mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 06:34:11 +08:00
31c1e5a135
The argument is always set to NULL and never used. Remove it. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
1162 lines
30 KiB
C
1162 lines
30 KiB
C
/*
|
|
* TI EDMA DMA engine driver
|
|
*
|
|
* Copyright 2012 Texas Instruments
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/platform_data/edma.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/*
|
|
* This will go away when the private EDMA API is folded
|
|
* into this driver and the platform device(s) are
|
|
* instantiated in the arch code. We can only get away
|
|
* with this simplification because DA8XX may not be built
|
|
* in the same kernel image with other DaVinci parts. This
|
|
* avoids having to sprinkle dmaengine driver platform devices
|
|
* and data throughout all the existing board files.
|
|
*/
|
|
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
|
|
#define EDMA_CTLRS 2
|
|
#define EDMA_CHANS 32
|
|
#else
|
|
#define EDMA_CTLRS 1
|
|
#define EDMA_CHANS 64
|
|
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */
|
|
|
|
/*
|
|
* Max of 20 segments per channel to conserve PaRAM slots
|
|
* Also note that MAX_NR_SG should be atleast the no.of periods
|
|
* that are required for ASoC, otherwise DMA prep calls will
|
|
* fail. Today davinci-pcm is the only user of this driver and
|
|
* requires atleast 17 slots, so we setup the default to 20.
|
|
*/
|
|
#define MAX_NR_SG 20
|
|
#define EDMA_MAX_SLOTS MAX_NR_SG
|
|
#define EDMA_DESCRIPTORS 16
|
|
|
|
struct edma_pset {
|
|
u32 len;
|
|
dma_addr_t addr;
|
|
struct edmacc_param param;
|
|
};
|
|
|
|
struct edma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
struct list_head node;
|
|
enum dma_transfer_direction direction;
|
|
int cyclic;
|
|
int absync;
|
|
int pset_nr;
|
|
struct edma_chan *echan;
|
|
int processed;
|
|
|
|
/*
|
|
* The following 4 elements are used for residue accounting.
|
|
*
|
|
* - processed_stat: the number of SG elements we have traversed
|
|
* so far to cover accounting. This is updated directly to processed
|
|
* during edma_callback and is always <= processed, because processed
|
|
* refers to the number of pending transfer (programmed to EDMA
|
|
* controller), where as processed_stat tracks number of transfers
|
|
* accounted for so far.
|
|
*
|
|
* - residue: The amount of bytes we have left to transfer for this desc
|
|
*
|
|
* - residue_stat: The residue in bytes of data we have covered
|
|
* so far for accounting. This is updated directly to residue
|
|
* during callbacks to keep it current.
|
|
*
|
|
* - sg_len: Tracks the length of the current intermediate transfer,
|
|
* this is required to update the residue during intermediate transfer
|
|
* completion callback.
|
|
*/
|
|
int processed_stat;
|
|
u32 sg_len;
|
|
u32 residue;
|
|
u32 residue_stat;
|
|
|
|
struct edma_pset pset[0];
|
|
};
|
|
|
|
struct edma_cc;
|
|
|
|
struct edma_chan {
|
|
struct virt_dma_chan vchan;
|
|
struct list_head node;
|
|
struct edma_desc *edesc;
|
|
struct edma_cc *ecc;
|
|
int ch_num;
|
|
bool alloced;
|
|
int slot[EDMA_MAX_SLOTS];
|
|
int missed;
|
|
struct dma_slave_config cfg;
|
|
};
|
|
|
|
struct edma_cc {
|
|
int ctlr;
|
|
struct dma_device dma_slave;
|
|
struct edma_chan slave_chans[EDMA_CHANS];
|
|
int num_slave_chans;
|
|
int dummy_slot;
|
|
};
|
|
|
|
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
|
|
{
|
|
return container_of(d, struct edma_cc, dma_slave);
|
|
}
|
|
|
|
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct edma_chan, vchan.chan);
|
|
}
|
|
|
|
static inline struct edma_desc
|
|
*to_edma_desc(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return container_of(tx, struct edma_desc, vdesc.tx);
|
|
}
|
|
|
|
static void edma_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct edma_desc, vdesc));
|
|
}
|
|
|
|
/* Dispatch a queued descriptor to the controller (caller holds lock) */
|
|
static void edma_execute(struct edma_chan *echan)
|
|
{
|
|
struct virt_dma_desc *vdesc;
|
|
struct edma_desc *edesc;
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
int i, j, left, nslots;
|
|
|
|
/* If either we processed all psets or we're still not started */
|
|
if (!echan->edesc ||
|
|
echan->edesc->pset_nr == echan->edesc->processed) {
|
|
/* Get next vdesc */
|
|
vdesc = vchan_next_desc(&echan->vchan);
|
|
if (!vdesc) {
|
|
echan->edesc = NULL;
|
|
return;
|
|
}
|
|
list_del(&vdesc->node);
|
|
echan->edesc = to_edma_desc(&vdesc->tx);
|
|
}
|
|
|
|
edesc = echan->edesc;
|
|
|
|
/* Find out how many left */
|
|
left = edesc->pset_nr - edesc->processed;
|
|
nslots = min(MAX_NR_SG, left);
|
|
edesc->sg_len = 0;
|
|
|
|
/* Write descriptor PaRAM set(s) */
|
|
for (i = 0; i < nslots; i++) {
|
|
j = i + edesc->processed;
|
|
edma_write_slot(echan->slot[i], &edesc->pset[j].param);
|
|
edesc->sg_len += edesc->pset[j].len;
|
|
dev_vdbg(echan->vchan.chan.device->dev,
|
|
"\n pset[%d]:\n"
|
|
" chnum\t%d\n"
|
|
" slot\t%d\n"
|
|
" opt\t%08x\n"
|
|
" src\t%08x\n"
|
|
" dst\t%08x\n"
|
|
" abcnt\t%08x\n"
|
|
" ccnt\t%08x\n"
|
|
" bidx\t%08x\n"
|
|
" cidx\t%08x\n"
|
|
" lkrld\t%08x\n",
|
|
j, echan->ch_num, echan->slot[i],
|
|
edesc->pset[j].param.opt,
|
|
edesc->pset[j].param.src,
|
|
edesc->pset[j].param.dst,
|
|
edesc->pset[j].param.a_b_cnt,
|
|
edesc->pset[j].param.ccnt,
|
|
edesc->pset[j].param.src_dst_bidx,
|
|
edesc->pset[j].param.src_dst_cidx,
|
|
edesc->pset[j].param.link_bcntrld);
|
|
/* Link to the previous slot if not the last set */
|
|
if (i != (nslots - 1))
|
|
edma_link(echan->slot[i], echan->slot[i+1]);
|
|
}
|
|
|
|
edesc->processed += nslots;
|
|
|
|
/*
|
|
* If this is either the last set in a set of SG-list transactions
|
|
* then setup a link to the dummy slot, this results in all future
|
|
* events being absorbed and that's OK because we're done
|
|
*/
|
|
if (edesc->processed == edesc->pset_nr) {
|
|
if (edesc->cyclic)
|
|
edma_link(echan->slot[nslots-1], echan->slot[1]);
|
|
else
|
|
edma_link(echan->slot[nslots-1],
|
|
echan->ecc->dummy_slot);
|
|
}
|
|
|
|
if (edesc->processed <= MAX_NR_SG) {
|
|
dev_dbg(dev, "first transfer starting on channel %d\n",
|
|
echan->ch_num);
|
|
edma_start(echan->ch_num);
|
|
} else {
|
|
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
|
|
echan->ch_num, edesc->processed);
|
|
edma_resume(echan->ch_num);
|
|
}
|
|
|
|
/*
|
|
* This happens due to setup times between intermediate transfers
|
|
* in long SG lists which have to be broken up into transfers of
|
|
* MAX_NR_SG
|
|
*/
|
|
if (echan->missed) {
|
|
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
|
|
edma_clean_channel(echan->ch_num);
|
|
edma_stop(echan->ch_num);
|
|
edma_start(echan->ch_num);
|
|
edma_trigger_channel(echan->ch_num);
|
|
echan->missed = 0;
|
|
}
|
|
}
|
|
|
|
static int edma_terminate_all(struct edma_chan *echan)
|
|
{
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
|
|
/*
|
|
* Stop DMA activity: we assume the callback will not be called
|
|
* after edma_dma() returns (even if it does, it will see
|
|
* echan->edesc is NULL and exit.)
|
|
*/
|
|
if (echan->edesc) {
|
|
int cyclic = echan->edesc->cyclic;
|
|
echan->edesc = NULL;
|
|
edma_stop(echan->ch_num);
|
|
/* Move the cyclic channel back to default queue */
|
|
if (cyclic)
|
|
edma_assign_channel_eventq(echan->ch_num,
|
|
EVENTQ_DEFAULT);
|
|
}
|
|
|
|
vchan_get_all_descriptors(&echan->vchan, &head);
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&echan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edma_slave_config(struct edma_chan *echan,
|
|
struct dma_slave_config *cfg)
|
|
{
|
|
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
|
|
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
|
|
return -EINVAL;
|
|
|
|
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edma_dma_pause(struct edma_chan *echan)
|
|
{
|
|
/* Pause/Resume only allowed with cyclic mode */
|
|
if (!echan->edesc->cyclic)
|
|
return -EINVAL;
|
|
|
|
edma_pause(echan->ch_num);
|
|
return 0;
|
|
}
|
|
|
|
static int edma_dma_resume(struct edma_chan *echan)
|
|
{
|
|
/* Pause/Resume only allowed with cyclic mode */
|
|
if (!echan->edesc->cyclic)
|
|
return -EINVAL;
|
|
|
|
edma_resume(echan->ch_num);
|
|
return 0;
|
|
}
|
|
|
|
static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
|
|
unsigned long arg)
|
|
{
|
|
int ret = 0;
|
|
struct dma_slave_config *config;
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
switch (cmd) {
|
|
case DMA_TERMINATE_ALL:
|
|
edma_terminate_all(echan);
|
|
break;
|
|
case DMA_SLAVE_CONFIG:
|
|
config = (struct dma_slave_config *)arg;
|
|
ret = edma_slave_config(echan, config);
|
|
break;
|
|
case DMA_PAUSE:
|
|
ret = edma_dma_pause(echan);
|
|
break;
|
|
|
|
case DMA_RESUME:
|
|
ret = edma_dma_resume(echan);
|
|
break;
|
|
|
|
default:
|
|
ret = -ENOSYS;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* A PaRAM set configuration abstraction used by other modes
|
|
* @chan: Channel who's PaRAM set we're configuring
|
|
* @pset: PaRAM set to initialize and setup.
|
|
* @src_addr: Source address of the DMA
|
|
* @dst_addr: Destination address of the DMA
|
|
* @burst: In units of dev_width, how much to send
|
|
* @dev_width: How much is the dev_width
|
|
* @dma_length: Total length of the DMA transfer
|
|
* @direction: Direction of the transfer
|
|
*/
|
|
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
|
|
dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
|
|
enum dma_slave_buswidth dev_width, unsigned int dma_length,
|
|
enum dma_transfer_direction direction)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edmacc_param *param = &epset->param;
|
|
int acnt, bcnt, ccnt, cidx;
|
|
int src_bidx, dst_bidx, src_cidx, dst_cidx;
|
|
int absync;
|
|
|
|
acnt = dev_width;
|
|
|
|
/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
|
|
if (!burst)
|
|
burst = 1;
|
|
/*
|
|
* If the maxburst is equal to the fifo width, use
|
|
* A-synced transfers. This allows for large contiguous
|
|
* buffer transfers using only one PaRAM set.
|
|
*/
|
|
if (burst == 1) {
|
|
/*
|
|
* For the A-sync case, bcnt and ccnt are the remainder
|
|
* and quotient respectively of the division of:
|
|
* (dma_length / acnt) by (SZ_64K -1). This is so
|
|
* that in case bcnt over flows, we have ccnt to use.
|
|
* Note: In A-sync tranfer only, bcntrld is used, but it
|
|
* only applies for sg_dma_len(sg) >= SZ_64K.
|
|
* In this case, the best way adopted is- bccnt for the
|
|
* first frame will be the remainder below. Then for
|
|
* every successive frame, bcnt will be SZ_64K-1. This
|
|
* is assured as bcntrld = 0xffff in end of function.
|
|
*/
|
|
absync = false;
|
|
ccnt = dma_length / acnt / (SZ_64K - 1);
|
|
bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
|
|
/*
|
|
* If bcnt is non-zero, we have a remainder and hence an
|
|
* extra frame to transfer, so increment ccnt.
|
|
*/
|
|
if (bcnt)
|
|
ccnt++;
|
|
else
|
|
bcnt = SZ_64K - 1;
|
|
cidx = acnt;
|
|
} else {
|
|
/*
|
|
* If maxburst is greater than the fifo address_width,
|
|
* use AB-synced transfers where A count is the fifo
|
|
* address_width and B count is the maxburst. In this
|
|
* case, we are limited to transfers of C count frames
|
|
* of (address_width * maxburst) where C count is limited
|
|
* to SZ_64K-1. This places an upper bound on the length
|
|
* of an SG segment that can be handled.
|
|
*/
|
|
absync = true;
|
|
bcnt = burst;
|
|
ccnt = dma_length / (acnt * bcnt);
|
|
if (ccnt > (SZ_64K - 1)) {
|
|
dev_err(dev, "Exceeded max SG segment size\n");
|
|
return -EINVAL;
|
|
}
|
|
cidx = acnt * bcnt;
|
|
}
|
|
|
|
epset->len = dma_length;
|
|
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
src_bidx = acnt;
|
|
src_cidx = cidx;
|
|
dst_bidx = 0;
|
|
dst_cidx = 0;
|
|
epset->addr = src_addr;
|
|
} else if (direction == DMA_DEV_TO_MEM) {
|
|
src_bidx = 0;
|
|
src_cidx = 0;
|
|
dst_bidx = acnt;
|
|
dst_cidx = cidx;
|
|
epset->addr = dst_addr;
|
|
} else if (direction == DMA_MEM_TO_MEM) {
|
|
src_bidx = acnt;
|
|
src_cidx = cidx;
|
|
dst_bidx = acnt;
|
|
dst_cidx = cidx;
|
|
} else {
|
|
dev_err(dev, "%s: direction not implemented yet\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
|
|
/* Configure A or AB synchronized transfers */
|
|
if (absync)
|
|
param->opt |= SYNCDIM;
|
|
|
|
param->src = src_addr;
|
|
param->dst = dst_addr;
|
|
|
|
param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
|
|
param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
|
|
|
|
param->a_b_cnt = bcnt << 16 | acnt;
|
|
param->ccnt = ccnt;
|
|
/*
|
|
* Only time when (bcntrld) auto reload is required is for
|
|
* A-sync case, and in this case, a requirement of reload value
|
|
* of SZ_64K-1 only is assured. 'link' is initially set to NULL
|
|
* and then later will be populated by edma_execute.
|
|
*/
|
|
param->link_bcntrld = 0xffffffff;
|
|
return absync;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long tx_flags, void *context)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_desc *edesc;
|
|
dma_addr_t src_addr = 0, dst_addr = 0;
|
|
enum dma_slave_buswidth dev_width;
|
|
u32 burst;
|
|
struct scatterlist *sg;
|
|
int i, nslots, ret;
|
|
|
|
if (unlikely(!echan || !sgl || !sg_len))
|
|
return NULL;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
src_addr = echan->cfg.src_addr;
|
|
dev_width = echan->cfg.src_addr_width;
|
|
burst = echan->cfg.src_maxburst;
|
|
} else if (direction == DMA_MEM_TO_DEV) {
|
|
dst_addr = echan->cfg.dst_addr;
|
|
dev_width = echan->cfg.dst_addr_width;
|
|
burst = echan->cfg.dst_maxburst;
|
|
} else {
|
|
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + sg_len *
|
|
sizeof(edesc->pset[0]), GFP_ATOMIC);
|
|
if (!edesc) {
|
|
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->pset_nr = sg_len;
|
|
edesc->residue = 0;
|
|
edesc->direction = direction;
|
|
edesc->echan = echan;
|
|
|
|
/* Allocate a PaRAM slot, if needed */
|
|
nslots = min_t(unsigned, MAX_NR_SG, sg_len);
|
|
|
|
for (i = 0; i < nslots; i++) {
|
|
if (echan->slot[i] < 0) {
|
|
echan->slot[i] =
|
|
edma_alloc_slot(EDMA_CTLR(echan->ch_num),
|
|
EDMA_SLOT_ANY);
|
|
if (echan->slot[i] < 0) {
|
|
kfree(edesc);
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Configure PaRAM sets for each SG */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
/* Get address for each SG */
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
dst_addr = sg_dma_address(sg);
|
|
else
|
|
src_addr = sg_dma_address(sg);
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
|
|
dst_addr, burst, dev_width,
|
|
sg_dma_len(sg), direction);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->absync = ret;
|
|
edesc->residue += sg_dma_len(sg);
|
|
|
|
/* If this is the last in a current SG set of transactions,
|
|
enable interrupts so that next set is processed */
|
|
if (!((i+1) % MAX_NR_SG))
|
|
edesc->pset[i].param.opt |= TCINTEN;
|
|
|
|
/* If this is the last set, enable completion interrupt flag */
|
|
if (i == sg_len - 1)
|
|
edesc->pset[i].param.opt |= TCINTEN;
|
|
}
|
|
edesc->residue_stat = edesc->residue;
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long tx_flags)
|
|
{
|
|
int ret;
|
|
struct edma_desc *edesc;
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
if (unlikely(!echan || !len))
|
|
return NULL;
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
|
|
if (!edesc) {
|
|
dev_dbg(dev, "Failed to allocate a descriptor\n");
|
|
return NULL;
|
|
}
|
|
|
|
edesc->pset_nr = 1;
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
|
|
DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
|
|
if (ret < 0)
|
|
return NULL;
|
|
|
|
edesc->absync = ret;
|
|
|
|
/*
|
|
* Enable intermediate transfer chaining to re-trigger channel
|
|
* on completion of every TR, and enable transfer-completion
|
|
* interrupt on completion of the whole transfer.
|
|
*/
|
|
edesc->pset[0].param.opt |= ITCCHEN;
|
|
edesc->pset[0].param.opt |= TCINTEN;
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long tx_flags)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_desc *edesc;
|
|
dma_addr_t src_addr, dst_addr;
|
|
enum dma_slave_buswidth dev_width;
|
|
u32 burst;
|
|
int i, ret, nslots;
|
|
|
|
if (unlikely(!echan || !buf_len || !period_len))
|
|
return NULL;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
src_addr = echan->cfg.src_addr;
|
|
dst_addr = buf_addr;
|
|
dev_width = echan->cfg.src_addr_width;
|
|
burst = echan->cfg.src_maxburst;
|
|
} else if (direction == DMA_MEM_TO_DEV) {
|
|
src_addr = buf_addr;
|
|
dst_addr = echan->cfg.dst_addr;
|
|
dev_width = echan->cfg.dst_addr_width;
|
|
burst = echan->cfg.dst_maxburst;
|
|
} else {
|
|
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(buf_len % period_len)) {
|
|
dev_err(dev, "Period should be multiple of Buffer length\n");
|
|
return NULL;
|
|
}
|
|
|
|
nslots = (buf_len / period_len) + 1;
|
|
|
|
/*
|
|
* Cyclic DMA users such as audio cannot tolerate delays introduced
|
|
* by cases where the number of periods is more than the maximum
|
|
* number of SGs the EDMA driver can handle at a time. For DMA types
|
|
* such as Slave SGs, such delays are tolerable and synchronized,
|
|
* but the synchronization is difficult to achieve with Cyclic and
|
|
* cannot be guaranteed, so we error out early.
|
|
*/
|
|
if (nslots > MAX_NR_SG)
|
|
return NULL;
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + nslots *
|
|
sizeof(edesc->pset[0]), GFP_ATOMIC);
|
|
if (!edesc) {
|
|
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->cyclic = 1;
|
|
edesc->pset_nr = nslots;
|
|
edesc->residue = edesc->residue_stat = buf_len;
|
|
edesc->direction = direction;
|
|
edesc->echan = echan;
|
|
|
|
dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
|
|
__func__, echan->ch_num, nslots, period_len, buf_len);
|
|
|
|
for (i = 0; i < nslots; i++) {
|
|
/* Allocate a PaRAM slot, if needed */
|
|
if (echan->slot[i] < 0) {
|
|
echan->slot[i] =
|
|
edma_alloc_slot(EDMA_CTLR(echan->ch_num),
|
|
EDMA_SLOT_ANY);
|
|
if (echan->slot[i] < 0) {
|
|
kfree(edesc);
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (i == nslots - 1) {
|
|
memcpy(&edesc->pset[i], &edesc->pset[0],
|
|
sizeof(edesc->pset[0]));
|
|
break;
|
|
}
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
|
|
dst_addr, burst, dev_width, period_len,
|
|
direction);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
dst_addr += period_len;
|
|
else
|
|
src_addr += period_len;
|
|
|
|
dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
|
|
dev_vdbg(dev,
|
|
"\n pset[%d]:\n"
|
|
" chnum\t%d\n"
|
|
" slot\t%d\n"
|
|
" opt\t%08x\n"
|
|
" src\t%08x\n"
|
|
" dst\t%08x\n"
|
|
" abcnt\t%08x\n"
|
|
" ccnt\t%08x\n"
|
|
" bidx\t%08x\n"
|
|
" cidx\t%08x\n"
|
|
" lkrld\t%08x\n",
|
|
i, echan->ch_num, echan->slot[i],
|
|
edesc->pset[i].param.opt,
|
|
edesc->pset[i].param.src,
|
|
edesc->pset[i].param.dst,
|
|
edesc->pset[i].param.a_b_cnt,
|
|
edesc->pset[i].param.ccnt,
|
|
edesc->pset[i].param.src_dst_bidx,
|
|
edesc->pset[i].param.src_dst_cidx,
|
|
edesc->pset[i].param.link_bcntrld);
|
|
|
|
edesc->absync = ret;
|
|
|
|
/*
|
|
* Enable period interrupt only if it is requested
|
|
*/
|
|
if (tx_flags & DMA_PREP_INTERRUPT)
|
|
edesc->pset[i].param.opt |= TCINTEN;
|
|
}
|
|
|
|
/* Place the cyclic channel to highest priority queue */
|
|
edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
|
|
{
|
|
struct edma_chan *echan = data;
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
struct edma_desc *edesc;
|
|
struct edmacc_param p;
|
|
|
|
edesc = echan->edesc;
|
|
|
|
/* Pause the channel for non-cyclic */
|
|
if (!edesc || (edesc && !edesc->cyclic))
|
|
edma_pause(echan->ch_num);
|
|
|
|
switch (ch_status) {
|
|
case EDMA_DMA_COMPLETE:
|
|
spin_lock(&echan->vchan.lock);
|
|
|
|
if (edesc) {
|
|
if (edesc->cyclic) {
|
|
vchan_cyclic_callback(&edesc->vdesc);
|
|
} else if (edesc->processed == edesc->pset_nr) {
|
|
dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
|
|
edesc->residue = 0;
|
|
edma_stop(echan->ch_num);
|
|
vchan_cookie_complete(&edesc->vdesc);
|
|
edma_execute(echan);
|
|
} else {
|
|
dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
|
|
|
|
/* Update statistics for tx_status */
|
|
edesc->residue -= edesc->sg_len;
|
|
edesc->residue_stat = edesc->residue;
|
|
edesc->processed_stat = edesc->processed;
|
|
|
|
edma_execute(echan);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&echan->vchan.lock);
|
|
|
|
break;
|
|
case EDMA_DMA_CC_ERROR:
|
|
spin_lock(&echan->vchan.lock);
|
|
|
|
edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
|
|
|
|
/*
|
|
* Issue later based on missed flag which will be sure
|
|
* to happen as:
|
|
* (1) we finished transmitting an intermediate slot and
|
|
* edma_execute is coming up.
|
|
* (2) or we finished current transfer and issue will
|
|
* call edma_execute.
|
|
*
|
|
* Important note: issuing can be dangerous here and
|
|
* lead to some nasty recursion when we are in a NULL
|
|
* slot. So we avoid doing so and set the missed flag.
|
|
*/
|
|
if (p.a_b_cnt == 0 && p.ccnt == 0) {
|
|
dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
|
|
echan->missed = 1;
|
|
} else {
|
|
/*
|
|
* The slot is already programmed but the event got
|
|
* missed, so its safe to issue it here.
|
|
*/
|
|
dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
|
|
edma_clean_channel(echan->ch_num);
|
|
edma_stop(echan->ch_num);
|
|
edma_start(echan->ch_num);
|
|
edma_trigger_channel(echan->ch_num);
|
|
}
|
|
|
|
spin_unlock(&echan->vchan.lock);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Alloc channel resources */
|
|
static int edma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
int ret;
|
|
int a_ch_num;
|
|
LIST_HEAD(descs);
|
|
|
|
a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
|
|
chan, EVENTQ_DEFAULT);
|
|
|
|
if (a_ch_num < 0) {
|
|
ret = -ENODEV;
|
|
goto err_no_chan;
|
|
}
|
|
|
|
if (a_ch_num != echan->ch_num) {
|
|
dev_err(dev, "failed to allocate requested channel %u:%u\n",
|
|
EDMA_CTLR(echan->ch_num),
|
|
EDMA_CHAN_SLOT(echan->ch_num));
|
|
ret = -ENODEV;
|
|
goto err_wrong_chan;
|
|
}
|
|
|
|
echan->alloced = true;
|
|
echan->slot[0] = echan->ch_num;
|
|
|
|
dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
|
|
EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
|
|
|
|
return 0;
|
|
|
|
err_wrong_chan:
|
|
edma_free_channel(a_ch_num);
|
|
err_no_chan:
|
|
return ret;
|
|
}
|
|
|
|
/* Free channel resources */
|
|
static void edma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
int i;
|
|
|
|
/* Terminate transfers */
|
|
edma_stop(echan->ch_num);
|
|
|
|
vchan_free_chan_resources(&echan->vchan);
|
|
|
|
/* Free EDMA PaRAM slots */
|
|
for (i = 1; i < EDMA_MAX_SLOTS; i++) {
|
|
if (echan->slot[i] >= 0) {
|
|
edma_free_slot(echan->slot[i]);
|
|
echan->slot[i] = -1;
|
|
}
|
|
}
|
|
|
|
/* Free EDMA channel */
|
|
if (echan->alloced) {
|
|
edma_free_channel(echan->ch_num);
|
|
echan->alloced = false;
|
|
}
|
|
|
|
dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
|
|
}
|
|
|
|
/* Send pending descriptor to hardware */
|
|
static void edma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
|
|
edma_execute(echan);
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
}
|
|
|
|
static u32 edma_residue(struct edma_desc *edesc)
|
|
{
|
|
bool dst = edesc->direction == DMA_DEV_TO_MEM;
|
|
struct edma_pset *pset = edesc->pset;
|
|
dma_addr_t done, pos;
|
|
int i;
|
|
|
|
/*
|
|
* We always read the dst/src position from the first RamPar
|
|
* pset. That's the one which is active now.
|
|
*/
|
|
pos = edma_get_position(edesc->echan->slot[0], dst);
|
|
|
|
/*
|
|
* Cyclic is simple. Just subtract pset[0].addr from pos.
|
|
*
|
|
* We never update edesc->residue in the cyclic case, so we
|
|
* can tell the remaining room to the end of the circular
|
|
* buffer.
|
|
*/
|
|
if (edesc->cyclic) {
|
|
done = pos - pset->addr;
|
|
edesc->residue_stat = edesc->residue - done;
|
|
return edesc->residue_stat;
|
|
}
|
|
|
|
/*
|
|
* For SG operation we catch up with the last processed
|
|
* status.
|
|
*/
|
|
pset += edesc->processed_stat;
|
|
|
|
for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
|
|
/*
|
|
* If we are inside this pset address range, we know
|
|
* this is the active one. Get the current delta and
|
|
* stop walking the psets.
|
|
*/
|
|
if (pos >= pset->addr && pos < pset->addr + pset->len)
|
|
return edesc->residue_stat - (pos - pset->addr);
|
|
|
|
/* Otherwise mark it done and update residue_stat. */
|
|
edesc->processed_stat++;
|
|
edesc->residue_stat -= pset->len;
|
|
}
|
|
return edesc->residue_stat;
|
|
}
|
|
|
|
/* Check request completion status */
|
|
static enum dma_status edma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE || !txstate)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
|
|
txstate->residue = edma_residue(echan->edesc);
|
|
else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
|
|
txstate->residue = to_edma_desc(&vdesc->tx)->residue;
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init edma_chan_init(struct edma_cc *ecc,
|
|
struct dma_device *dma,
|
|
struct edma_chan *echans)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < EDMA_CHANS; i++) {
|
|
struct edma_chan *echan = &echans[i];
|
|
echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
|
|
echan->ecc = ecc;
|
|
echan->vchan.desc_free = edma_desc_free;
|
|
|
|
vchan_init(&echan->vchan, dma);
|
|
|
|
INIT_LIST_HEAD(&echan->node);
|
|
for (j = 0; j < EDMA_MAX_SLOTS; j++)
|
|
echan->slot[j] = -1;
|
|
}
|
|
}
|
|
|
|
#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
|
|
|
|
static int edma_dma_device_slave_caps(struct dma_chan *dchan,
|
|
struct dma_slave_caps *caps)
|
|
{
|
|
caps->src_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
caps->cmd_pause = true;
|
|
caps->cmd_terminate = true;
|
|
caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
|
|
struct device *dev)
|
|
{
|
|
dma->device_prep_slave_sg = edma_prep_slave_sg;
|
|
dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
|
|
dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
|
|
dma->device_alloc_chan_resources = edma_alloc_chan_resources;
|
|
dma->device_free_chan_resources = edma_free_chan_resources;
|
|
dma->device_issue_pending = edma_issue_pending;
|
|
dma->device_tx_status = edma_tx_status;
|
|
dma->device_control = edma_control;
|
|
dma->device_slave_caps = edma_dma_device_slave_caps;
|
|
dma->dev = dev;
|
|
|
|
/*
|
|
* code using dma memcpy must make sure alignment of
|
|
* length is at dma->copy_align boundary.
|
|
*/
|
|
dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
}
|
|
|
|
static int edma_probe(struct platform_device *pdev)
|
|
{
|
|
struct edma_cc *ecc;
|
|
int ret;
|
|
|
|
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
|
|
if (!ecc) {
|
|
dev_err(&pdev->dev, "Can't allocate controller\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ecc->ctlr = pdev->id;
|
|
ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
|
|
if (ecc->dummy_slot < 0) {
|
|
dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
|
|
return ecc->dummy_slot;
|
|
}
|
|
|
|
dma_cap_zero(ecc->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
|
|
|
|
edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
|
|
|
|
edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
|
|
|
|
ret = dma_async_device_register(&ecc->dma_slave);
|
|
if (ret)
|
|
goto err_reg1;
|
|
|
|
platform_set_drvdata(pdev, ecc);
|
|
|
|
dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
|
|
|
|
return 0;
|
|
|
|
err_reg1:
|
|
edma_free_slot(ecc->dummy_slot);
|
|
return ret;
|
|
}
|
|
|
|
static int edma_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
|
|
dma_async_device_unregister(&ecc->dma_slave);
|
|
edma_free_slot(ecc->dummy_slot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver edma_driver = {
|
|
.probe = edma_probe,
|
|
.remove = edma_remove,
|
|
.driver = {
|
|
.name = "edma-dma-engine",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
bool edma_filter_fn(struct dma_chan *chan, void *param)
|
|
{
|
|
if (chan->device->dev->driver == &edma_driver.driver) {
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned ch_req = *(unsigned *)param;
|
|
return ch_req == echan->ch_num;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(edma_filter_fn);
|
|
|
|
static struct platform_device *pdev0, *pdev1;
|
|
|
|
static const struct platform_device_info edma_dev_info0 = {
|
|
.name = "edma-dma-engine",
|
|
.id = 0,
|
|
.dma_mask = DMA_BIT_MASK(32),
|
|
};
|
|
|
|
static const struct platform_device_info edma_dev_info1 = {
|
|
.name = "edma-dma-engine",
|
|
.id = 1,
|
|
.dma_mask = DMA_BIT_MASK(32),
|
|
};
|
|
|
|
static int edma_init(void)
|
|
{
|
|
int ret = platform_driver_register(&edma_driver);
|
|
|
|
if (ret == 0) {
|
|
pdev0 = platform_device_register_full(&edma_dev_info0);
|
|
if (IS_ERR(pdev0)) {
|
|
platform_driver_unregister(&edma_driver);
|
|
ret = PTR_ERR(pdev0);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!of_have_populated_dt() && EDMA_CTLRS == 2) {
|
|
pdev1 = platform_device_register_full(&edma_dev_info1);
|
|
if (IS_ERR(pdev1)) {
|
|
platform_driver_unregister(&edma_driver);
|
|
platform_device_unregister(pdev0);
|
|
ret = PTR_ERR(pdev1);
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
subsys_initcall(edma_init);
|
|
|
|
static void __exit edma_exit(void)
|
|
{
|
|
platform_device_unregister(pdev0);
|
|
if (pdev1)
|
|
platform_device_unregister(pdev1);
|
|
platform_driver_unregister(&edma_driver);
|
|
}
|
|
module_exit(edma_exit);
|
|
|
|
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
|
|
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
|
|
MODULE_LICENSE("GPL v2");
|