mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 20:53:53 +08:00
Mainline Linux tree for various devices, only for fun :)
333b0a459c
Patch series "Reduce amount of time kswapd sleeps prematurely", v2. The series is unusual in that the first patch fixes one problem and introduces other issues that are noted in the changelog. Patch 2 makes a minor modification that is worth considering on its own but leaves the kernel in a state where it behaves badly. It's not until patch 3 that there is an improvement against baseline. This was mostly motivated by examining Chris Mason's "simoop" benchmark which puts the VM under similar pressure to HADOOP. It has been reported that the benchmark has regressed severely during the last number of releases. While I cannot reproduce all the same problems Chris experienced due to hardware limitations, there was a number of problems on a 2-socket machine with a single disk. simoop latencies 4.11.0-rc1 4.11.0-rc1 vanilla keepawake-v2 Amean p50-Read 21670074.18 ( 0.00%) 22668332.52 ( -4.61%) Amean p95-Read 25456267.64 ( 0.00%) 26738688.00 ( -5.04%) Amean p99-Read 29369064.73 ( 0.00%) 30991404.52 ( -5.52%) Amean p50-Write 1390.30 ( 0.00%) 924.91 ( 33.47%) Amean p95-Write 412901.57 ( 0.00%) 1362.62 ( 99.67%) Amean p99-Write 6668722.09 ( 0.00%) 16854.04 ( 99.75%) Amean p50-Allocation 78714.31 ( 0.00%) 74729.74 ( 5.06%) Amean p95-Allocation 175533.51 ( 0.00%) 101609.74 ( 42.11%) Amean p99-Allocation 247003.02 ( 0.00%) 125765.57 ( 49.08%) These are latencies. Read/write are threads reading fixed-size random blocks from a simulated database. The allocation latency is mmaping and faulting regions of memory. The p50, 95 and p99 reports the worst latencies for 50% of the samples, 95% and 99% respectively. For example, the report indicates that while the test was running 99% of writes completed 99.75% faster. It's worth noting that on a UMA machine that no difference in performance with simoop was observed so milage will vary. It's noted that there is a slight impact to read latencies but it's mostly due to IO scheduler decisions and offset by the large reduction in other latencies. This patch (of 3): The check in prepare_kswapd_sleep needs to match the one in balance_pgdat since the latter will return as soon as any one of the zones in the classzone is above the watermark. This is specially important for higher order allocations since balance_pgdat will typically reset the order to zero relying on compaction to create the higher order pages. Without this patch, prepare_kswapd_sleep fails to wake up kcompactd since the zone balance check fails. It was first reported against 4.9.7 that kswapd is failing to wake up kcompactd due to a mismatch in the zone balance check between balance_pgdat() and prepare_kswapd_sleep(). balance_pgdat() returns as soon as a single zone satisfies the allocation but prepare_kswapd_sleep() requires all zones to do +the same. This causes prepare_kswapd_sleep() to never succeed except in the order == 0 case and consequently, wakeup_kcompactd() is never called. For the machine that originally motivated this patch, the state of compaction from /proc/vmstat looked this way after a day and a half +of uptime: compact_migrate_scanned 240496 compact_free_scanned 76238632 compact_isolated 123472 compact_stall 1791 compact_fail 29 compact_success 1762 compact_daemon_wake 0 After applying the patch and about 10 hours of uptime the state looks like this: compact_migrate_scanned 59927299 compact_free_scanned 2021075136 compact_isolated 640926 compact_stall 4 compact_fail 2 compact_success 2 compact_daemon_wake 5160 Further notes from Mel that motivated him to pick this patch up and resend it; It was observed for the simoop workload (pressures the VM similar to HADOOP) that kswapd was failing to keep ahead of direct reclaim. The investigation noted that there was a need to rationalise kswapd decisions to reclaim with kswapd decisions to sleep. With this patch on a 2-socket box, there was a 49% reduction in direct reclaim scanning. However, the impact otherwise is extremely negative. Kswapd reclaim efficiency dropped from 98% to 76%. simoop has three latency-related metrics for read, write and allocation (an anonymous mmap and fault). 4.11.0-rc1 4.11.0-rc1 vanilla fixcheck-v2 Amean p50-Read 21670074.18 ( 0.00%) 20464344.18 ( 5.56%) Amean p95-Read 25456267.64 ( 0.00%) 25721423.64 ( -1.04%) Amean p99-Read 29369064.73 ( 0.00%) 30174230.76 ( -2.74%) Amean p50-Write 1390.30 ( 0.00%) 1395.28 ( -0.36%) Amean p95-Write 412901.57 ( 0.00%) 37737.74 ( 90.86%) Amean p99-Write 6668722.09 ( 0.00%) 666489.04 ( 90.01%) Amean p50-Allocation 78714.31 ( 0.00%) 86286.22 ( -9.62%) Amean p95-Allocation 175533.51 ( 0.00%) 351812.27 (-100.42%) Amean p99-Allocation 247003.02 ( 0.00%) 6291171.56 (-2447.00%) Of greater concern is that the patch causes swapping and page writes from kswapd context rose from 0 pages to 4189753 pages during the hour the workload ran for. By and large, the patch has very bad behaviour but easily missed as the impact on a UMA machine is negligible. This patch is included with the data in case a bisection leads to this area. This patch is also a pre-requisite for the rest of the series. Link: http://lkml.kernel.org/r/20170309075657.25121-2-mgorman@techsingularity.net Signed-off-by: Shantanu Goel <sgoel01@yahoo.com> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
firmware | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ This file was moved to Documentation/admin-guide/README.rst Please notice that there are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.