2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/arch/mips/math-emu/sp_sqrt.c
Maciej W. Rozycki d5afa7e905 MIPS: math-emu: Reinstate sNaN quieting handlers
Revert the changes made by commit fdffbafb [Lots of FPU bug fixes from
Kjeld Borch Egevang.] to `ieee754sp_nanxcpt' and `ieee754dp_nanxcpt'
sNaN quieting handlers and their callers so that sNaN processing is done
within the handlers againg.  Pass the sNaN causing an IEEE 754 invalid
operation exception down to the relevant handler.  Pass the sNaN in `fs'
where two sNaNs are supplied to a binary operation.

Set the Invalid Operation FCSR exception bits in the quieting handlers
rather than at their call sites throughout.  Make the handlers exclusive
for sNaN processing.

Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9688/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-04-08 01:09:31 +02:00

115 lines
2.4 KiB
C

/* IEEE754 floating point arithmetic
* single precision square root
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "ieee754sp.h"
union ieee754sp ieee754sp_sqrt(union ieee754sp x)
{
int ix, s, q, m, t, i;
unsigned int r;
COMPXSP;
/* take care of Inf and NaN */
EXPLODEXSP;
ieee754_clearcx();
FLUSHXSP;
/* x == INF or NAN? */
switch (xc) {
case IEEE754_CLASS_SNAN:
return ieee754sp_nanxcpt(x);
case IEEE754_CLASS_QNAN:
/* sqrt(Nan) = Nan */
return x;
case IEEE754_CLASS_ZERO:
/* sqrt(0) = 0 */
return x;
case IEEE754_CLASS_INF:
if (xs) {
/* sqrt(-Inf) = Nan */
ieee754_setcx(IEEE754_INVALID_OPERATION);
return ieee754sp_indef();
}
/* sqrt(+Inf) = Inf */
return x;
case IEEE754_CLASS_DNORM:
case IEEE754_CLASS_NORM:
if (xs) {
/* sqrt(-x) = Nan */
ieee754_setcx(IEEE754_INVALID_OPERATION);
return ieee754sp_indef();
}
break;
}
ix = x.bits;
/* normalize x */
m = (ix >> 23);
if (m == 0) { /* subnormal x */
for (i = 0; (ix & 0x00800000) == 0; i++)
ix <<= 1;
m -= i - 1;
}
m -= 127; /* unbias exponent */
ix = (ix & 0x007fffff) | 0x00800000;
if (m & 1) /* odd m, double x to make it even */
ix += ix;
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix += ix;
q = s = 0; /* q = sqrt(x) */
r = 0x01000000; /* r = moving bit from right to left */
while (r != 0) {
t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
if (ix != 0) {
ieee754_setcx(IEEE754_INEXACT);
switch (ieee754_csr.rm) {
case FPU_CSR_RU:
q += 2;
break;
case FPU_CSR_RN:
q += (q & 1);
break;
}
}
ix = (q >> 1) + 0x3f000000;
ix += (m << 23);
x.bits = ix;
return x;
}