* This could be done faster if (for example) the
* descriptor table was page-aligned and contiguous in
* both virtual and physical memory -- you could then
* just compare the low-order bits of the virtual address
* (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
*/
dsc = d->sbdma_remptr;
curidx = dsc - d->sbdma_dscrtable;
prefetch(dsc);
prefetch(&d->sbdma_ctxtable[curidx]);
hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
/*
* If they're the same, that means we've processed all
* of the descriptors up to (but not including) the one that
* the hardware is working on right now.
*/
if (curidx == hwidx)
goto done;
/*
* Otherwise, get the packet's sk_buff ptr back
*/
sb = d->sbdma_ctxtable[curidx];
d->sbdma_ctxtable[curidx] = NULL;
len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
/*
* Check packet status. If good, process it.
* If not, silently drop it and put it back on the
* receive ring.
*/
if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
/*
* Add a new buffer to replace the old one. If we fail
* to allocate a buffer, we're going to drop this
* packet and put it right back on the receive ring.
*/
if (unlikely (sbdma_add_rcvbuffer(d,NULL) ==
-ENOBUFS)) {
sc->sbm_stats.rx_dropped++;
sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
/* No point in continuing at the moment */
printk(KERN_ERR "dropped packet (1)\n");
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
goto done;
} else {
/*
* Set length into the packet
*/
skb_put(sb,len);
/*
* Buffer has been replaced on the
* receive ring. Pass the buffer to
* the kernel
*/
sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
/* Check hw IPv4/TCP checksum if supported */
if (sc->rx_hw_checksum == ENABLE) {
if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
!((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
sb->ip_summed = CHECKSUM_UNNECESSARY;
/* don't need to set sb->csum */
} else {
sb->ip_summed = CHECKSUM_NONE;
}
}
prefetch(sb->data);
prefetch((const void *)(((char *)sb->data)+32));
if (poll)
dropped = netif_receive_skb(sb);
else
dropped = netif_rx(sb);
if (dropped == NET_RX_DROP) {
sc->sbm_stats.rx_dropped++;
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
goto done;
}
else {
sc->sbm_stats.rx_bytes += len;
sc->sbm_stats.rx_packets++;
}
}
} else {
/*
* Packet was mangled somehow. Just drop it and
* put it back on the receive ring.
*/
sc->sbm_stats.rx_errors++;
sbdma_add_rcvbuffer(d,sb);
}
/*
* .. and advance to the next buffer.
*/
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
work_done++;
}
if (!poll) {
work_to_do = 32;
goto again; /* collect fifo drop statistics again */
}
done:
return work_done;
}
/**********************************************************************
* SBDMA_TX_PROCESS(sc,d)
*
* Process "completed" transmit buffers on the specified DMA channel.
* This is normally called within the interrupt service routine.
* Note that this isn't really ideal for priority channels, since
* it processes all of the packets on a given channel before
* returning.
*
* Input parameters:
* sc - softc structure
* d - DMA channel context
* poll - 1: using polling (for NAPI)
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll)
{
int curidx;
int hwidx;
sbdmadscr_t *dsc;
struct sk_buff *sb;
unsigned long flags;
int packets_handled = 0;
spin_lock_irqsave(&(sc->sbm_lock), flags);
if (d->sbdma_remptr == d->sbdma_addptr)
goto end_unlock;
hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
for (;;) {
/*
* figure out where we are (as an index) and where
* the hardware is (also as an index)
*
* This could be done faster if (for example) the
* descriptor table was page-aligned and contiguous in
* both virtual and physical memory -- you could then
* just compare the low-order bits of the virtual address
* (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
*/
curidx = d->sbdma_remptr - d->sbdma_dscrtable;
/*
* If they're the same, that means we've processed all
* of the descriptors up to (but not including) the one that
* the hardware is working on right now.
*/
if (curidx == hwidx)
break;
/*
* Otherwise, get the packet's sk_buff ptr back
*/
dsc = &(d->sbdma_dscrtable[curidx]);
sb = d->sbdma_ctxtable[curidx];
d->sbdma_ctxtable[curidx] = NULL;
/*
* Stats
*/
sc->sbm_stats.tx_bytes += sb->len;
sc->sbm_stats.tx_packets++;
/*
* for transmits, we just free buffers.
*/
dev_kfree_skb_irq(sb);
/*
* .. and advance to the next buffer.
*/
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
packets_handled++;
}
/*
* Decide if we should wake up the protocol or not.
* Other drivers seem to do this when we reach a low
* watermark on the transmit queue.
*/
if (packets_handled)
netif_wake_queue(d->sbdma_eth->sbm_dev);
end_unlock:
spin_unlock_irqrestore(&(sc->sbm_lock), flags);
}
/**********************************************************************
* SBMAC_INITCTX(s)
*
* Initialize an Ethernet context structure - this is called
* once per MAC on the 1250. Memory is allocated here, so don't
* call it again from inside the ioctl routines that bring the
* interface up/down
*
* Input parameters:
* s - sbmac context structure
*
* Return value:
* 0
********************************************************************* */
static int sbmac_initctx(struct sbmac_softc *s)
{
/*
* figure out the addresses of some ports
*/
s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
s->sbm_isr = s->sbm_base + R_MAC_STATUS;
s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
s->sbm_phys[0] = 1;
s->sbm_phys[1] = 0;
s->sbm_phy_oldbmsr = 0;
s->sbm_phy_oldanlpar = 0;
s->sbm_phy_oldk1stsr = 0;
s->sbm_phy_oldlinkstat = 0;
/*
* Initialize the DMA channels. Right now, only one per MAC is used
* Note: Only do this _once_, as it allocates memory from the kernel!
*/
sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
/*
* initial state is OFF
*/
s->sbm_state = sbmac_state_off;
/*
* Initial speed is (XXX TEMP) 10MBit/s HDX no FC
*/
s->sbm_speed = sbmac_speed_10;
s->sbm_duplex = sbmac_duplex_half;
s->sbm_fc = sbmac_fc_disabled;
return 0;
}
static void sbdma_uninitctx(struct sbmacdma_s *d)
{
if (d->sbdma_dscrtable_unaligned) {
kfree(d->sbdma_dscrtable_unaligned);
d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
}
if (d->sbdma_ctxtable) {
kfree(d->sbdma_ctxtable);
d->sbdma_ctxtable = NULL;
}
}
static void sbmac_uninitctx(struct sbmac_softc *sc)
{
sbdma_uninitctx(&(sc->sbm_txdma));
sbdma_uninitctx(&(sc->sbm_rxdma));
}
/**********************************************************************
* SBMAC_CHANNEL_START(s)
*
* Start packet processing on this MAC.
*
* Input parameters:
* s - sbmac structure
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_channel_start(struct sbmac_softc *s)
{
uint64_t reg;
volatile void __iomem *port;
uint64_t cfg,fifo,framecfg;
int idx, th_value;
/*
* Don't do this if running
*/
if (s->sbm_state == sbmac_state_on)
return;
/*
* Bring the controller out of reset, but leave it off.
*/
__raw_writeq(0, s->sbm_macenable);
/*
* Ignore all received packets
*/
__raw_writeq(0, s->sbm_rxfilter);
/*
* Calculate values for various control registers.
*/
cfg = M_MAC_RETRY_EN |
M_MAC_TX_HOLD_SOP_EN |
V_MAC_TX_PAUSE_CNT_16K |
M_MAC_AP_STAT_EN |
M_MAC_FAST_SYNC |
M_MAC_SS_EN |
0;
/*
* Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
* and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
* Use a larger RD_THRSH for gigabit
*/
if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
th_value = 28;
else
th_value = 64;
fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
((s->sbm_speed == sbmac_speed_1000)
? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
V_MAC_TX_RL_THRSH(4) |
V_MAC_RX_PL_THRSH(4) |
V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
V_MAC_RX_PL_THRSH(4) |
V_MAC_RX_RL_THRSH(8) |
0;
framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
V_MAC_MAX_FRAMESZ_DEFAULT |
V_MAC_BACKOFF_SEL(1);
/*
* Clear out the hash address map
*/
port = s->sbm_base + R_MAC_HASH_BASE;
for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Clear out the exact-match table
*/
port = s->sbm_base + R_MAC_ADDR_BASE;
for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Clear out the DMA Channel mapping table registers
*/
port = s->sbm_base + R_MAC_CHUP0_BASE;
for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
port = s->sbm_base + R_MAC_CHLO0_BASE;
for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Program the hardware address. It goes into the hardware-address
* register as well as the first filter register.
*/
reg = sbmac_addr2reg(s->sbm_hwaddr);
port = s->sbm_base + R_MAC_ADDR_BASE;
__raw_writeq(reg, port);
port = s->sbm_base + R_MAC_ETHERNET_ADDR;
#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
/*
* Pass1 SOCs do not receive packets addressed to the
* destination address in the R_MAC_ETHERNET_ADDR register.
* Set the value to zero.
*/
__raw_writeq(0, port);
#else
__raw_writeq(reg, port);
#endif
/*
* Set the receive filter for no packets, and write values
* to the various config registers
*/
__raw_writeq(0, s->sbm_rxfilter);
__raw_writeq(0, s->sbm_imr);
__raw_writeq(framecfg, s->sbm_framecfg);
__raw_writeq(fifo, s->sbm_fifocfg);
__raw_writeq(cfg, s->sbm_maccfg);
/*
* Initialize DMA channels (rings should be ok now)
*/
sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
/*
* Configure the speed, duplex, and flow control
*/
sbmac_set_speed(s,s->sbm_speed);
sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
/*
* Fill the receive ring
*/
sbdma_fillring(&(s->sbm_rxdma));
/*
* Turn on the rest of the bits in the enable register
*/
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
__raw_writeq(M_MAC_RXDMA_EN0 |
M_MAC_TXDMA_EN0, s->sbm_macenable);
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
__raw_writeq(M_MAC_RXDMA_EN0 |
M_MAC_TXDMA_EN0 |
M_MAC_RX_ENABLE |
M_MAC_TX_ENABLE, s->sbm_macenable);
#else
#error invalid SiByte MAC configuation
#endif
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
#endif
/*
* Enable receiving unicasts and broadcasts
*/
__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
/*
* we're running now.
*/
s->sbm_state = sbmac_state_on;
/*
* Program multicast addresses
*/
sbmac_setmulti(s);
/*
* If channel was in promiscuous mode before, turn that on
*/
if (s->sbm_devflags & IFF_PROMISC) {
sbmac_promiscuous_mode(s,1);
}
}
/**********************************************************************
* SBMAC_CHANNEL_STOP(s)
*
* Stop packet processing on this MAC.
*
* Input parameters:
* s - sbmac structure
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_channel_stop(struct sbmac_softc *s)
{
/* don't do this if already stopped */
if (s->sbm_state == sbmac_state_off)
return;
/* don't accept any packets, disable all interrupts */
__raw_writeq(0, s->sbm_rxfilter);
__raw_writeq(0, s->sbm_imr);
/* Turn off ticker */
/* XXX */
/* turn off receiver and transmitter */
__raw_writeq(0, s->sbm_macenable);
/* We're stopped now. */
s->sbm_state = sbmac_state_off;
/*
* Stop DMA channels (rings should be ok now)
*/
sbdma_channel_stop(&(s->sbm_rxdma));
sbdma_channel_stop(&(s->sbm_txdma));
/* Empty the receive and transmit rings */
sbdma_emptyring(&(s->sbm_rxdma));
sbdma_emptyring(&(s->sbm_txdma));
}
/**********************************************************************
* SBMAC_SET_CHANNEL_STATE(state)
*
* Set the channel's state ON or OFF
*
* Input parameters:
* state - new state
*
* Return value:
* old state
********************************************************************* */
static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
sbmac_state_t state)
{
sbmac_state_t oldstate = sc->sbm_state;
/*
* If same as previous state, return
*/
if (state == oldstate) {
return oldstate;
}
/*
* If new state is ON, turn channel on
*/
if (state == sbmac_state_on) {
sbmac_channel_start(sc);
}
else {
sbmac_channel_stop(sc);
}
/*
* Return previous state
*/
return oldstate;
}
/**********************************************************************
* SBMAC_PROMISCUOUS_MODE(sc,onoff)
*
* Turn on or off promiscuous mode
*
* Input parameters:
* sc - softc
* onoff - 1 to turn on, 0 to turn off
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
{
uint64_t reg;
if (sc->sbm_state != sbmac_state_on)
return;
if (onoff) {
reg = __raw_readq(sc->sbm_rxfilter);
reg |= M_MAC_ALLPKT_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
else {
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~M_MAC_ALLPKT_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
}
/**********************************************************************
* SBMAC_SETIPHDR_OFFSET(sc,onoff)
*
* Set the iphdr offset as 15 assuming ethernet encapsulation
*
* Input parameters:
* sc - softc
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
{
uint64_t reg;
/* Hard code the off set to 15 for now */
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
__raw_writeq(reg, sc->sbm_rxfilter);
/* BCM1250 pass1 didn't have hardware checksum. Everything
later does. */
if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
sc->rx_hw_checksum = DISABLE;
} else {
sc->rx_hw_checksum = ENABLE;
}
}
/**********************************************************************
* SBMAC_ADDR2REG(ptr)
*
* Convert six bytes into the 64-bit register value that
* we typically write into the SBMAC's address/mcast registers
*
* Input parameters:
* ptr - pointer to 6 bytes
*
* Return value:
* register value
********************************************************************* */
static uint64_t sbmac_addr2reg(unsigned char *ptr)
{
uint64_t reg = 0;
ptr += 6;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
return reg;
}
/**********************************************************************
* SBMAC_SET_SPEED(s,speed)
*
* Configure LAN speed for the specified MAC.
* Warning: must be called when MAC is off!
*
* Input parameters:
* s - sbmac structure
* speed - speed to set MAC to (see sbmac_speed_t enum)
*
* Return value:
* 1 if successful
* 0 indicates invalid parameters
********************************************************************* */
static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
{
uint64_t cfg;
uint64_t framecfg;
/*
* Save new current values
*/
s->sbm_speed = speed;
if (s->sbm_state == sbmac_state_on)
return 0; /* save for next restart */
/*
* Read current register values
*/
cfg = __raw_readq(s->sbm_maccfg);
framecfg = __raw_readq(s->sbm_framecfg);
/*
* Mask out the stuff we want to change
*/
cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
M_MAC_SLOT_SIZE);
/*
* Now add in the new bits
*/
switch (speed) {
case sbmac_speed_10:
framecfg |= V_MAC_IFG_RX_10 |
V_MAC_IFG_TX_10 |
K_MAC_IFG_THRSH_10 |
V_MAC_SLOT_SIZE_10;
cfg |= V_MAC_SPEED_SEL_10MBPS;
break;
case sbmac_speed_100:
framecfg |= V_MAC_IFG_RX_100 |
V_MAC_IFG_TX_100 |
V_MAC_IFG_THRSH_100 |
V_MAC_SLOT_SIZE_100;
cfg |= V_MAC_SPEED_SEL_100MBPS ;
break;
case sbmac_speed_1000:
framecfg |= V_MAC_IFG_RX_1000 |
V_MAC_IFG_TX_1000 |
V_MAC_IFG_THRSH_1000 |
V_MAC_SLOT_SIZE_1000;
cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
break;
case sbmac_speed_auto: /* XXX not implemented */
/* fall through */
default:
return 0;
}
/*
* Send the bits back to the hardware
*/
__raw_writeq(framecfg, s->sbm_framecfg);
__raw_writeq(cfg, s->sbm_maccfg);
return 1;
}
/**********************************************************************
* SBMAC_SET_DUPLEX(s,duplex,fc)
*
* Set Ethernet duplex and flow control options for this MAC
* Warning: must be called when MAC is off!
*
* Input parameters:
* s - sbmac structure
* duplex - duplex setting (see sbmac_duplex_t)
* fc - flow control setting (see sbmac_fc_t)
*
* Return value:
* 1 if ok
* 0 if an invalid parameter combination was specified
********************************************************************* */
static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
{
uint64_t cfg;
/*
* Save new current values
*/
s->sbm_duplex = duplex;
s->sbm_fc = fc;
if (s->sbm_state == sbmac_state_on)
return 0; /* save for next restart */
/*
* Read current register values
*/
cfg = __raw_readq(s->sbm_maccfg);
/*
* Mask off the stuff we're about to change
*/
cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
switch (duplex) {
case sbmac_duplex_half:
switch (fc) {
case sbmac_fc_disabled:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
break;
case sbmac_fc_collision:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
break;
case sbmac_fc_carrier:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
break;
case sbmac_fc_auto: /* XXX not implemented */
/* fall through */
case sbmac_fc_frame: /* not valid in half duplex */
default: /* invalid selection */
return 0;
}
break;
case sbmac_duplex_full:
switch (fc) {
case sbmac_fc_disabled:
cfg |= V_MAC_FC_CMD_DISABLED;
break;
case sbmac_fc_frame:
cfg |= V_MAC_FC_CMD_ENABLED;
break;
case sbmac_fc_collision: /* not valid in full duplex */
case sbmac_fc_carrier: /* not valid in full duplex */
case sbmac_fc_auto: /* XXX not implemented */
/* fall through */
default:
return 0;
}
break;
case sbmac_duplex_auto:
/* XXX not implemented */
break;
}
/*
* Send the bits back to the hardware
*/
__raw_writeq(cfg, s->sbm_maccfg);
return 1;
}
/**********************************************************************
* SBMAC_INTR()
*
* Interrupt handler for MAC interrupts
*
* Input parameters:
* MAC structure
*
* Return value:
* nothing
********************************************************************* */
static irqreturn_t sbmac_intr(int irq,void *dev_instance)
{
struct net_device *dev = (struct net_device *) dev_instance;
struct sbmac_softc *sc = netdev_priv(dev);
uint64_t isr;
int handled = 0;
/*
* Read the ISR (this clears the bits in the real
* register, except for counter addr)
*/
isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
if (isr == 0)
return IRQ_RETVAL(0);
handled = 1;
/*
* Transmits on channel 0
*/
if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
#ifdef CONFIG_NETPOLL_TRAP
if (netpoll_trap()) {
if (test_and_clear_bit(__LINK_STATE_XOFF, &dev->state))
__netif_schedule(dev);
}
#endif
}
if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
if (netif_rx_schedule_prep(dev)) {
__raw_writeq(0, sc->sbm_imr);
__netif_rx_schedule(dev);
/* Depend on the exit from poll to reenable intr */
}
else {
/* may leave some packets behind */
sbdma_rx_process(sc,&(sc->sbm_rxdma),
SBMAC_MAX_RXDESCR * 2, 0);
}
}
return IRQ_RETVAL(handled);
}
/**********************************************************************
* SBMAC_START_TX(skb,dev)
*
* Start output on the specified interface. Basically, we
* queue as many buffers as we can until the ring fills up, or
* we run off the end of the queue, whichever comes first.
*
* Input parameters:
*
*
* Return value:
* nothing
********************************************************************* */
static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
/* lock eth irq */
spin_lock_irq (&sc->sbm_lock);
/*
* Put the buffer on the transmit ring. If we
* don't have room, stop the queue.
*/
if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
/* XXX save skb that we could not send */
netif_stop_queue(dev);
spin_unlock_irq(&sc->sbm_lock);
return 1;
}
dev->trans_start = jiffies;
spin_unlock_irq (&sc->sbm_lock);
return 0;
}
/**********************************************************************
* SBMAC_SETMULTI(sc)
*
* Reprogram the multicast table into the hardware, given
* the list of multicasts associated with the interface
* structure.
*
* Input parameters:
* sc - softc
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_setmulti(struct sbmac_softc *sc)
{
uint64_t reg;
volatile void __iomem *port;
int idx;
struct dev_mc_list *mclist;
struct net_device *dev = sc->sbm_dev;
/*
* Clear out entire multicast table. We do this by nuking
* the entire hash table and all the direct matches except
* the first one, which is used for our station address
*/
for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
__raw_writeq(0, port);
}
for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
__raw_writeq(0, port);
}
/*
* Clear the filter to say we don't want any multicasts.
*/
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
__raw_writeq(reg, sc->sbm_rxfilter);
if (dev->flags & IFF_ALLMULTI) {
/*
* Enable ALL multicasts. Do this by inverting the
* multicast enable bit.
*/
reg = __raw_readq(sc->sbm_rxfilter);
reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
__raw_writeq(reg, sc->sbm_rxfilter);
return;
}
/*
* Progam new multicast entries. For now, only use the
* perfect filter. In the future we'll need to use the
* hash filter if the perfect filter overflows
*/
/* XXX only using perfect filter for now, need to use hash
* XXX if the table overflows */
idx = 1; /* skip station address */
mclist = dev->mc_list;
while (mclist && (idx < MAC_ADDR_COUNT)) {
reg = sbmac_addr2reg(mclist->dmi_addr);
port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
__raw_writeq(reg, port);
idx++;
mclist = mclist->next;
}
/*
* Enable the "accept multicast bits" if we programmed at least one
* multicast.
*/
if (idx > 1) {
reg = __raw_readq(sc->sbm_rxfilter);
reg |= M_MAC_MCAST_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
}
#if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
/**********************************************************************
* SBMAC_PARSE_XDIGIT(str)
*
* Parse a hex digit, returning its value
*
* Input parameters:
* str - character
*
* Return value:
* hex value, or -1 if invalid
********************************************************************* */
static int sbmac_parse_xdigit(char str)
{
int digit;
if ((str >= '0') && (str <= '9'))
digit = str - '0';
else if ((str >= 'a') && (str <= 'f'))
digit = str - 'a' + 10;
else if ((str >= 'A') && (str <= 'F'))
digit = str - 'A' + 10;
else
return -1;
return digit;
}
/**********************************************************************
* SBMAC_PARSE_HWADDR(str,hwaddr)
*
* Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
* Ethernet address.
*
* Input parameters:
* str - string
* hwaddr - pointer to hardware address
*
* Return value:
* 0 if ok, else -1
********************************************************************* */
static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
{
int digit1,digit2;
int idx = 6;
while (*str && (idx > 0)) {
digit1 = sbmac_parse_xdigit(*str);
if (digit1 < 0)
return -1;
str++;
if (!*str)
return -1;
if ((*str == ':') || (*str == '-')) {
digit2 = digit1;
digit1 = 0;
}
else {
digit2 = sbmac_parse_xdigit(*str);
if (digit2 < 0)
return -1;
str++;
}
*hwaddr++ = (digit1 << 4) | digit2;
idx--;
if (*str == '-')
str++;
if (*str == ':')
str++;
}
return 0;
}
#endif
static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
{
if (new_mtu > ENET_PACKET_SIZE)
return -EINVAL;
_dev->mtu = new_mtu;
printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
return 0;
}
/**********************************************************************
* SBMAC_INIT(dev)
*
* Attach routine - init hardware and hook ourselves into linux
*
* Input parameters:
* dev - net_device structure
*
* Return value:
* status
********************************************************************* */
static int sbmac_init(struct net_device *dev, int idx)
{
struct sbmac_softc *sc;
unsigned char *eaddr;
uint64_t ea_reg;
int i;
int err;
sc = netdev_priv(dev);
/* Determine controller base address */
sc->sbm_base = IOADDR(dev->base_addr);
sc->sbm_dev = dev;
sc->sbe_idx = idx;
eaddr = sc->sbm_hwaddr;
/*
* Read the ethernet address. The firwmare left this programmed
* for us in the ethernet address register for each mac.
*/
ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
for (i = 0; i < 6; i++) {
eaddr[i] = (uint8_t) (ea_reg & 0xFF);
ea_reg >>= 8;
}
for (i = 0; i < 6; i++) {
dev->dev_addr[i] = eaddr[i];
}
/*
* Init packet size
*/
sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
/*
* Initialize context (get pointers to registers and stuff), then
* allocate the memory for the descriptor tables.
*/
sbmac_initctx(sc);
/*
* Set up Linux device callins
*/
spin_lock_init(&(sc->sbm_lock));
dev->open = sbmac_open;
dev->hard_start_xmit = sbmac_start_tx;
dev->stop = sbmac_close;
dev->get_stats = sbmac_get_stats;
dev->set_multicast_list = sbmac_set_rx_mode;
dev->do_ioctl = sbmac_mii_ioctl;
dev->tx_timeout = sbmac_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->poll = sbmac_poll;
dev->weight = 16;
dev->change_mtu = sb1250_change_mtu;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = sbmac_netpoll;
#endif
/* This is needed for PASS2 for Rx H/W checksum feature */
sbmac_set_iphdr_offset(sc);
err = register_netdev(dev);
if (err)
goto out_uninit;
if (sc->rx_hw_checksum == ENABLE) {
printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
sc->sbm_dev->name);
}
/*
* Display Ethernet address (this is called during the config
* process so we need to finish off the config message that
* was being displayed)
*/
printk(KERN_INFO
"%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
dev->name, dev->base_addr,
eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
return 0;
out_uninit:
sbmac_uninitctx(sc);
return err;
}
static int sbmac_open(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
if (debug > 1) {
printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
}
/*
* map/route interrupt (clear status first, in case something
* weird is pending; we haven't initialized the mac registers
* yet)
*/
__raw_readq(sc->sbm_isr);
if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
return -EBUSY;
/*
* Probe phy address
*/
if(sbmac_mii_probe(dev) == -1) {
printk("%s: failed to probe PHY.\n", dev->name);
return -EINVAL;
}
/*
* Configure default speed
*/
sbmac_mii_poll(sc,noisy_mii);
/*
* Turn on the channel
*/
sbmac_set_channel_state(sc,sbmac_state_on);
/*
* XXX Station address is in dev->dev_addr
*/
if (dev->if_port == 0)
dev->if_port = 0;
netif_start_queue(dev);
sbmac_set_rx_mode(dev);
/* Set the timer to check for link beat. */
init_timer(&sc->sbm_timer);
sc->sbm_timer.expires = jiffies + 2 * HZ/100;
sc->sbm_timer.data = (unsigned long)dev;
sc->sbm_timer.function = &sbmac_timer;
add_timer(&sc->sbm_timer);
return 0;
}
static int sbmac_mii_probe(struct net_device *dev)
{
int i;
struct sbmac_softc *s = netdev_priv(dev);
u16 bmsr, id1, id2;
u32 vendor, device;
for (i=1; i<31; i++) {
bmsr = sbmac_mii_read(s, i, MII_BMSR);
if (bmsr != 0) {
s->sbm_phys[0] = i;
id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
device = (id2 >> 4) & 0x3f;
printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
dev->name, i, vendor, device);
return i;
}
}
return -1;
}
static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
{
int bmsr,bmcr,k1stsr,anlpar;
int chg;
char buffer[100];
char *p = buffer;
/* Read the mode status and mode control registers. */
bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
/* get the link partner status */
anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
/* if supported, read the 1000baseT register */
if (bmsr & BMSR_1000BT_XSR) {
k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
}
else {
k1stsr = 0;
}
chg = 0;
if ((bmsr & BMSR_LINKSTAT) == 0) {
/*
* If link status is down, clear out old info so that when
* it comes back up it will force us to reconfigure speed
*/
s->sbm_phy_oldbmsr = 0;
s->sbm_phy_oldanlpar = 0;
s->sbm_phy_oldk1stsr = 0;
return 0;
}
if ((s->sbm_phy_oldbmsr != bmsr) ||
(s->sbm_phy_oldanlpar != anlpar) ||
(s->sbm_phy_oldk1stsr != k1stsr)) {
if (debug > 1) {
printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
s->sbm_dev->name,
s->sbm_phy_oldbmsr,bmsr,
s->sbm_phy_oldanlpar,anlpar,
s->sbm_phy_oldk1stsr,k1stsr);
}
s->sbm_phy_oldbmsr = bmsr;
s->sbm_phy_oldanlpar = anlpar;
s->sbm_phy_oldk1stsr = k1stsr;
chg = 1;
}
if (chg == 0)
return 0;
p += sprintf(p,"Link speed: ");
if (k1stsr & K1STSR_LP1KFD) {
s->sbm_speed = sbmac_speed_1000;
s->sbm_duplex = sbmac_duplex_full;
s->sbm_fc = sbmac_fc_frame;
p += sprintf(p,"1000BaseT FDX");
}
else if (k1stsr & K1STSR_LP1KHD) {
s->sbm_speed = sbmac_speed_1000;
s->sbm_duplex = sbmac_duplex_half;
s->sbm_fc = sbmac_fc_disabled;
p += sprintf(p,"1000BaseT HDX");
}
else if (anlpar & ANLPAR_TXFD) {
s->sbm_speed = sbmac_speed_100;
s->sbm_duplex = sbmac_duplex_full;
s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
p += sprintf(p,"100BaseT FDX");
}
else if (anlpar & ANLPAR_TXHD) {
s->sbm_speed = sbmac_speed_100;
s->sbm_duplex = sbmac_duplex_half;
s->sbm_fc = sbmac_fc_disabled;
p += sprintf(p,"100BaseT HDX");
}
else if (anlpar & ANLPAR_10FD) {
s->sbm_speed = sbmac_speed_10;
s->sbm_duplex = sbmac_duplex_full;
s->sbm_fc = sbmac_fc_frame;
p += sprintf(p,"10BaseT FDX");
}
else if (anlpar & ANLPAR_10HD) {
s->sbm_speed = sbmac_speed_10;
s->sbm_duplex = sbmac_duplex_half;
s->sbm_fc = sbmac_fc_collision;
p += sprintf(p,"10BaseT HDX");
}
else {
p += sprintf(p,"Unknown");
}
if (noisy) {
printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
}
return 1;
}
static void sbmac_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct sbmac_softc *sc = netdev_priv(dev);
int next_tick = HZ;
int mii_status;
spin_lock_irq (&sc->sbm_lock);
/* make IFF_RUNNING follow the MII status bit "Link established" */
mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
if (mii_status & BMSR_LINKSTAT) {
netif_carrier_on(dev);
}
else {
netif_carrier_off(dev);
}
}
/*
* Poll the PHY to see what speed we should be running at
*/
if (sbmac_mii_poll(sc,noisy_mii)) {
if (sc->sbm_state != sbmac_state_off) {
/*
* something changed, restart the channel
*/
if (debug > 1) {
printk("%s: restarting channel because speed changed\n",
sc->sbm_dev->name);
}
sbmac_channel_stop(sc);
sbmac_channel_start(sc);
}
}
spin_unlock_irq (&sc->sbm_lock);
sc->sbm_timer.expires = jiffies + next_tick;
add_timer(&sc->sbm_timer);
}
static void sbmac_tx_timeout (struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
spin_lock_irq (&sc->sbm_lock);
dev->trans_start = jiffies;
sc->sbm_stats.tx_errors++;
spin_unlock_irq (&sc->sbm_lock);
printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
}
static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&sc->sbm_lock, flags);
/* XXX update other stats here */
spin_unlock_irqrestore(&sc->sbm_lock, flags);
return &sc->sbm_stats;
}
static void sbmac_set_rx_mode(struct net_device *dev)
{
unsigned long flags;
struct sbmac_softc *sc = netdev_priv(dev);
spin_lock_irqsave(&sc->sbm_lock, flags);
if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
/*
* Promiscuous changed.
*/
if (dev->flags & IFF_PROMISC) {
sbmac_promiscuous_mode(sc,1);
}
else {
sbmac_promiscuous_mode(sc,0);
}
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
/*
* Program the multicasts. Do this every time.
*/
sbmac_setmulti(sc);
}
static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct sbmac_softc *sc = netdev_priv(dev);
u16 *data = (u16 *)&rq->ifr_ifru;
unsigned long flags;
int retval;
spin_lock_irqsave(&sc->sbm_lock, flags);
retval = 0;
switch(cmd) {
case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
data[0] = sc->sbm_phys[0] & 0x1f;
/* Fall Through */
case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
break;
case SIOCDEVPRIVATE+2: /* Write the specified MII register */
if (!capable(CAP_NET_ADMIN)) {
retval = -EPERM;
break;
}
if (debug > 1) {
printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
data[0],data[1],data[2]);
}
sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
break;
default:
retval = -EOPNOTSUPP;
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
return retval;
}
static int sbmac_close(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
unsigned long flags;
int irq;
sbmac_set_channel_state(sc,sbmac_state_off);
del_timer_sync(&sc->sbm_timer);
spin_lock_irqsave(&sc->sbm_lock, flags);
netif_stop_queue(dev);
if (debug > 1) {
printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
irq = dev->irq;
synchronize_irq(irq);
free_irq(irq, dev);
sbdma_emptyring(&(sc->sbm_txdma));
sbdma_emptyring(&(sc->sbm_rxdma));
return 0;
}
static int sbmac_poll(struct net_device *dev, int *budget)
{
int work_to_do;
int work_done;
struct sbmac_softc *sc = netdev_priv(dev);
work_to_do = min(*budget, dev->quota);
work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), work_to_do, 1);
if (work_done > work_to_do)
printk(KERN_ERR "%s exceeded work_to_do budget=%d quota=%d work-done=%d\n",
sc->sbm_dev->name, *budget, dev->quota, work_done);
sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
*budget -= work_done;
dev->quota -= work_done;
if (work_done < work_to_do) {
netif_rx_complete(dev);
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
sc->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
#endif
}
return (work_done >= work_to_do);
}
#if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
static void
sbmac_setup_hwaddr(int chan,char *addr)
{
uint8_t eaddr[6];
uint64_t val;
unsigned long port;
port = A_MAC_CHANNEL_BASE(chan);
sbmac_parse_hwaddr(addr,eaddr);
val = sbmac_addr2reg(eaddr);
__raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
}
#endif
static struct net_device *dev_sbmac[MAX_UNITS];
static int __init
sbmac_init_module(void)
{
int idx;
struct net_device *dev;
unsigned long port;
int chip_max_units;
/* Set the number of available units based on the SOC type. */
switch (soc_type) {
case K_SYS_SOC_TYPE_BCM1250:
case K_SYS_SOC_TYPE_BCM1250_ALT:
chip_max_units = 3;
break;
case K_SYS_SOC_TYPE_BCM1120:
case K_SYS_SOC_TYPE_BCM1125:
case K_SYS_SOC_TYPE_BCM1125H:
case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
chip_max_units = 2;
break;
case K_SYS_SOC_TYPE_BCM1x55:
case K_SYS_SOC_TYPE_BCM1x80:
chip_max_units = 4;
break;
default:
chip_max_units = 0;
break;
}
if (chip_max_units > MAX_UNITS)
chip_max_units = MAX_UNITS;
/*
* For bringup when not using the firmware, we can pre-fill
* the MAC addresses using the environment variables
* specified in this file (or maybe from the config file?)
*/
#ifdef SBMAC_ETH0_HWADDR
if (chip_max_units > 0)
sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
#endif
#ifdef SBMAC_ETH1_HWADDR
if (chip_max_units > 1)
sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
#endif
#ifdef SBMAC_ETH2_HWADDR
if (chip_max_units > 2)
sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
#endif
#ifdef SBMAC_ETH3_HWADDR
if (chip_max_units > 3)
sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
#endif
/*
* Walk through the Ethernet controllers and find
* those who have their MAC addresses set.
*/
for (idx = 0; idx < chip_max_units; idx++) {
/*
* This is the base address of the MAC.
*/
port = A_MAC_CHANNEL_BASE(idx);
/*
* The R_MAC_ETHERNET_ADDR register will be set to some nonzero
* value for us by the firmware if we are going to use this MAC.
* If we find a zero, skip this MAC.
*/
sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
if (sbmac_orig_hwaddr[idx] == 0) {
printk(KERN_DEBUG "sbmac: not configuring MAC at "
"%lx\n", port);
continue;
}
/*
* Okay, cool. Initialize this MAC.
*/
dev = alloc_etherdev(sizeof(struct sbmac_softc));
if (!dev)
return -ENOMEM;
printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
dev->irq = UNIT_INT(idx);
dev->base_addr = port;
dev->mem_end = 0;
if (sbmac_init(dev, idx)) {
port = A_MAC_CHANNEL_BASE(idx);
__raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
free_netdev(dev);
continue;
}
dev_sbmac[idx] = dev;
}
return 0;
}
static void __exit
sbmac_cleanup_module(void)
{
struct net_device *dev;
int idx;
for (idx = 0; idx < MAX_UNITS; idx++) {
struct sbmac_softc *sc;
dev = dev_sbmac[idx];
if (!dev)
continue;
sc = netdev_priv(dev);
unregister_netdev(dev);
sbmac_uninitctx(sc);
free_netdev(dev);
}
}
module_init(sbmac_init_module);
module_exit(sbmac_cleanup_module);