mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-19 19:14:01 +08:00
bbfceef47f
This patch adds in the necessary support for sparsemem such that x86-64 kernels may use sparsemem as an alternative to discontigmem for NUMA kernels. Note that this does no preclude one from continuing to build NUMA kernels using discontigmem, but merely allows the option to build NUMA kernels with sparsemem. Interestingly, the use of sparsemem in lieu of discontigmem in NUMA kernels results in reduced text size for otherwise equivalent kernels as shown in the example builds below: text data bss dec hex filename 2371036 765884 1237108 4374028 42be0c vmlinux.discontig 2366549 776484 1302772 4445805 43d66d vmlinux.sparse Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
417 lines
10 KiB
C
417 lines
10 KiB
C
#ifndef _X86_64_BITOPS_H
|
|
#define _X86_64_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define LOCK_PREFIX "lock ; "
|
|
#else
|
|
#define LOCK_PREFIX ""
|
|
#endif
|
|
|
|
#define ADDR (*(volatile long *) addr)
|
|
|
|
/**
|
|
* set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btsl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
}
|
|
|
|
/**
|
|
* __set_bit - Set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ volatile(
|
|
"btsl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
}
|
|
|
|
/**
|
|
* clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
}
|
|
|
|
static __inline__ void __clear_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__(
|
|
"btrl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
}
|
|
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
/**
|
|
* __change_bit - Toggle a bit in memory
|
|
* @nr: the bit to change
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__(
|
|
"btcl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
}
|
|
|
|
/**
|
|
* change_bit - Toggle a bit in memory
|
|
* @nr: Bit to change
|
|
* @addr: Address to start counting from
|
|
*
|
|
* change_bit() is atomic and may not be reordered.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btcl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btsl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* __test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__(
|
|
"btsl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* __test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__(
|
|
"btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/* WARNING: non atomic and it can be reordered! */
|
|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__(
|
|
"btcl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btcl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"dIr" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
|
/**
|
|
* test_bit - Determine whether a bit is set
|
|
* @nr: bit number to test
|
|
* @addr: Address to start counting from
|
|
*/
|
|
static int test_bit(int nr, const volatile void * addr);
|
|
#endif
|
|
|
|
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
|
|
}
|
|
|
|
static __inline__ int variable_test_bit(int nr, volatile const void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__(
|
|
"btl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit)
|
|
:"m" (ADDR),"dIr" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
constant_test_bit((nr),(addr)) : \
|
|
variable_test_bit((nr),(addr)))
|
|
|
|
#undef ADDR
|
|
|
|
extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
|
|
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
|
|
extern long find_first_bit(const unsigned long * addr, unsigned long size);
|
|
extern long find_next_bit(const unsigned long * addr, long size, long offset);
|
|
|
|
/* return index of first bet set in val or max when no bit is set */
|
|
static inline unsigned long __scanbit(unsigned long val, unsigned long max)
|
|
{
|
|
asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
|
|
return val;
|
|
}
|
|
|
|
#define find_first_bit(addr,size) \
|
|
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
|
|
(__scanbit(*(unsigned long *)addr,(size))) : \
|
|
find_first_bit(addr,size)))
|
|
|
|
#define find_next_bit(addr,size,off) \
|
|
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
|
|
((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
|
|
find_next_bit(addr,size,off)))
|
|
|
|
#define find_first_zero_bit(addr,size) \
|
|
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
|
|
(__scanbit(~*(unsigned long *)addr,(size))) : \
|
|
find_first_zero_bit(addr,size)))
|
|
|
|
#define find_next_zero_bit(addr,size,off) \
|
|
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
|
|
((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
|
|
find_next_zero_bit(addr,size,off)))
|
|
|
|
/*
|
|
* Find string of zero bits in a bitmap. -1 when not found.
|
|
*/
|
|
extern unsigned long
|
|
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
|
|
|
|
static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
|
|
int len)
|
|
{
|
|
unsigned long end = i + len;
|
|
while (i < end) {
|
|
__set_bit(i, bitmap);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
|
|
int len)
|
|
{
|
|
unsigned long end = i + len;
|
|
while (i < end) {
|
|
__clear_bit(i, bitmap);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ffz - find first zero in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
__asm__("bsfq %1,%0"
|
|
:"=r" (word)
|
|
:"r" (~word));
|
|
return word;
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first bit in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static __inline__ unsigned long __ffs(unsigned long word)
|
|
{
|
|
__asm__("bsfq %1,%0"
|
|
:"=r" (word)
|
|
:"rm" (word));
|
|
return word;
|
|
}
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
static inline int sched_find_first_bit(const unsigned long *b)
|
|
{
|
|
if (b[0])
|
|
return __ffs(b[0]);
|
|
if (b[1])
|
|
return __ffs(b[1]) + 64;
|
|
if (b[2])
|
|
return __ffs(b[2]) + 128;
|
|
}
|
|
|
|
/**
|
|
* ffs - find first bit set
|
|
* @x: the word to search
|
|
*
|
|
* This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
static __inline__ int ffs(int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsfl %1,%0\n\t"
|
|
"cmovzl %2,%0"
|
|
: "=r" (r) : "rm" (x), "r" (-1));
|
|
return r+1;
|
|
}
|
|
|
|
/**
|
|
* hweightN - returns the hamming weight of a N-bit word
|
|
* @x: the word to weigh
|
|
*
|
|
* The Hamming Weight of a number is the total number of bits set in it.
|
|
*/
|
|
|
|
#define hweight64(x) generic_hweight64(x)
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#define ext2_set_bit(nr,addr) \
|
|
__test_and_set_bit((nr),(unsigned long*)addr)
|
|
#define ext2_set_bit_atomic(lock,nr,addr) \
|
|
test_and_set_bit((nr),(unsigned long*)addr)
|
|
#define ext2_clear_bit(nr, addr) \
|
|
__test_and_clear_bit((nr),(unsigned long*)addr)
|
|
#define ext2_clear_bit_atomic(lock,nr,addr) \
|
|
test_and_clear_bit((nr),(unsigned long*)addr)
|
|
#define ext2_test_bit(nr, addr) test_bit((nr),(unsigned long*)addr)
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
find_first_zero_bit((unsigned long*)addr, size)
|
|
#define ext2_find_next_zero_bit(addr, size, off) \
|
|
find_next_zero_bit((unsigned long*)addr, size, off)
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,(void*)addr)
|
|
#define minix_set_bit(nr,addr) __set_bit(nr,(void*)addr)
|
|
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,(void*)addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,(void*)addr)
|
|
#define minix_find_first_zero_bit(addr,size) \
|
|
find_first_zero_bit((void*)addr,size)
|
|
|
|
/* find last set bit */
|
|
#define fls(x) generic_fls(x)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _X86_64_BITOPS_H */
|