2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00
linux-next/arch/arm26/nwfpe/single_cpdo.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

256 lines
5.3 KiB
C

/*
NetWinder Floating Point Emulator
(c) Rebel.COM, 1998,1999
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "fpa11.h"
#include "softfloat.h"
#include "fpopcode.h"
float32 float32_exp(float32 Fm);
float32 float32_ln(float32 Fm);
float32 float32_sin(float32 rFm);
float32 float32_cos(float32 rFm);
float32 float32_arcsin(float32 rFm);
float32 float32_arctan(float32 rFm);
float32 float32_log(float32 rFm);
float32 float32_tan(float32 rFm);
float32 float32_arccos(float32 rFm);
float32 float32_pow(float32 rFn,float32 rFm);
float32 float32_pol(float32 rFn,float32 rFm);
unsigned int SingleCPDO(const unsigned int opcode)
{
FPA11 *fpa11 = GET_FPA11();
float32 rFm, rFn = 0; //FIXME - should be zero?
unsigned int Fd, Fm, Fn, nRc = 1;
Fm = getFm(opcode);
if (CONSTANT_FM(opcode))
{
rFm = getSingleConstant(Fm);
}
else
{
switch (fpa11->fType[Fm])
{
case typeSingle:
rFm = fpa11->fpreg[Fm].fSingle;
break;
default: return 0;
}
}
if (!MONADIC_INSTRUCTION(opcode))
{
Fn = getFn(opcode);
switch (fpa11->fType[Fn])
{
case typeSingle:
rFn = fpa11->fpreg[Fn].fSingle;
break;
default: return 0;
}
}
Fd = getFd(opcode);
switch (opcode & MASK_ARITHMETIC_OPCODE)
{
/* dyadic opcodes */
case ADF_CODE:
fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm);
break;
case MUF_CODE:
case FML_CODE:
fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm);
break;
case SUF_CODE:
fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm);
break;
case RSF_CODE:
fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn);
break;
case DVF_CODE:
case FDV_CODE:
fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm);
break;
case RDF_CODE:
case FRD_CODE:
fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn);
break;
#if 0
case POW_CODE:
fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
break;
case RPW_CODE:
fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
break;
#endif
case RMF_CODE:
fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm);
break;
#if 0
case POL_CODE:
fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
break;
#endif
/* monadic opcodes */
case MVF_CODE:
fpa11->fpreg[Fd].fSingle = rFm;
break;
case MNF_CODE:
rFm ^= 0x80000000;
fpa11->fpreg[Fd].fSingle = rFm;
break;
case ABS_CODE:
rFm &= 0x7fffffff;
fpa11->fpreg[Fd].fSingle = rFm;
break;
case RND_CODE:
case URD_CODE:
fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm);
break;
case SQT_CODE:
fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm);
break;
#if 0
case LOG_CODE:
fpa11->fpreg[Fd].fSingle = float32_log(rFm);
break;
case LGN_CODE:
fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
break;
case EXP_CODE:
fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
break;
case SIN_CODE:
fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
break;
case COS_CODE:
fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
break;
case TAN_CODE:
fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
break;
case ASN_CODE:
fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
break;
case ACS_CODE:
fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
break;
case ATN_CODE:
fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
break;
#endif
case NRM_CODE:
break;
default:
{
nRc = 0;
}
}
if (0 != nRc) fpa11->fType[Fd] = typeSingle;
return nRc;
}
#if 0
float32 float32_exp(float32 Fm)
{
//series
}
float32 float32_ln(float32 Fm)
{
//series
}
float32 float32_sin(float32 rFm)
{
//series
}
float32 float32_cos(float32 rFm)
{
//series
}
float32 float32_arcsin(float32 rFm)
{
//series
}
float32 float32_arctan(float32 rFm)
{
//series
}
float32 float32_arccos(float32 rFm)
{
//return float32_sub(halfPi,float32_arcsin(rFm));
}
float32 float32_log(float32 rFm)
{
return float32_div(float32_ln(rFm),getSingleConstant(7));
}
float32 float32_tan(float32 rFm)
{
return float32_div(float32_sin(rFm),float32_cos(rFm));
}
float32 float32_pow(float32 rFn,float32 rFm)
{
return float32_exp(float32_mul(rFm,float32_ln(rFn)));
}
float32 float32_pol(float32 rFn,float32 rFm)
{
return float32_arctan(float32_div(rFn,rFm));
}
#endif