2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/kernel/power/swap.c
Linus Torvalds 6453dbdda3 Power management material for v4.8-rc1
- Rework the cpufreq governor interface to make it more straightforward
    and modify the conservative governor to avoid using transition
    notifications (Rafael Wysocki).
 
  - Rework the handling of frequency tables by the cpufreq core to make
    it more efficient (Viresh Kumar).
 
  - Modify the schedutil governor to reduce the number of wakeups it
    causes to occur in cases when the CPU frequency doesn't need to be
    changed (Steve Muckle, Viresh Kumar).
 
  - Fix some minor issues and clean up code in the cpufreq core and
    governors (Rafael Wysocki, Viresh Kumar).
 
  - Add Intel Broxton support to the intel_pstate driver (Srinivas
    Pandruvada).
 
  - Fix problems related to the config TDP feature and to the validity
    of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
    Srinivas Pandruvada).
 
  - Make intel_pstate update the cpu_frequency tracepoint even if
    the frequency doesn't change to avoid confusing powertop (Rafael
    Wysocki).
 
  - Clean up the usage of __init/__initdata in intel_pstate, mark some
    of its internal variables as __read_mostly and drop an unused
    structure element from it (Jisheng Zhang, Carsten Emde).
 
  - Clean up the usage of some duplicate MSR symbols in intel_pstate
    and turbostat (Srinivas Pandruvada).
 
  - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
    Adiga, Viresh Kumar, Ben Dooks).
 
  - Fix a regression (introduced during the 4.5 cycle) in the
    pcc-cpufreq driver by reverting the problematic commit (Andreas
    Herrmann).
 
  - Add support for Intel Denverton to intel_idle, clean up Broxton
    support in it and make it explicitly non-modular (Jacob Pan,
    Jan Beulich, Paul Gortmaker).
 
  - Add support for Denverton and Ivy Bridge server to the Intel RAPL
    power capping driver and make it more careful about the handing
    of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
 
  - Fix resume from hibernation on x86-64 by making the CPU offline
    during resume avoid using MONITOR/MWAIT in the "play dead" loop
    which may lead to an inadvertent "revival" of a "dead" CPU and
    a page fault leading to a kernel crash from it (Rafael Wysocki).
 
  - Make memory management during resume from hibernation more
    straightforward (Rafael Wysocki).
 
  - Add debug features that should help to detect problems related
    to hibernation and resume from it (Rafael Wysocki, Chen Yu).
 
  - Clean up hibernation core somewhat (Rafael Wysocki).
 
  - Prevent KASAN from instrumenting the hibernation core which leads
    to large numbers of false-positives from it (James Morse).
 
  - Prevent PM (hibernate and suspend) notifiers from being called
    during the cleanup phase if they have not been called during the
    corresponding preparation phase which is possible if one of the
    other notifiers returns an error at that time (Lianwei Wang).
 
  - Improve suspend-related debug printout in the tasks freezer and
    clean up suspend-related console handling (Roger Lu, Borislav
    Petkov).
 
  - Update the AnalyzeSuspend script in the kernel sources to
    version 4.2 (Todd Brandt).
 
  - Modify the generic power domains framework to make it handle
    system suspend/resume better (Ulf Hansson).
 
  - Make the runtime PM framework avoid resuming devices synchronously
    when user space changes the runtime PM settings for them and
    improve its error reporting (Rafael Wysocki, Linus Walleij).
 
  - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
    and in the core, make some devfreq code explicitly non-modular and
    change some of it into tristate (Bartlomiej Zolnierkiewicz,
    Peter Chen, Paul Gortmaker).
 
  - Add DT support to the generic PM clocks management code and make
    it export some more symbols (Jon Hunter, Paul Gortmaker).
 
  - Make the PCI PM core code slightly more robust against possible
    driver errors (Andy Shevchenko).
 
  - Make it possible to change DESTDIR and PREFIX in turbostat
    (Andy Shevchenko).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
 5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
 oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
 jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
 bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
 UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
 ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
 FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
 SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
 8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
 xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
 JU1Cmumfdy2jJluT8xsR
 =uVGz
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael  Wysocki:
 "Again, the majority of changes go into the cpufreq subsystem, but
  there are no big features this time.  The cpufreq changes that stand
  out somewhat are the governor interface rework and improvements
  related to the handling of frequency tables.  Apart from those, there
  are fixes and new device/CPU IDs in drivers, cleanups and an
  improvement of the new schedutil governor.

  Next, there are some changes in the hibernation core, including a fix
  for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
  during resume from hibernation, a few core improvements related to
  memory management during resume, a couple of additional debug features
  and cleanups.

  Finally, we have some fixes and cleanups in the devfreq subsystem,
  generic power domains framework improvements related to system
  suspend/resume, support for some new chips in intel_idle and in the
  power capping RAPL driver, a new version of the AnalyzeSuspend utility
  and some assorted fixes and cleanups.

  Specifics:

   - Rework the cpufreq governor interface to make it more
     straightforward and modify the conservative governor to avoid using
     transition notifications (Rafael Wysocki).

   - Rework the handling of frequency tables by the cpufreq core to make
     it more efficient (Viresh Kumar).

   - Modify the schedutil governor to reduce the number of wakeups it
     causes to occur in cases when the CPU frequency doesn't need to be
     changed (Steve Muckle, Viresh Kumar).

   - Fix some minor issues and clean up code in the cpufreq core and
     governors (Rafael Wysocki, Viresh Kumar).

   - Add Intel Broxton support to the intel_pstate driver (Srinivas
     Pandruvada).

   - Fix problems related to the config TDP feature and to the validity
     of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
     Srinivas Pandruvada).

   - Make intel_pstate update the cpu_frequency tracepoint even if the
     frequency doesn't change to avoid confusing powertop (Rafael
     Wysocki).

   - Clean up the usage of __init/__initdata in intel_pstate, mark some
     of its internal variables as __read_mostly and drop an unused
     structure element from it (Jisheng Zhang, Carsten Emde).

   - Clean up the usage of some duplicate MSR symbols in intel_pstate
     and turbostat (Srinivas Pandruvada).

   - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
     Adiga, Viresh Kumar, Ben Dooks).

   - Fix a regression (introduced during the 4.5 cycle) in the
     pcc-cpufreq driver by reverting the problematic commit (Andreas
     Herrmann).

   - Add support for Intel Denverton to intel_idle, clean up Broxton
     support in it and make it explicitly non-modular (Jacob Pan, Jan
     Beulich, Paul Gortmaker).

   - Add support for Denverton and Ivy Bridge server to the Intel RAPL
     power capping driver and make it more careful about the handing of
     MSRs that may not be present (Jacob Pan, Xiaolong Wang).

   - Fix resume from hibernation on x86-64 by making the CPU offline
     during resume avoid using MONITOR/MWAIT in the "play dead" loop
     which may lead to an inadvertent "revival" of a "dead" CPU and a
     page fault leading to a kernel crash from it (Rafael Wysocki).

   - Make memory management during resume from hibernation more
     straightforward (Rafael Wysocki).

   - Add debug features that should help to detect problems related to
     hibernation and resume from it (Rafael Wysocki, Chen Yu).

   - Clean up hibernation core somewhat (Rafael Wysocki).

   - Prevent KASAN from instrumenting the hibernation core which leads
     to large numbers of false-positives from it (James Morse).

   - Prevent PM (hibernate and suspend) notifiers from being called
     during the cleanup phase if they have not been called during the
     corresponding preparation phase which is possible if one of the
     other notifiers returns an error at that time (Lianwei Wang).

   - Improve suspend-related debug printout in the tasks freezer and
     clean up suspend-related console handling (Roger Lu, Borislav
     Petkov).

   - Update the AnalyzeSuspend script in the kernel sources to version
     4.2 (Todd Brandt).

   - Modify the generic power domains framework to make it handle system
     suspend/resume better (Ulf Hansson).

   - Make the runtime PM framework avoid resuming devices synchronously
     when user space changes the runtime PM settings for them and
     improve its error reporting (Rafael Wysocki, Linus Walleij).

   - Fix error paths in devfreq drivers (exynos, exynos-ppmu,
     exynos-bus) and in the core, make some devfreq code explicitly
     non-modular and change some of it into tristate (Bartlomiej
     Zolnierkiewicz, Peter Chen, Paul Gortmaker).

   - Add DT support to the generic PM clocks management code and make it
     export some more symbols (Jon Hunter, Paul Gortmaker).

   - Make the PCI PM core code slightly more robust against possible
     driver errors (Andy Shevchenko).

   - Make it possible to change DESTDIR and PREFIX in turbostat (Andy
     Shevchenko)"

* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
  Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
  PM / hibernate: Introduce test_resume mode for hibernation
  cpufreq: export cpufreq_driver_resolve_freq()
  cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
  PCI / PM: check all fields in pci_set_platform_pm()
  cpufreq: acpi-cpufreq: use cached frequency mapping when possible
  cpufreq: schedutil: map raw required frequency to driver frequency
  cpufreq: add cpufreq_driver_resolve_freq()
  cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
  intel_pstate: Update cpu_frequency tracepoint every time
  cpufreq: intel_pstate: clean remnant struct element
  PM / tools: scripts: AnalyzeSuspend v4.2
  x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
  cpufreq: powernv: Replacing pstate_id with frequency table index
  intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
  PM / hibernate: Image data protection during restoration
  PM / hibernate: Add missing braces in __register_nosave_region()
  PM / hibernate: Clean up comments in snapshot.c
  PM / hibernate: Clean up function headers in snapshot.c
  PM / hibernate: Add missing braces in hibernate_setup()
  ...
2016-07-26 17:29:07 -07:00

1621 lines
38 KiB
C

/*
* linux/kernel/power/swap.c
*
* This file provides functions for reading the suspend image from
* and writing it to a swap partition.
*
* Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
*
* This file is released under the GPLv2.
*
*/
#include <linux/module.h>
#include <linux/file.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/lzo.h>
#include <linux/vmalloc.h>
#include <linux/cpumask.h>
#include <linux/atomic.h>
#include <linux/kthread.h>
#include <linux/crc32.h>
#include <linux/ktime.h>
#include "power.h"
#define HIBERNATE_SIG "S1SUSPEND"
/*
* When reading an {un,}compressed image, we may restore pages in place,
* in which case some architectures need these pages cleaning before they
* can be executed. We don't know which pages these may be, so clean the lot.
*/
static bool clean_pages_on_read;
static bool clean_pages_on_decompress;
/*
* The swap map is a data structure used for keeping track of each page
* written to a swap partition. It consists of many swap_map_page
* structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
* These structures are stored on the swap and linked together with the
* help of the .next_swap member.
*
* The swap map is created during suspend. The swap map pages are
* allocated and populated one at a time, so we only need one memory
* page to set up the entire structure.
*
* During resume we pick up all swap_map_page structures into a list.
*/
#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
/*
* Number of free pages that are not high.
*/
static inline unsigned long low_free_pages(void)
{
return nr_free_pages() - nr_free_highpages();
}
/*
* Number of pages required to be kept free while writing the image. Always
* half of all available low pages before the writing starts.
*/
static inline unsigned long reqd_free_pages(void)
{
return low_free_pages() / 2;
}
struct swap_map_page {
sector_t entries[MAP_PAGE_ENTRIES];
sector_t next_swap;
};
struct swap_map_page_list {
struct swap_map_page *map;
struct swap_map_page_list *next;
};
/**
* The swap_map_handle structure is used for handling swap in
* a file-alike way
*/
struct swap_map_handle {
struct swap_map_page *cur;
struct swap_map_page_list *maps;
sector_t cur_swap;
sector_t first_sector;
unsigned int k;
unsigned long reqd_free_pages;
u32 crc32;
};
struct swsusp_header {
char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
sizeof(u32)];
u32 crc32;
sector_t image;
unsigned int flags; /* Flags to pass to the "boot" kernel */
char orig_sig[10];
char sig[10];
} __packed;
static struct swsusp_header *swsusp_header;
/**
* The following functions are used for tracing the allocated
* swap pages, so that they can be freed in case of an error.
*/
struct swsusp_extent {
struct rb_node node;
unsigned long start;
unsigned long end;
};
static struct rb_root swsusp_extents = RB_ROOT;
static int swsusp_extents_insert(unsigned long swap_offset)
{
struct rb_node **new = &(swsusp_extents.rb_node);
struct rb_node *parent = NULL;
struct swsusp_extent *ext;
/* Figure out where to put the new node */
while (*new) {
ext = rb_entry(*new, struct swsusp_extent, node);
parent = *new;
if (swap_offset < ext->start) {
/* Try to merge */
if (swap_offset == ext->start - 1) {
ext->start--;
return 0;
}
new = &((*new)->rb_left);
} else if (swap_offset > ext->end) {
/* Try to merge */
if (swap_offset == ext->end + 1) {
ext->end++;
return 0;
}
new = &((*new)->rb_right);
} else {
/* It already is in the tree */
return -EINVAL;
}
}
/* Add the new node and rebalance the tree. */
ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
if (!ext)
return -ENOMEM;
ext->start = swap_offset;
ext->end = swap_offset;
rb_link_node(&ext->node, parent, new);
rb_insert_color(&ext->node, &swsusp_extents);
return 0;
}
/**
* alloc_swapdev_block - allocate a swap page and register that it has
* been allocated, so that it can be freed in case of an error.
*/
sector_t alloc_swapdev_block(int swap)
{
unsigned long offset;
offset = swp_offset(get_swap_page_of_type(swap));
if (offset) {
if (swsusp_extents_insert(offset))
swap_free(swp_entry(swap, offset));
else
return swapdev_block(swap, offset);
}
return 0;
}
/**
* free_all_swap_pages - free swap pages allocated for saving image data.
* It also frees the extents used to register which swap entries had been
* allocated.
*/
void free_all_swap_pages(int swap)
{
struct rb_node *node;
while ((node = swsusp_extents.rb_node)) {
struct swsusp_extent *ext;
unsigned long offset;
ext = container_of(node, struct swsusp_extent, node);
rb_erase(node, &swsusp_extents);
for (offset = ext->start; offset <= ext->end; offset++)
swap_free(swp_entry(swap, offset));
kfree(ext);
}
}
int swsusp_swap_in_use(void)
{
return (swsusp_extents.rb_node != NULL);
}
/*
* General things
*/
static unsigned short root_swap = 0xffff;
static struct block_device *hib_resume_bdev;
struct hib_bio_batch {
atomic_t count;
wait_queue_head_t wait;
int error;
};
static void hib_init_batch(struct hib_bio_batch *hb)
{
atomic_set(&hb->count, 0);
init_waitqueue_head(&hb->wait);
hb->error = 0;
}
static void hib_end_io(struct bio *bio)
{
struct hib_bio_batch *hb = bio->bi_private;
struct page *page = bio->bi_io_vec[0].bv_page;
if (bio->bi_error) {
printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
imajor(bio->bi_bdev->bd_inode),
iminor(bio->bi_bdev->bd_inode),
(unsigned long long)bio->bi_iter.bi_sector);
}
if (bio_data_dir(bio) == WRITE)
put_page(page);
else if (clean_pages_on_read)
flush_icache_range((unsigned long)page_address(page),
(unsigned long)page_address(page) + PAGE_SIZE);
if (bio->bi_error && !hb->error)
hb->error = bio->bi_error;
if (atomic_dec_and_test(&hb->count))
wake_up(&hb->wait);
bio_put(bio);
}
static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
struct hib_bio_batch *hb)
{
struct page *page = virt_to_page(addr);
struct bio *bio;
int error = 0;
bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
bio->bi_bdev = hib_resume_bdev;
bio_set_op_attrs(bio, op, op_flags);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
(unsigned long long)bio->bi_iter.bi_sector);
bio_put(bio);
return -EFAULT;
}
if (hb) {
bio->bi_end_io = hib_end_io;
bio->bi_private = hb;
atomic_inc(&hb->count);
submit_bio(bio);
} else {
error = submit_bio_wait(bio);
bio_put(bio);
}
return error;
}
static int hib_wait_io(struct hib_bio_batch *hb)
{
wait_event(hb->wait, atomic_read(&hb->count) == 0);
return hb->error;
}
/*
* Saving part
*/
static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
{
int error;
hib_submit_io(REQ_OP_READ, READ_SYNC, swsusp_resume_block,
swsusp_header, NULL);
if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
!memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
swsusp_header->image = handle->first_sector;
swsusp_header->flags = flags;
if (flags & SF_CRC32_MODE)
swsusp_header->crc32 = handle->crc32;
error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
swsusp_resume_block, swsusp_header, NULL);
} else {
printk(KERN_ERR "PM: Swap header not found!\n");
error = -ENODEV;
}
return error;
}
/**
* swsusp_swap_check - check if the resume device is a swap device
* and get its index (if so)
*
* This is called before saving image
*/
static int swsusp_swap_check(void)
{
int res;
res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
&hib_resume_bdev);
if (res < 0)
return res;
root_swap = res;
res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
if (res)
return res;
res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
if (res < 0)
blkdev_put(hib_resume_bdev, FMODE_WRITE);
/*
* Update the resume device to the one actually used,
* so the test_resume mode can use it in case it is
* invoked from hibernate() to test the snapshot.
*/
swsusp_resume_device = hib_resume_bdev->bd_dev;
return res;
}
/**
* write_page - Write one page to given swap location.
* @buf: Address we're writing.
* @offset: Offset of the swap page we're writing to.
* @hb: bio completion batch
*/
static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
{
void *src;
int ret;
if (!offset)
return -ENOSPC;
if (hb) {
src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
__GFP_NORETRY);
if (src) {
copy_page(src, buf);
} else {
ret = hib_wait_io(hb); /* Free pages */
if (ret)
return ret;
src = (void *)__get_free_page(__GFP_RECLAIM |
__GFP_NOWARN |
__GFP_NORETRY);
if (src) {
copy_page(src, buf);
} else {
WARN_ON_ONCE(1);
hb = NULL; /* Go synchronous */
src = buf;
}
}
} else {
src = buf;
}
return hib_submit_io(REQ_OP_WRITE, WRITE_SYNC, offset, src, hb);
}
static void release_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
}
static int get_swap_writer(struct swap_map_handle *handle)
{
int ret;
ret = swsusp_swap_check();
if (ret) {
if (ret != -ENOSPC)
printk(KERN_ERR "PM: Cannot find swap device, try "
"swapon -a.\n");
return ret;
}
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
if (!handle->cur) {
ret = -ENOMEM;
goto err_close;
}
handle->cur_swap = alloc_swapdev_block(root_swap);
if (!handle->cur_swap) {
ret = -ENOSPC;
goto err_rel;
}
handle->k = 0;
handle->reqd_free_pages = reqd_free_pages();
handle->first_sector = handle->cur_swap;
return 0;
err_rel:
release_swap_writer(handle);
err_close:
swsusp_close(FMODE_WRITE);
return ret;
}
static int swap_write_page(struct swap_map_handle *handle, void *buf,
struct hib_bio_batch *hb)
{
int error = 0;
sector_t offset;
if (!handle->cur)
return -EINVAL;
offset = alloc_swapdev_block(root_swap);
error = write_page(buf, offset, hb);
if (error)
return error;
handle->cur->entries[handle->k++] = offset;
if (handle->k >= MAP_PAGE_ENTRIES) {
offset = alloc_swapdev_block(root_swap);
if (!offset)
return -ENOSPC;
handle->cur->next_swap = offset;
error = write_page(handle->cur, handle->cur_swap, hb);
if (error)
goto out;
clear_page(handle->cur);
handle->cur_swap = offset;
handle->k = 0;
if (hb && low_free_pages() <= handle->reqd_free_pages) {
error = hib_wait_io(hb);
if (error)
goto out;
/*
* Recalculate the number of required free pages, to
* make sure we never take more than half.
*/
handle->reqd_free_pages = reqd_free_pages();
}
}
out:
return error;
}
static int flush_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur && handle->cur_swap)
return write_page(handle->cur, handle->cur_swap, NULL);
else
return -EINVAL;
}
static int swap_writer_finish(struct swap_map_handle *handle,
unsigned int flags, int error)
{
if (!error) {
flush_swap_writer(handle);
printk(KERN_INFO "PM: S");
error = mark_swapfiles(handle, flags);
printk("|\n");
}
if (error)
free_all_swap_pages(root_swap);
release_swap_writer(handle);
swsusp_close(FMODE_WRITE);
return error;
}
/* We need to remember how much compressed data we need to read. */
#define LZO_HEADER sizeof(size_t)
/* Number of pages/bytes we'll compress at one time. */
#define LZO_UNC_PAGES 32
#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
/* Number of pages/bytes we need for compressed data (worst case). */
#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
LZO_HEADER, PAGE_SIZE)
#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
/* Maximum number of threads for compression/decompression. */
#define LZO_THREADS 3
/* Minimum/maximum number of pages for read buffering. */
#define LZO_MIN_RD_PAGES 1024
#define LZO_MAX_RD_PAGES 8192
/**
* save_image - save the suspend image data
*/
static int save_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_write)
{
unsigned int m;
int ret;
int nr_pages;
int err2;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
hib_init_batch(&hb);
printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
while (1) {
ret = snapshot_read_next(snapshot);
if (ret <= 0)
break;
ret = swap_write_page(handle, data_of(*snapshot), &hb);
if (ret)
break;
if (!(nr_pages % m))
printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret)
printk(KERN_INFO "PM: Image saving done.\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
return ret;
}
/**
* Structure used for CRC32.
*/
struct crc_data {
struct task_struct *thr; /* thread */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
unsigned run_threads; /* nr current threads */
wait_queue_head_t go; /* start crc update */
wait_queue_head_t done; /* crc update done */
u32 *crc32; /* points to handle's crc32 */
size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
unsigned char *unc[LZO_THREADS]; /* uncompressed data */
};
/**
* CRC32 update function that runs in its own thread.
*/
static int crc32_threadfn(void *data)
{
struct crc_data *d = data;
unsigned i;
while (1) {
wait_event(d->go, atomic_read(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
atomic_set(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
for (i = 0; i < d->run_threads; i++)
*d->crc32 = crc32_le(*d->crc32,
d->unc[i], *d->unc_len[i]);
atomic_set(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/**
* Structure used for LZO data compression.
*/
struct cmp_data {
struct task_struct *thr; /* thread */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
int ret; /* return code */
wait_queue_head_t go; /* start compression */
wait_queue_head_t done; /* compression done */
size_t unc_len; /* uncompressed length */
size_t cmp_len; /* compressed length */
unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
};
/**
* Compression function that runs in its own thread.
*/
static int lzo_compress_threadfn(void *data)
{
struct cmp_data *d = data;
while (1) {
wait_event(d->go, atomic_read(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
d->ret = -1;
atomic_set(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
d->ret = lzo1x_1_compress(d->unc, d->unc_len,
d->cmp + LZO_HEADER, &d->cmp_len,
d->wrk);
atomic_set(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/**
* save_image_lzo - Save the suspend image data compressed with LZO.
* @handle: Swap map handle to use for saving the image.
* @snapshot: Image to read data from.
* @nr_to_write: Number of pages to save.
*/
static int save_image_lzo(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_write)
{
unsigned int m;
int ret = 0;
int nr_pages;
int err2;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
size_t off;
unsigned thr, run_threads, nr_threads;
unsigned char *page = NULL;
struct cmp_data *data = NULL;
struct crc_data *crc = NULL;
hib_init_batch(&hb);
/*
* We'll limit the number of threads for compression to limit memory
* footprint.
*/
nr_threads = num_online_cpus() - 1;
nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
if (!page) {
printk(KERN_ERR "PM: Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
printk(KERN_ERR "PM: Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
for (thr = 0; thr < nr_threads; thr++)
memset(&data[thr], 0, offsetof(struct cmp_data, go));
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
printk(KERN_ERR "PM: Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
memset(crc, 0, offsetof(struct crc_data, go));
/*
* Start the compression threads.
*/
for (thr = 0; thr < nr_threads; thr++) {
init_waitqueue_head(&data[thr].go);
init_waitqueue_head(&data[thr].done);
data[thr].thr = kthread_run(lzo_compress_threadfn,
&data[thr],
"image_compress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
printk(KERN_ERR
"PM: Cannot start compression threads\n");
ret = -ENOMEM;
goto out_clean;
}
}
/*
* Start the CRC32 thread.
*/
init_waitqueue_head(&crc->go);
init_waitqueue_head(&crc->done);
handle->crc32 = 0;
crc->crc32 = &handle->crc32;
for (thr = 0; thr < nr_threads; thr++) {
crc->unc[thr] = data[thr].unc;
crc->unc_len[thr] = &data[thr].unc_len;
}
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
/*
* Adjust the number of required free pages after all allocations have
* been done. We don't want to run out of pages when writing.
*/
handle->reqd_free_pages = reqd_free_pages();
printk(KERN_INFO
"PM: Using %u thread(s) for compression.\n"
"PM: Compressing and saving image data (%u pages)...\n",
nr_threads, nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
for (;;) {
for (thr = 0; thr < nr_threads; thr++) {
for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
ret = snapshot_read_next(snapshot);
if (ret < 0)
goto out_finish;
if (!ret)
break;
memcpy(data[thr].unc + off,
data_of(*snapshot), PAGE_SIZE);
if (!(nr_pages % m))
printk(KERN_INFO
"PM: Image saving progress: "
"%3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
if (!off)
break;
data[thr].unc_len = off;
atomic_set(&data[thr].ready, 1);
wake_up(&data[thr].go);
}
if (!thr)
break;
crc->run_threads = thr;
atomic_set(&crc->ready, 1);
wake_up(&crc->go);
for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
wait_event(data[thr].done,
atomic_read(&data[thr].stop));
atomic_set(&data[thr].stop, 0);
ret = data[thr].ret;
if (ret < 0) {
printk(KERN_ERR "PM: LZO compression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(data[thr].unc_len))) {
printk(KERN_ERR
"PM: Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
*(size_t *)data[thr].cmp = data[thr].cmp_len;
/*
* Given we are writing one page at a time to disk, we
* copy that much from the buffer, although the last
* bit will likely be smaller than full page. This is
* OK - we saved the length of the compressed data, so
* any garbage at the end will be discarded when we
* read it.
*/
for (off = 0;
off < LZO_HEADER + data[thr].cmp_len;
off += PAGE_SIZE) {
memcpy(page, data[thr].cmp + off, PAGE_SIZE);
ret = swap_write_page(handle, page, &hb);
if (ret)
goto out_finish;
}
}
wait_event(crc->done, atomic_read(&crc->stop));
atomic_set(&crc->stop, 0);
}
out_finish:
err2 = hib_wait_io(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret)
printk(KERN_INFO "PM: Image saving done.\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
out_clean:
if (crc) {
if (crc->thr)
kthread_stop(crc->thr);
kfree(crc);
}
if (data) {
for (thr = 0; thr < nr_threads; thr++)
if (data[thr].thr)
kthread_stop(data[thr].thr);
vfree(data);
}
if (page) free_page((unsigned long)page);
return ret;
}
/**
* enough_swap - Make sure we have enough swap to save the image.
*
* Returns TRUE or FALSE after checking the total amount of swap
* space avaiable from the resume partition.
*/
static int enough_swap(unsigned int nr_pages, unsigned int flags)
{
unsigned int free_swap = count_swap_pages(root_swap, 1);
unsigned int required;
pr_debug("PM: Free swap pages: %u\n", free_swap);
required = PAGES_FOR_IO + nr_pages;
return free_swap > required;
}
/**
* swsusp_write - Write entire image and metadata.
* @flags: flags to pass to the "boot" kernel in the image header
*
* It is important _NOT_ to umount filesystems at this point. We want
* them synced (in case something goes wrong) but we DO not want to mark
* filesystem clean: it is not. (And it does not matter, if we resume
* correctly, we'll mark system clean, anyway.)
*/
int swsusp_write(unsigned int flags)
{
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
unsigned long pages;
int error;
pages = snapshot_get_image_size();
error = get_swap_writer(&handle);
if (error) {
printk(KERN_ERR "PM: Cannot get swap writer\n");
return error;
}
if (flags & SF_NOCOMPRESS_MODE) {
if (!enough_swap(pages, flags)) {
printk(KERN_ERR "PM: Not enough free swap\n");
error = -ENOSPC;
goto out_finish;
}
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_read_next(&snapshot);
if (error < PAGE_SIZE) {
if (error >= 0)
error = -EFAULT;
goto out_finish;
}
header = (struct swsusp_info *)data_of(snapshot);
error = swap_write_page(&handle, header, NULL);
if (!error) {
error = (flags & SF_NOCOMPRESS_MODE) ?
save_image(&handle, &snapshot, pages - 1) :
save_image_lzo(&handle, &snapshot, pages - 1);
}
out_finish:
error = swap_writer_finish(&handle, flags, error);
return error;
}
/**
* The following functions allow us to read data using a swap map
* in a file-alike way
*/
static void release_swap_reader(struct swap_map_handle *handle)
{
struct swap_map_page_list *tmp;
while (handle->maps) {
if (handle->maps->map)
free_page((unsigned long)handle->maps->map);
tmp = handle->maps;
handle->maps = handle->maps->next;
kfree(tmp);
}
handle->cur = NULL;
}
static int get_swap_reader(struct swap_map_handle *handle,
unsigned int *flags_p)
{
int error;
struct swap_map_page_list *tmp, *last;
sector_t offset;
*flags_p = swsusp_header->flags;
if (!swsusp_header->image) /* how can this happen? */
return -EINVAL;
handle->cur = NULL;
last = handle->maps = NULL;
offset = swsusp_header->image;
while (offset) {
tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
if (!tmp) {
release_swap_reader(handle);
return -ENOMEM;
}
memset(tmp, 0, sizeof(*tmp));
if (!handle->maps)
handle->maps = tmp;
if (last)
last->next = tmp;
last = tmp;
tmp->map = (struct swap_map_page *)
__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
if (!tmp->map) {
release_swap_reader(handle);
return -ENOMEM;
}
error = hib_submit_io(REQ_OP_READ, READ_SYNC, offset,
tmp->map, NULL);
if (error) {
release_swap_reader(handle);
return error;
}
offset = tmp->map->next_swap;
}
handle->k = 0;
handle->cur = handle->maps->map;
return 0;
}
static int swap_read_page(struct swap_map_handle *handle, void *buf,
struct hib_bio_batch *hb)
{
sector_t offset;
int error;
struct swap_map_page_list *tmp;
if (!handle->cur)
return -EINVAL;
offset = handle->cur->entries[handle->k];
if (!offset)
return -EFAULT;
error = hib_submit_io(REQ_OP_READ, READ_SYNC, offset, buf, hb);
if (error)
return error;
if (++handle->k >= MAP_PAGE_ENTRIES) {
handle->k = 0;
free_page((unsigned long)handle->maps->map);
tmp = handle->maps;
handle->maps = handle->maps->next;
kfree(tmp);
if (!handle->maps)
release_swap_reader(handle);
else
handle->cur = handle->maps->map;
}
return error;
}
static int swap_reader_finish(struct swap_map_handle *handle)
{
release_swap_reader(handle);
return 0;
}
/**
* load_image - load the image using the swap map handle
* @handle and the snapshot handle @snapshot
* (assume there are @nr_pages pages to load)
*/
static int load_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_read)
{
unsigned int m;
int ret = 0;
ktime_t start;
ktime_t stop;
struct hib_bio_batch hb;
int err2;
unsigned nr_pages;
hib_init_batch(&hb);
clean_pages_on_read = true;
printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
for ( ; ; ) {
ret = snapshot_write_next(snapshot);
if (ret <= 0)
break;
ret = swap_read_page(handle, data_of(*snapshot), &hb);
if (ret)
break;
if (snapshot->sync_read)
ret = hib_wait_io(&hb);
if (ret)
break;
if (!(nr_pages % m))
printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret) {
printk(KERN_INFO "PM: Image loading done.\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
}
swsusp_show_speed(start, stop, nr_to_read, "Read");
return ret;
}
/**
* Structure used for LZO data decompression.
*/
struct dec_data {
struct task_struct *thr; /* thread */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
int ret; /* return code */
wait_queue_head_t go; /* start decompression */
wait_queue_head_t done; /* decompression done */
size_t unc_len; /* uncompressed length */
size_t cmp_len; /* compressed length */
unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
};
/**
* Deompression function that runs in its own thread.
*/
static int lzo_decompress_threadfn(void *data)
{
struct dec_data *d = data;
while (1) {
wait_event(d->go, atomic_read(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
d->ret = -1;
atomic_set(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
d->unc_len = LZO_UNC_SIZE;
d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
d->unc, &d->unc_len);
if (clean_pages_on_decompress)
flush_icache_range((unsigned long)d->unc,
(unsigned long)d->unc + d->unc_len);
atomic_set(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/**
* load_image_lzo - Load compressed image data and decompress them with LZO.
* @handle: Swap map handle to use for loading data.
* @snapshot: Image to copy uncompressed data into.
* @nr_to_read: Number of pages to load.
*/
static int load_image_lzo(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_read)
{
unsigned int m;
int ret = 0;
int eof = 0;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
unsigned nr_pages;
size_t off;
unsigned i, thr, run_threads, nr_threads;
unsigned ring = 0, pg = 0, ring_size = 0,
have = 0, want, need, asked = 0;
unsigned long read_pages = 0;
unsigned char **page = NULL;
struct dec_data *data = NULL;
struct crc_data *crc = NULL;
hib_init_batch(&hb);
/*
* We'll limit the number of threads for decompression to limit memory
* footprint.
*/
nr_threads = num_online_cpus() - 1;
nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
if (!page) {
printk(KERN_ERR "PM: Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
printk(KERN_ERR "PM: Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
for (thr = 0; thr < nr_threads; thr++)
memset(&data[thr], 0, offsetof(struct dec_data, go));
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
printk(KERN_ERR "PM: Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
memset(crc, 0, offsetof(struct crc_data, go));
clean_pages_on_decompress = true;
/*
* Start the decompression threads.
*/
for (thr = 0; thr < nr_threads; thr++) {
init_waitqueue_head(&data[thr].go);
init_waitqueue_head(&data[thr].done);
data[thr].thr = kthread_run(lzo_decompress_threadfn,
&data[thr],
"image_decompress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
printk(KERN_ERR
"PM: Cannot start decompression threads\n");
ret = -ENOMEM;
goto out_clean;
}
}
/*
* Start the CRC32 thread.
*/
init_waitqueue_head(&crc->go);
init_waitqueue_head(&crc->done);
handle->crc32 = 0;
crc->crc32 = &handle->crc32;
for (thr = 0; thr < nr_threads; thr++) {
crc->unc[thr] = data[thr].unc;
crc->unc_len[thr] = &data[thr].unc_len;
}
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
/*
* Set the number of pages for read buffering.
* This is complete guesswork, because we'll only know the real
* picture once prepare_image() is called, which is much later on
* during the image load phase. We'll assume the worst case and
* say that none of the image pages are from high memory.
*/
if (low_free_pages() > snapshot_get_image_size())
read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
for (i = 0; i < read_pages; i++) {
page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
__GFP_RECLAIM | __GFP_HIGH :
__GFP_RECLAIM | __GFP_NOWARN |
__GFP_NORETRY);
if (!page[i]) {
if (i < LZO_CMP_PAGES) {
ring_size = i;
printk(KERN_ERR
"PM: Failed to allocate LZO pages\n");
ret = -ENOMEM;
goto out_clean;
} else {
break;
}
}
}
want = ring_size = i;
printk(KERN_INFO
"PM: Using %u thread(s) for decompression.\n"
"PM: Loading and decompressing image data (%u pages)...\n",
nr_threads, nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
ret = snapshot_write_next(snapshot);
if (ret <= 0)
goto out_finish;
for(;;) {
for (i = 0; !eof && i < want; i++) {
ret = swap_read_page(handle, page[ring], &hb);
if (ret) {
/*
* On real read error, finish. On end of data,
* set EOF flag and just exit the read loop.
*/
if (handle->cur &&
handle->cur->entries[handle->k]) {
goto out_finish;
} else {
eof = 1;
break;
}
}
if (++ring >= ring_size)
ring = 0;
}
asked += i;
want -= i;
/*
* We are out of data, wait for some more.
*/
if (!have) {
if (!asked)
break;
ret = hib_wait_io(&hb);
if (ret)
goto out_finish;
have += asked;
asked = 0;
if (eof)
eof = 2;
}
if (crc->run_threads) {
wait_event(crc->done, atomic_read(&crc->stop));
atomic_set(&crc->stop, 0);
crc->run_threads = 0;
}
for (thr = 0; have && thr < nr_threads; thr++) {
data[thr].cmp_len = *(size_t *)page[pg];
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(LZO_UNC_SIZE))) {
printk(KERN_ERR
"PM: Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
PAGE_SIZE);
if (need > have) {
if (eof > 1) {
ret = -1;
goto out_finish;
}
break;
}
for (off = 0;
off < LZO_HEADER + data[thr].cmp_len;
off += PAGE_SIZE) {
memcpy(data[thr].cmp + off,
page[pg], PAGE_SIZE);
have--;
want++;
if (++pg >= ring_size)
pg = 0;
}
atomic_set(&data[thr].ready, 1);
wake_up(&data[thr].go);
}
/*
* Wait for more data while we are decompressing.
*/
if (have < LZO_CMP_PAGES && asked) {
ret = hib_wait_io(&hb);
if (ret)
goto out_finish;
have += asked;
asked = 0;
if (eof)
eof = 2;
}
for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
wait_event(data[thr].done,
atomic_read(&data[thr].stop));
atomic_set(&data[thr].stop, 0);
ret = data[thr].ret;
if (ret < 0) {
printk(KERN_ERR
"PM: LZO decompression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].unc_len ||
data[thr].unc_len > LZO_UNC_SIZE ||
data[thr].unc_len & (PAGE_SIZE - 1))) {
printk(KERN_ERR
"PM: Invalid LZO uncompressed length\n");
ret = -1;
goto out_finish;
}
for (off = 0;
off < data[thr].unc_len; off += PAGE_SIZE) {
memcpy(data_of(*snapshot),
data[thr].unc + off, PAGE_SIZE);
if (!(nr_pages % m))
printk(KERN_INFO
"PM: Image loading progress: "
"%3d%%\n",
nr_pages / m * 10);
nr_pages++;
ret = snapshot_write_next(snapshot);
if (ret <= 0) {
crc->run_threads = thr + 1;
atomic_set(&crc->ready, 1);
wake_up(&crc->go);
goto out_finish;
}
}
}
crc->run_threads = thr;
atomic_set(&crc->ready, 1);
wake_up(&crc->go);
}
out_finish:
if (crc->run_threads) {
wait_event(crc->done, atomic_read(&crc->stop));
atomic_set(&crc->stop, 0);
}
stop = ktime_get();
if (!ret) {
printk(KERN_INFO "PM: Image loading done.\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
if (!ret) {
if (swsusp_header->flags & SF_CRC32_MODE) {
if(handle->crc32 != swsusp_header->crc32) {
printk(KERN_ERR
"PM: Invalid image CRC32!\n");
ret = -ENODATA;
}
}
}
}
swsusp_show_speed(start, stop, nr_to_read, "Read");
out_clean:
for (i = 0; i < ring_size; i++)
free_page((unsigned long)page[i]);
if (crc) {
if (crc->thr)
kthread_stop(crc->thr);
kfree(crc);
}
if (data) {
for (thr = 0; thr < nr_threads; thr++)
if (data[thr].thr)
kthread_stop(data[thr].thr);
vfree(data);
}
vfree(page);
return ret;
}
/**
* swsusp_read - read the hibernation image.
* @flags_p: flags passed by the "frozen" kernel in the image header should
* be written into this memory location
*/
int swsusp_read(unsigned int *flags_p)
{
int error;
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_write_next(&snapshot);
if (error < PAGE_SIZE)
return error < 0 ? error : -EFAULT;
header = (struct swsusp_info *)data_of(snapshot);
error = get_swap_reader(&handle, flags_p);
if (error)
goto end;
if (!error)
error = swap_read_page(&handle, header, NULL);
if (!error) {
error = (*flags_p & SF_NOCOMPRESS_MODE) ?
load_image(&handle, &snapshot, header->pages - 1) :
load_image_lzo(&handle, &snapshot, header->pages - 1);
}
swap_reader_finish(&handle);
end:
if (!error)
pr_debug("PM: Image successfully loaded\n");
else
pr_debug("PM: Error %d resuming\n", error);
return error;
}
/**
* swsusp_check - Check for swsusp signature in the resume device
*/
int swsusp_check(void)
{
int error;
hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
FMODE_READ, NULL);
if (!IS_ERR(hib_resume_bdev)) {
set_blocksize(hib_resume_bdev, PAGE_SIZE);
clear_page(swsusp_header);
error = hib_submit_io(REQ_OP_READ, READ_SYNC,
swsusp_resume_block,
swsusp_header, NULL);
if (error)
goto put;
if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
/* Reset swap signature now */
error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
swsusp_resume_block,
swsusp_header, NULL);
} else {
error = -EINVAL;
}
put:
if (error)
blkdev_put(hib_resume_bdev, FMODE_READ);
else
pr_debug("PM: Image signature found, resuming\n");
} else {
error = PTR_ERR(hib_resume_bdev);
}
if (error)
pr_debug("PM: Image not found (code %d)\n", error);
return error;
}
/**
* swsusp_close - close swap device.
*/
void swsusp_close(fmode_t mode)
{
if (IS_ERR(hib_resume_bdev)) {
pr_debug("PM: Image device not initialised\n");
return;
}
blkdev_put(hib_resume_bdev, mode);
}
/**
* swsusp_unmark - Unmark swsusp signature in the resume device
*/
#ifdef CONFIG_SUSPEND
int swsusp_unmark(void)
{
int error;
hib_submit_io(REQ_OP_READ, READ_SYNC, swsusp_resume_block,
swsusp_header, NULL);
if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
error = hib_submit_io(REQ_OP_WRITE, WRITE_SYNC,
swsusp_resume_block,
swsusp_header, NULL);
} else {
printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
error = -ENODEV;
}
/*
* We just returned from suspend, we don't need the image any more.
*/
free_all_swap_pages(root_swap);
return error;
}
#endif
static int swsusp_header_init(void)
{
swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
if (!swsusp_header)
panic("Could not allocate memory for swsusp_header\n");
return 0;
}
core_initcall(swsusp_header_init);