mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-17 10:04:14 +08:00
588ab3f9af
- Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+ RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv 50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3 DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7 3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM LepccTgykiUBqW5TRzPz =/oS+ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Here are the main arm64 updates for 4.6. There are some relatively intrusive changes to support KASLR, the reworking of the kernel virtual memory layout and initial page table creation. Summary: - Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits) arm64: kasan: Fix zero shadow mapping overriding kernel image shadow arm64: kasan: Use actual memory node when populating the kernel image shadow arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission arm64: Fix misspellings in comments. arm64: efi: add missing frame pointer assignment arm64: make mrs_s prefixing implicit in read_cpuid arm64: enable CONFIG_DEBUG_RODATA by default arm64: Rework valid_user_regs arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly arm64: KVM: Move kvm_call_hyp back to its original localtion arm64: mm: treat memstart_addr as a signed quantity arm64: mm: list kernel sections in order arm64: lse: deal with clobbered IP registers after branch via PLT arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR arm64: kconfig: add submenu for 8.2 architectural features arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot arm64: Add support for Half precision floating point arm64: Remove fixmap include fragility arm64: Add workaround for Cavium erratum 27456 arm64: mm: Mark .rodata as RO ...
1189 lines
30 KiB
C
1189 lines
30 KiB
C
/*
|
|
* Functions for working with the Flattened Device Tree data format
|
|
*
|
|
* Copyright 2009 Benjamin Herrenschmidt, IBM Corp
|
|
* benh@kernel.crashing.org
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* of_fdt_limit_memory - limit the number of regions in the /memory node
|
|
* @limit: maximum entries
|
|
*
|
|
* Adjust the flattened device tree to have at most 'limit' number of
|
|
* memory entries in the /memory node. This function may be called
|
|
* any time after initial_boot_param is set.
|
|
*/
|
|
void of_fdt_limit_memory(int limit)
|
|
{
|
|
int memory;
|
|
int len;
|
|
const void *val;
|
|
int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
const uint32_t *addr_prop;
|
|
const uint32_t *size_prop;
|
|
int root_offset;
|
|
int cell_size;
|
|
|
|
root_offset = fdt_path_offset(initial_boot_params, "/");
|
|
if (root_offset < 0)
|
|
return;
|
|
|
|
addr_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#address-cells", NULL);
|
|
if (addr_prop)
|
|
nr_address_cells = fdt32_to_cpu(*addr_prop);
|
|
|
|
size_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#size-cells", NULL);
|
|
if (size_prop)
|
|
nr_size_cells = fdt32_to_cpu(*size_prop);
|
|
|
|
cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
|
|
|
|
memory = fdt_path_offset(initial_boot_params, "/memory");
|
|
if (memory > 0) {
|
|
val = fdt_getprop(initial_boot_params, memory, "reg", &len);
|
|
if (len > limit*cell_size) {
|
|
len = limit*cell_size;
|
|
pr_debug("Limiting number of entries to %d\n", limit);
|
|
fdt_setprop(initial_boot_params, memory, "reg", val,
|
|
len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* of_fdt_is_compatible - Return true if given node from the given blob has
|
|
* compat in its compatible list
|
|
* @blob: A device tree blob
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*
|
|
* On match, returns a non-zero value with smaller values returned for more
|
|
* specific compatible values.
|
|
*/
|
|
int of_fdt_is_compatible(const void *blob,
|
|
unsigned long node, const char *compat)
|
|
{
|
|
const char *cp;
|
|
int cplen;
|
|
unsigned long l, score = 0;
|
|
|
|
cp = fdt_getprop(blob, node, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
score++;
|
|
if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
|
|
return score;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
|
|
* @blob: A device tree blob
|
|
* @node: node to test
|
|
*
|
|
* Returns true if the node has a "big-endian" property, or if the kernel
|
|
* was compiled for BE *and* the node has a "native-endian" property.
|
|
* Returns false otherwise.
|
|
*/
|
|
bool of_fdt_is_big_endian(const void *blob, unsigned long node)
|
|
{
|
|
if (fdt_getprop(blob, node, "big-endian", NULL))
|
|
return true;
|
|
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
|
|
fdt_getprop(blob, node, "native-endian", NULL))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* of_fdt_match - Return true if node matches a list of compatible values
|
|
*/
|
|
int of_fdt_match(const void *blob, unsigned long node,
|
|
const char *const *compat)
|
|
{
|
|
unsigned int tmp, score = 0;
|
|
|
|
if (!compat)
|
|
return 0;
|
|
|
|
while (*compat) {
|
|
tmp = of_fdt_is_compatible(blob, node, *compat);
|
|
if (tmp && (score == 0 || (tmp < score)))
|
|
score = tmp;
|
|
compat++;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
static void *unflatten_dt_alloc(void **mem, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
void *res;
|
|
|
|
*mem = PTR_ALIGN(*mem, align);
|
|
res = *mem;
|
|
*mem += size;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* unflatten_dt_node - Alloc and populate a device_node from the flat tree
|
|
* @blob: The parent device tree blob
|
|
* @mem: Memory chunk to use for allocating device nodes and properties
|
|
* @poffset: pointer to node in flat tree
|
|
* @dad: Parent struct device_node
|
|
* @nodepp: The device_node tree created by the call
|
|
* @fpsize: Size of the node path up at the current depth.
|
|
* @dryrun: If true, do not allocate device nodes but still calculate needed
|
|
* memory size
|
|
*/
|
|
static void * unflatten_dt_node(const void *blob,
|
|
void *mem,
|
|
int *poffset,
|
|
struct device_node *dad,
|
|
struct device_node **nodepp,
|
|
unsigned long fpsize,
|
|
bool dryrun)
|
|
{
|
|
const __be32 *p;
|
|
struct device_node *np;
|
|
struct property *pp, **prev_pp = NULL;
|
|
const char *pathp;
|
|
unsigned int l, allocl;
|
|
static int depth;
|
|
int old_depth;
|
|
int offset;
|
|
int has_name = 0;
|
|
int new_format = 0;
|
|
|
|
pathp = fdt_get_name(blob, *poffset, &l);
|
|
if (!pathp)
|
|
return mem;
|
|
|
|
allocl = ++l;
|
|
|
|
/* version 0x10 has a more compact unit name here instead of the full
|
|
* path. we accumulate the full path size using "fpsize", we'll rebuild
|
|
* it later. We detect this because the first character of the name is
|
|
* not '/'.
|
|
*/
|
|
if ((*pathp) != '/') {
|
|
new_format = 1;
|
|
if (fpsize == 0) {
|
|
/* root node: special case. fpsize accounts for path
|
|
* plus terminating zero. root node only has '/', so
|
|
* fpsize should be 2, but we want to avoid the first
|
|
* level nodes to have two '/' so we use fpsize 1 here
|
|
*/
|
|
fpsize = 1;
|
|
allocl = 2;
|
|
l = 1;
|
|
pathp = "";
|
|
} else {
|
|
/* account for '/' and path size minus terminal 0
|
|
* already in 'l'
|
|
*/
|
|
fpsize += l;
|
|
allocl = fpsize;
|
|
}
|
|
}
|
|
|
|
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
|
|
__alignof__(struct device_node));
|
|
if (!dryrun) {
|
|
char *fn;
|
|
of_node_init(np);
|
|
np->full_name = fn = ((char *)np) + sizeof(*np);
|
|
if (new_format) {
|
|
/* rebuild full path for new format */
|
|
if (dad && dad->parent) {
|
|
strcpy(fn, dad->full_name);
|
|
#ifdef DEBUG
|
|
if ((strlen(fn) + l + 1) != allocl) {
|
|
pr_debug("%s: p: %d, l: %d, a: %d\n",
|
|
pathp, (int)strlen(fn),
|
|
l, allocl);
|
|
}
|
|
#endif
|
|
fn += strlen(fn);
|
|
}
|
|
*(fn++) = '/';
|
|
}
|
|
memcpy(fn, pathp, l);
|
|
|
|
prev_pp = &np->properties;
|
|
if (dad != NULL) {
|
|
np->parent = dad;
|
|
np->sibling = dad->child;
|
|
dad->child = np;
|
|
}
|
|
}
|
|
/* process properties */
|
|
for (offset = fdt_first_property_offset(blob, *poffset);
|
|
(offset >= 0);
|
|
(offset = fdt_next_property_offset(blob, offset))) {
|
|
const char *pname;
|
|
u32 sz;
|
|
|
|
if (!(p = fdt_getprop_by_offset(blob, offset, &pname, &sz))) {
|
|
offset = -FDT_ERR_INTERNAL;
|
|
break;
|
|
}
|
|
|
|
if (pname == NULL) {
|
|
pr_info("Can't find property name in list !\n");
|
|
break;
|
|
}
|
|
if (strcmp(pname, "name") == 0)
|
|
has_name = 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
|
|
__alignof__(struct property));
|
|
if (!dryrun) {
|
|
/* We accept flattened tree phandles either in
|
|
* ePAPR-style "phandle" properties, or the
|
|
* legacy "linux,phandle" properties. If both
|
|
* appear and have different values, things
|
|
* will get weird. Don't do that. */
|
|
if ((strcmp(pname, "phandle") == 0) ||
|
|
(strcmp(pname, "linux,phandle") == 0)) {
|
|
if (np->phandle == 0)
|
|
np->phandle = be32_to_cpup(p);
|
|
}
|
|
/* And we process the "ibm,phandle" property
|
|
* used in pSeries dynamic device tree
|
|
* stuff */
|
|
if (strcmp(pname, "ibm,phandle") == 0)
|
|
np->phandle = be32_to_cpup(p);
|
|
pp->name = (char *)pname;
|
|
pp->length = sz;
|
|
pp->value = (__be32 *)p;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
}
|
|
}
|
|
/* with version 0x10 we may not have the name property, recreate
|
|
* it here from the unit name if absent
|
|
*/
|
|
if (!has_name) {
|
|
const char *p1 = pathp, *ps = pathp, *pa = NULL;
|
|
int sz;
|
|
|
|
while (*p1) {
|
|
if ((*p1) == '@')
|
|
pa = p1;
|
|
if ((*p1) == '/')
|
|
ps = p1 + 1;
|
|
p1++;
|
|
}
|
|
if (pa < ps)
|
|
pa = p1;
|
|
sz = (pa - ps) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
|
|
__alignof__(struct property));
|
|
if (!dryrun) {
|
|
pp->name = "name";
|
|
pp->length = sz;
|
|
pp->value = pp + 1;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
memcpy(pp->value, ps, sz - 1);
|
|
((char *)pp->value)[sz - 1] = 0;
|
|
pr_debug("fixed up name for %s -> %s\n", pathp,
|
|
(char *)pp->value);
|
|
}
|
|
}
|
|
if (!dryrun) {
|
|
*prev_pp = NULL;
|
|
np->name = of_get_property(np, "name", NULL);
|
|
np->type = of_get_property(np, "device_type", NULL);
|
|
|
|
if (!np->name)
|
|
np->name = "<NULL>";
|
|
if (!np->type)
|
|
np->type = "<NULL>";
|
|
}
|
|
|
|
old_depth = depth;
|
|
*poffset = fdt_next_node(blob, *poffset, &depth);
|
|
if (depth < 0)
|
|
depth = 0;
|
|
while (*poffset > 0 && depth > old_depth)
|
|
mem = unflatten_dt_node(blob, mem, poffset, np, NULL,
|
|
fpsize, dryrun);
|
|
|
|
if (*poffset < 0 && *poffset != -FDT_ERR_NOTFOUND)
|
|
pr_err("unflatten: error %d processing FDT\n", *poffset);
|
|
|
|
/*
|
|
* Reverse the child list. Some drivers assumes node order matches .dts
|
|
* node order
|
|
*/
|
|
if (!dryrun && np->child) {
|
|
struct device_node *child = np->child;
|
|
np->child = NULL;
|
|
while (child) {
|
|
struct device_node *next = child->sibling;
|
|
child->sibling = np->child;
|
|
np->child = child;
|
|
child = next;
|
|
}
|
|
}
|
|
|
|
if (nodepp)
|
|
*nodepp = np;
|
|
|
|
return mem;
|
|
}
|
|
|
|
/**
|
|
* __unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens a device-tree, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
* @blob: The blob to expand
|
|
* @mynodes: The device_node tree created by the call
|
|
* @dt_alloc: An allocator that provides a virtual address to memory
|
|
* for the resulting tree
|
|
*/
|
|
static void __unflatten_device_tree(const void *blob,
|
|
struct device_node **mynodes,
|
|
void * (*dt_alloc)(u64 size, u64 align))
|
|
{
|
|
unsigned long size;
|
|
int start;
|
|
void *mem;
|
|
|
|
pr_debug(" -> unflatten_device_tree()\n");
|
|
|
|
if (!blob) {
|
|
pr_debug("No device tree pointer\n");
|
|
return;
|
|
}
|
|
|
|
pr_debug("Unflattening device tree:\n");
|
|
pr_debug("magic: %08x\n", fdt_magic(blob));
|
|
pr_debug("size: %08x\n", fdt_totalsize(blob));
|
|
pr_debug("version: %08x\n", fdt_version(blob));
|
|
|
|
if (fdt_check_header(blob)) {
|
|
pr_err("Invalid device tree blob header\n");
|
|
return;
|
|
}
|
|
|
|
/* First pass, scan for size */
|
|
start = 0;
|
|
size = (unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0, true);
|
|
size = ALIGN(size, 4);
|
|
|
|
pr_debug(" size is %lx, allocating...\n", size);
|
|
|
|
/* Allocate memory for the expanded device tree */
|
|
mem = dt_alloc(size + 4, __alignof__(struct device_node));
|
|
memset(mem, 0, size);
|
|
|
|
*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
|
|
|
|
pr_debug(" unflattening %p...\n", mem);
|
|
|
|
/* Second pass, do actual unflattening */
|
|
start = 0;
|
|
unflatten_dt_node(blob, mem, &start, NULL, mynodes, 0, false);
|
|
if (be32_to_cpup(mem + size) != 0xdeadbeef)
|
|
pr_warning("End of tree marker overwritten: %08x\n",
|
|
be32_to_cpup(mem + size));
|
|
|
|
pr_debug(" <- unflatten_device_tree()\n");
|
|
}
|
|
|
|
static void *kernel_tree_alloc(u64 size, u64 align)
|
|
{
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
static DEFINE_MUTEX(of_fdt_unflatten_mutex);
|
|
|
|
/**
|
|
* of_fdt_unflatten_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*/
|
|
void of_fdt_unflatten_tree(const unsigned long *blob,
|
|
struct device_node **mynodes)
|
|
{
|
|
mutex_lock(&of_fdt_unflatten_mutex);
|
|
__unflatten_device_tree(blob, mynodes, &kernel_tree_alloc);
|
|
mutex_unlock(&of_fdt_unflatten_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
|
|
|
|
/* Everything below here references initial_boot_params directly. */
|
|
int __initdata dt_root_addr_cells;
|
|
int __initdata dt_root_size_cells;
|
|
|
|
void *initial_boot_params;
|
|
|
|
#ifdef CONFIG_OF_EARLY_FLATTREE
|
|
|
|
static u32 of_fdt_crc32;
|
|
|
|
/**
|
|
* res_mem_reserve_reg() - reserve all memory described in 'reg' property
|
|
*/
|
|
static int __init __reserved_mem_reserve_reg(unsigned long node,
|
|
const char *uname)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
phys_addr_t base, size;
|
|
int len;
|
|
const __be32 *prop;
|
|
int nomap, first = 1;
|
|
|
|
prop = of_get_flat_dt_prop(node, "reg", &len);
|
|
if (!prop)
|
|
return -ENOENT;
|
|
|
|
if (len && len % t_len != 0) {
|
|
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
while (len >= t_len) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
if (size &&
|
|
early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
|
|
pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
else
|
|
pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
|
|
len -= t_len;
|
|
if (first) {
|
|
fdt_reserved_mem_save_node(node, uname, base, size);
|
|
first = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __reserved_mem_check_root() - check if #size-cells, #address-cells provided
|
|
* in /reserved-memory matches the values supported by the current implementation,
|
|
* also check if ranges property has been provided
|
|
*/
|
|
static int __init __reserved_mem_check_root(unsigned long node)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "ranges", NULL);
|
|
if (!prop)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
|
|
*/
|
|
static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
static int found;
|
|
const char *status;
|
|
int err;
|
|
|
|
if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
|
|
if (__reserved_mem_check_root(node) != 0) {
|
|
pr_err("Reserved memory: unsupported node format, ignoring\n");
|
|
/* break scan */
|
|
return 1;
|
|
}
|
|
found = 1;
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (!found) {
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (found && depth < 2) {
|
|
/* scanning of /reserved-memory has been finished */
|
|
return 1;
|
|
}
|
|
|
|
status = of_get_flat_dt_prop(node, "status", NULL);
|
|
if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
|
|
return 0;
|
|
|
|
err = __reserved_mem_reserve_reg(node, uname);
|
|
if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
|
|
fdt_reserved_mem_save_node(node, uname, 0, 0);
|
|
|
|
/* scan next node */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* early_init_fdt_scan_reserved_mem() - create reserved memory regions
|
|
*
|
|
* This function grabs memory from early allocator for device exclusive use
|
|
* defined in device tree structures. It should be called by arch specific code
|
|
* once the early allocator (i.e. memblock) has been fully activated.
|
|
*/
|
|
void __init early_init_fdt_scan_reserved_mem(void)
|
|
{
|
|
int n;
|
|
u64 base, size;
|
|
|
|
if (!initial_boot_params)
|
|
return;
|
|
|
|
/* Process header /memreserve/ fields */
|
|
for (n = 0; ; n++) {
|
|
fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
|
|
if (!size)
|
|
break;
|
|
early_init_dt_reserve_memory_arch(base, size, 0);
|
|
}
|
|
|
|
of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
|
|
fdt_init_reserved_mem();
|
|
}
|
|
|
|
/**
|
|
* early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
|
|
*/
|
|
void __init early_init_fdt_reserve_self(void)
|
|
{
|
|
if (!initial_boot_params)
|
|
return;
|
|
|
|
/* Reserve the dtb region */
|
|
early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
|
|
fdt_totalsize(initial_boot_params),
|
|
0);
|
|
}
|
|
|
|
/**
|
|
* of_scan_flat_dt - scan flattened tree blob and call callback on each.
|
|
* @it: callback function
|
|
* @data: context data pointer
|
|
*
|
|
* This function is used to scan the flattened device-tree, it is
|
|
* used to extract the memory information at boot before we can
|
|
* unflatten the tree
|
|
*/
|
|
int __init of_scan_flat_dt(int (*it)(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
const void *blob = initial_boot_params;
|
|
const char *pathp;
|
|
int offset, rc = 0, depth = -1;
|
|
|
|
for (offset = fdt_next_node(blob, -1, &depth);
|
|
offset >= 0 && depth >= 0 && !rc;
|
|
offset = fdt_next_node(blob, offset, &depth)) {
|
|
|
|
pathp = fdt_get_name(blob, offset, NULL);
|
|
if (*pathp == '/')
|
|
pathp = kbasename(pathp);
|
|
rc = it(offset, pathp, depth, data);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_root - find the root node in the flat blob
|
|
*/
|
|
unsigned long __init of_get_flat_dt_root(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_size - Return the total size of the FDT
|
|
*/
|
|
int __init of_get_flat_dt_size(void)
|
|
{
|
|
return fdt_totalsize(initial_boot_params);
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
|
|
*
|
|
* This function can be used within scan_flattened_dt callback to get
|
|
* access to properties
|
|
*/
|
|
const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
|
|
int *size)
|
|
{
|
|
return fdt_getprop(initial_boot_params, node, name, size);
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_is_compatible - Return true if given node has compat in compatible list
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*/
|
|
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
|
|
{
|
|
return of_fdt_is_compatible(initial_boot_params, node, compat);
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match - Return true if node matches a list of compatible values
|
|
*/
|
|
int __init of_flat_dt_match(unsigned long node, const char *const *compat)
|
|
{
|
|
return of_fdt_match(initial_boot_params, node, compat);
|
|
}
|
|
|
|
struct fdt_scan_status {
|
|
const char *name;
|
|
int namelen;
|
|
int depth;
|
|
int found;
|
|
int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
|
|
void *data;
|
|
};
|
|
|
|
const char * __init of_flat_dt_get_machine_name(void)
|
|
{
|
|
const char *name;
|
|
unsigned long dt_root = of_get_flat_dt_root();
|
|
|
|
name = of_get_flat_dt_prop(dt_root, "model", NULL);
|
|
if (!name)
|
|
name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match_machine - Iterate match tables to find matching machine.
|
|
*
|
|
* @default_match: A machine specific ptr to return in case of no match.
|
|
* @get_next_compat: callback function to return next compatible match table.
|
|
*
|
|
* Iterate through machine match tables to find the best match for the machine
|
|
* compatible string in the FDT.
|
|
*/
|
|
const void * __init of_flat_dt_match_machine(const void *default_match,
|
|
const void * (*get_next_compat)(const char * const**))
|
|
{
|
|
const void *data = NULL;
|
|
const void *best_data = default_match;
|
|
const char *const *compat;
|
|
unsigned long dt_root;
|
|
unsigned int best_score = ~1, score = 0;
|
|
|
|
dt_root = of_get_flat_dt_root();
|
|
while ((data = get_next_compat(&compat))) {
|
|
score = of_flat_dt_match(dt_root, compat);
|
|
if (score > 0 && score < best_score) {
|
|
best_data = data;
|
|
best_score = score;
|
|
}
|
|
}
|
|
if (!best_data) {
|
|
const char *prop;
|
|
int size;
|
|
|
|
pr_err("\n unrecognized device tree list:\n[ ");
|
|
|
|
prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
|
|
if (prop) {
|
|
while (size > 0) {
|
|
printk("'%s' ", prop);
|
|
size -= strlen(prop) + 1;
|
|
prop += strlen(prop) + 1;
|
|
}
|
|
}
|
|
printk("]\n\n");
|
|
return NULL;
|
|
}
|
|
|
|
pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
|
|
|
|
return best_data;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
#ifndef __early_init_dt_declare_initrd
|
|
static void __early_init_dt_declare_initrd(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
initrd_start = (unsigned long)__va(start);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_below_start_ok = 1;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* early_init_dt_check_for_initrd - Decode initrd location from flat tree
|
|
* @node: reference to node containing initrd location ('chosen')
|
|
*/
|
|
static void __init early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
u64 start, end;
|
|
int len;
|
|
const __be32 *prop;
|
|
|
|
pr_debug("Looking for initrd properties... ");
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
|
|
if (!prop)
|
|
return;
|
|
start = of_read_number(prop, len/4);
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
|
|
if (!prop)
|
|
return;
|
|
end = of_read_number(prop, len/4);
|
|
|
|
__early_init_dt_declare_initrd(start, end);
|
|
|
|
pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
|
|
(unsigned long long)start, (unsigned long long)end);
|
|
}
|
|
#else
|
|
static inline void early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
#ifdef CONFIG_SERIAL_EARLYCON
|
|
|
|
static int __init early_init_dt_scan_chosen_serial(void)
|
|
{
|
|
int offset;
|
|
const char *p, *q, *options = NULL;
|
|
int l;
|
|
const struct earlycon_id *match;
|
|
const void *fdt = initial_boot_params;
|
|
|
|
offset = fdt_path_offset(fdt, "/chosen");
|
|
if (offset < 0)
|
|
offset = fdt_path_offset(fdt, "/chosen@0");
|
|
if (offset < 0)
|
|
return -ENOENT;
|
|
|
|
p = fdt_getprop(fdt, offset, "stdout-path", &l);
|
|
if (!p)
|
|
p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
|
|
if (!p || !l)
|
|
return -ENOENT;
|
|
|
|
q = strchrnul(p, ':');
|
|
if (*q != '\0')
|
|
options = q + 1;
|
|
l = q - p;
|
|
|
|
/* Get the node specified by stdout-path */
|
|
offset = fdt_path_offset_namelen(fdt, p, l);
|
|
if (offset < 0) {
|
|
pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
|
|
return 0;
|
|
}
|
|
|
|
for (match = __earlycon_table; match < __earlycon_table_end; match++) {
|
|
if (!match->compatible[0])
|
|
continue;
|
|
|
|
if (fdt_node_check_compatible(fdt, offset, match->compatible))
|
|
continue;
|
|
|
|
of_setup_earlycon(match, offset, options);
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __init setup_of_earlycon(char *buf)
|
|
{
|
|
if (buf)
|
|
return 0;
|
|
|
|
return early_init_dt_scan_chosen_serial();
|
|
}
|
|
early_param("earlycon", setup_of_earlycon);
|
|
#endif
|
|
|
|
/**
|
|
* early_init_dt_scan_root - fetch the top level address and size cells
|
|
*/
|
|
int __init early_init_dt_scan_root(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
if (depth != 0)
|
|
return 0;
|
|
|
|
dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (prop)
|
|
dt_root_size_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (prop)
|
|
dt_root_addr_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
|
|
{
|
|
const __be32 *p = *cellp;
|
|
|
|
*cellp = p + s;
|
|
return of_read_number(p, s);
|
|
}
|
|
|
|
/**
|
|
* early_init_dt_scan_memory - Look for an parse memory nodes
|
|
*/
|
|
int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
const __be32 *reg, *endp;
|
|
int l;
|
|
|
|
/* We are scanning "memory" nodes only */
|
|
if (type == NULL) {
|
|
/*
|
|
* The longtrail doesn't have a device_type on the
|
|
* /memory node, so look for the node called /memory@0.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
|
|
return 0;
|
|
} else if (strcmp(type, "memory") != 0)
|
|
return 0;
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
|
|
if (reg == NULL)
|
|
reg = of_get_flat_dt_prop(node, "reg", &l);
|
|
if (reg == NULL)
|
|
return 0;
|
|
|
|
endp = reg + (l / sizeof(__be32));
|
|
|
|
pr_debug("memory scan node %s, reg size %d,\n", uname, l);
|
|
|
|
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
|
|
u64 base, size;
|
|
|
|
base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
pr_debug(" - %llx , %llx\n", (unsigned long long)base,
|
|
(unsigned long long)size);
|
|
|
|
early_init_dt_add_memory_arch(base, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
int l;
|
|
const char *p;
|
|
|
|
pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
|
|
|
|
if (depth != 1 || !data ||
|
|
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
|
|
return 0;
|
|
|
|
early_init_dt_check_for_initrd(node);
|
|
|
|
/* Retrieve command line */
|
|
p = of_get_flat_dt_prop(node, "bootargs", &l);
|
|
if (p != NULL && l > 0)
|
|
strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
|
|
|
|
/*
|
|
* CONFIG_CMDLINE is meant to be a default in case nothing else
|
|
* managed to set the command line, unless CONFIG_CMDLINE_FORCE
|
|
* is set in which case we override whatever was found earlier.
|
|
*/
|
|
#ifdef CONFIG_CMDLINE
|
|
#ifndef CONFIG_CMDLINE_FORCE
|
|
if (!((char *)data)[0])
|
|
#endif
|
|
strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#endif /* CONFIG_CMDLINE */
|
|
|
|
pr_debug("Command line is: %s\n", (char*)data);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK
|
|
#ifndef MIN_MEMBLOCK_ADDR
|
|
#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
|
|
#endif
|
|
#ifndef MAX_MEMBLOCK_ADDR
|
|
#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
|
|
#endif
|
|
|
|
void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
|
|
{
|
|
const u64 phys_offset = MIN_MEMBLOCK_ADDR;
|
|
|
|
if (!PAGE_ALIGNED(base)) {
|
|
if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
|
|
pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
size -= PAGE_SIZE - (base & ~PAGE_MASK);
|
|
base = PAGE_ALIGN(base);
|
|
}
|
|
size &= PAGE_MASK;
|
|
|
|
if (base > MAX_MEMBLOCK_ADDR) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
|
|
if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
|
|
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
|
|
((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
|
|
size = MAX_MEMBLOCK_ADDR - base + 1;
|
|
}
|
|
|
|
if (base + size < phys_offset) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
if (base < phys_offset) {
|
|
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
|
|
base, phys_offset);
|
|
size -= phys_offset - base;
|
|
base = phys_offset;
|
|
}
|
|
memblock_add(base, size);
|
|
}
|
|
|
|
int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
if (nomap)
|
|
return memblock_remove(base, size);
|
|
return memblock_reserve(base, size);
|
|
}
|
|
|
|
/*
|
|
* called from unflatten_device_tree() to bootstrap devicetree itself
|
|
* Architectures can override this definition if memblock isn't used
|
|
*/
|
|
void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
|
|
{
|
|
return __va(memblock_alloc(size, align));
|
|
}
|
|
#else
|
|
void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
|
|
{
|
|
WARN_ON(1);
|
|
}
|
|
|
|
int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
|
|
&base, &size, nomap ? " (nomap)" : "");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
|
|
{
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
bool __init early_init_dt_verify(void *params)
|
|
{
|
|
if (!params)
|
|
return false;
|
|
|
|
/* check device tree validity */
|
|
if (fdt_check_header(params))
|
|
return false;
|
|
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
of_fdt_crc32 = crc32_be(~0, initial_boot_params,
|
|
fdt_totalsize(initial_boot_params));
|
|
return true;
|
|
}
|
|
|
|
|
|
void __init early_init_dt_scan_nodes(void)
|
|
{
|
|
/* Retrieve various information from the /chosen node */
|
|
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
|
|
|
|
/* Initialize {size,address}-cells info */
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
|
|
/* Setup memory, calling early_init_dt_add_memory_arch */
|
|
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
|
|
}
|
|
|
|
bool __init early_init_dt_scan(void *params)
|
|
{
|
|
bool status;
|
|
|
|
status = early_init_dt_verify(params);
|
|
if (!status)
|
|
return false;
|
|
|
|
early_init_dt_scan_nodes();
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*/
|
|
void __init unflatten_device_tree(void)
|
|
{
|
|
__unflatten_device_tree(initial_boot_params, &of_root,
|
|
early_init_dt_alloc_memory_arch);
|
|
|
|
/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
|
|
of_alias_scan(early_init_dt_alloc_memory_arch);
|
|
}
|
|
|
|
/**
|
|
* unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
|
|
*
|
|
* Copies and unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used. This should only be used when the FDT memory has not been
|
|
* reserved such is the case when the FDT is built-in to the kernel init
|
|
* section. If the FDT memory is reserved already then unflatten_device_tree
|
|
* should be used instead.
|
|
*/
|
|
void __init unflatten_and_copy_device_tree(void)
|
|
{
|
|
int size;
|
|
void *dt;
|
|
|
|
if (!initial_boot_params) {
|
|
pr_warn("No valid device tree found, continuing without\n");
|
|
return;
|
|
}
|
|
|
|
size = fdt_totalsize(initial_boot_params);
|
|
dt = early_init_dt_alloc_memory_arch(size,
|
|
roundup_pow_of_two(FDT_V17_SIZE));
|
|
|
|
if (dt) {
|
|
memcpy(dt, initial_boot_params, size);
|
|
initial_boot_params = dt;
|
|
}
|
|
unflatten_device_tree();
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
memcpy(buf, initial_boot_params + off, count);
|
|
return count;
|
|
}
|
|
|
|
static int __init of_fdt_raw_init(void)
|
|
{
|
|
static struct bin_attribute of_fdt_raw_attr =
|
|
__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
|
|
|
|
if (!initial_boot_params)
|
|
return 0;
|
|
|
|
if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
|
|
fdt_totalsize(initial_boot_params))) {
|
|
pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n");
|
|
return 0;
|
|
}
|
|
of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
|
|
return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
|
|
}
|
|
late_initcall(of_fdt_raw_init);
|
|
#endif
|
|
|
|
#endif /* CONFIG_OF_EARLY_FLATTREE */
|