mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 14:43:54 +08:00
cb9f753a37
Thanks to commit 4b3ef9daa4
("mm/swap: split swap cache into 64MB
trunks"), after swapoff the address_space associated with the swap
device will be freed. So page_mapping() users which may touch the
address_space need some kind of mechanism to prevent the address_space
from being freed during accessing.
The dcache flushing functions (flush_dcache_page(), etc) in architecture
specific code may access the address_space of swap device for anonymous
pages in swap cache via page_mapping() function. But in some cases
there are no mechanisms to prevent the swap device from being swapoff,
for example,
CPU1 CPU2
__get_user_pages() swapoff()
flush_dcache_page()
mapping = page_mapping()
... exit_swap_address_space()
... kvfree(spaces)
mapping_mapped(mapping)
The address space may be accessed after being freed.
But from cachetlb.txt and Russell King, flush_dcache_page() only care
about file cache pages, for anonymous pages, flush_anon_page() should be
used. The implementation of flush_dcache_page() in all architectures
follows this too. They will check whether page_mapping() is NULL and
whether mapping_mapped() is true to determine whether to flush the
dcache immediately. And they will use interval tree (mapping->i_mmap)
to find all user space mappings. While mapping_mapped() and
mapping->i_mmap isn't used by anonymous pages in swap cache at all.
So, to fix the race between swapoff and flush dcache, __page_mapping()
is add to return the address_space for file cache pages and NULL
otherwise. All page_mapping() invoking in flush dcache functions are
replaced with page_mapping_file().
[akpm@linux-foundation.org: simplify page_mapping_file(), per Mike]
Link: http://lkml.kernel.org/r/20180305083634.15174-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
513 lines
13 KiB
C
513 lines
13 KiB
C
/*
|
|
* linux/arch/unicore32/mm/mmu.c
|
|
*
|
|
* Code specific to PKUnity SoC and UniCore ISA
|
|
*
|
|
* Copyright (C) 2001-2010 GUAN Xue-tao
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/memblock.h>
|
|
|
|
#include <mach/map.h>
|
|
|
|
#include "mm.h"
|
|
|
|
/*
|
|
* empty_zero_page is a special page that is used for
|
|
* zero-initialized data and COW.
|
|
*/
|
|
struct page *empty_zero_page;
|
|
EXPORT_SYMBOL(empty_zero_page);
|
|
|
|
/*
|
|
* The pmd table for the upper-most set of pages.
|
|
*/
|
|
pmd_t *top_pmd;
|
|
|
|
pgprot_t pgprot_user;
|
|
EXPORT_SYMBOL(pgprot_user);
|
|
|
|
pgprot_t pgprot_kernel;
|
|
EXPORT_SYMBOL(pgprot_kernel);
|
|
|
|
static int __init noalign_setup(char *__unused)
|
|
{
|
|
cr_alignment &= ~CR_A;
|
|
cr_no_alignment &= ~CR_A;
|
|
set_cr(cr_alignment);
|
|
return 1;
|
|
}
|
|
__setup("noalign", noalign_setup);
|
|
|
|
void adjust_cr(unsigned long mask, unsigned long set)
|
|
{
|
|
unsigned long flags;
|
|
|
|
mask &= ~CR_A;
|
|
|
|
set &= mask;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cr_no_alignment = (cr_no_alignment & ~mask) | set;
|
|
cr_alignment = (cr_alignment & ~mask) | set;
|
|
|
|
set_cr((get_cr() & ~mask) | set);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
struct map_desc {
|
|
unsigned long virtual;
|
|
unsigned long pfn;
|
|
unsigned long length;
|
|
unsigned int type;
|
|
};
|
|
|
|
#define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
|
|
PTE_DIRTY | PTE_READ | PTE_WRITE)
|
|
#define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
|
|
PMD_SECT_READ | PMD_SECT_WRITE)
|
|
|
|
static struct mem_type mem_types[] = {
|
|
[MT_DEVICE] = { /* Strongly ordered */
|
|
.prot_pte = PROT_PTE_DEVICE,
|
|
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
|
|
.prot_sect = PROT_SECT_DEVICE,
|
|
},
|
|
/*
|
|
* MT_KUSER: pte for vecpage -- cacheable,
|
|
* and sect for unigfx mmap -- noncacheable
|
|
*/
|
|
[MT_KUSER] = {
|
|
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
|
|
PTE_CACHEABLE | PTE_READ | PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
|
|
.prot_sect = PROT_SECT_DEVICE,
|
|
},
|
|
[MT_HIGH_VECTORS] = {
|
|
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
|
|
PTE_CACHEABLE | PTE_READ | PTE_WRITE |
|
|
PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
|
|
},
|
|
[MT_MEMORY] = {
|
|
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
|
|
PTE_WRITE | PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
|
|
PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
|
|
},
|
|
[MT_ROM] = {
|
|
.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
|
|
PMD_SECT_READ,
|
|
},
|
|
};
|
|
|
|
const struct mem_type *get_mem_type(unsigned int type)
|
|
{
|
|
return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
|
|
}
|
|
EXPORT_SYMBOL(get_mem_type);
|
|
|
|
/*
|
|
* Adjust the PMD section entries according to the CPU in use.
|
|
*/
|
|
static void __init build_mem_type_table(void)
|
|
{
|
|
pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
|
|
pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
|
|
PTE_DIRTY | PTE_READ | PTE_WRITE |
|
|
PTE_EXEC | PTE_CACHEABLE);
|
|
}
|
|
|
|
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
|
|
|
|
static void __init *early_alloc(unsigned long sz)
|
|
{
|
|
void *ptr = __va(memblock_alloc(sz, sz));
|
|
memset(ptr, 0, sz);
|
|
return ptr;
|
|
}
|
|
|
|
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
|
|
unsigned long prot)
|
|
{
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
|
|
__pmd_populate(pmd, __pa(pte) | prot);
|
|
}
|
|
BUG_ON(pmd_bad(*pmd));
|
|
return pte_offset_kernel(pmd, addr);
|
|
}
|
|
|
|
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, unsigned long pfn,
|
|
const struct mem_type *type)
|
|
{
|
|
pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
|
|
do {
|
|
set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
|
|
pfn++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, unsigned long phys,
|
|
const struct mem_type *type)
|
|
{
|
|
pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
|
|
|
|
/*
|
|
* Try a section mapping - end, addr and phys must all be aligned
|
|
* to a section boundary.
|
|
*/
|
|
if (((addr | end | phys) & ~SECTION_MASK) == 0) {
|
|
pmd_t *p = pmd;
|
|
|
|
do {
|
|
set_pmd(pmd, __pmd(phys | type->prot_sect));
|
|
phys += SECTION_SIZE;
|
|
} while (pmd++, addr += SECTION_SIZE, addr != end);
|
|
|
|
flush_pmd_entry(p);
|
|
} else {
|
|
/*
|
|
* No need to loop; pte's aren't interested in the
|
|
* individual L1 entries.
|
|
*/
|
|
alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the page directory entries and any necessary
|
|
* page tables for the mapping specified by `md'. We
|
|
* are able to cope here with varying sizes and address
|
|
* offsets, and we take full advantage of sections.
|
|
*/
|
|
static void __init create_mapping(struct map_desc *md)
|
|
{
|
|
unsigned long phys, addr, length, end;
|
|
const struct mem_type *type;
|
|
pgd_t *pgd;
|
|
|
|
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
|
|
printk(KERN_WARNING "BUG: not creating mapping for "
|
|
"0x%08llx at 0x%08lx in user region\n",
|
|
__pfn_to_phys((u64)md->pfn), md->virtual);
|
|
return;
|
|
}
|
|
|
|
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
|
|
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
|
|
printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
|
|
"overlaps vmalloc space\n",
|
|
__pfn_to_phys((u64)md->pfn), md->virtual);
|
|
}
|
|
|
|
type = &mem_types[md->type];
|
|
|
|
addr = md->virtual & PAGE_MASK;
|
|
phys = (unsigned long)__pfn_to_phys(md->pfn);
|
|
length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
|
|
|
|
if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
|
|
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
|
|
"be mapped using pages, ignoring.\n",
|
|
__pfn_to_phys(md->pfn), addr);
|
|
return;
|
|
}
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
end = addr + length;
|
|
do {
|
|
unsigned long next = pgd_addr_end(addr, end);
|
|
|
|
alloc_init_section(pgd, addr, next, phys, type);
|
|
|
|
phys += next - addr;
|
|
addr = next;
|
|
} while (pgd++, addr != end);
|
|
}
|
|
|
|
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
|
|
|
|
/*
|
|
* vmalloc=size forces the vmalloc area to be exactly 'size'
|
|
* bytes. This can be used to increase (or decrease) the vmalloc
|
|
* area - the default is 128m.
|
|
*/
|
|
static int __init early_vmalloc(char *arg)
|
|
{
|
|
unsigned long vmalloc_reserve = memparse(arg, NULL);
|
|
|
|
if (vmalloc_reserve < SZ_16M) {
|
|
vmalloc_reserve = SZ_16M;
|
|
printk(KERN_WARNING
|
|
"vmalloc area too small, limiting to %luMB\n",
|
|
vmalloc_reserve >> 20);
|
|
}
|
|
|
|
if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
|
|
vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
|
|
printk(KERN_WARNING
|
|
"vmalloc area is too big, limiting to %luMB\n",
|
|
vmalloc_reserve >> 20);
|
|
}
|
|
|
|
vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
|
|
return 0;
|
|
}
|
|
early_param("vmalloc", early_vmalloc);
|
|
|
|
static phys_addr_t lowmem_limit __initdata = SZ_1G;
|
|
|
|
static void __init sanity_check_meminfo(void)
|
|
{
|
|
int i, j;
|
|
|
|
lowmem_limit = __pa(vmalloc_min - 1) + 1;
|
|
memblock_set_current_limit(lowmem_limit);
|
|
|
|
for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
|
|
struct membank *bank = &meminfo.bank[j];
|
|
*bank = meminfo.bank[i];
|
|
j++;
|
|
}
|
|
meminfo.nr_banks = j;
|
|
}
|
|
|
|
static inline void prepare_page_table(void)
|
|
{
|
|
unsigned long addr;
|
|
phys_addr_t end;
|
|
|
|
/*
|
|
* Clear out all the mappings below the kernel image.
|
|
*/
|
|
for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Find the end of the first block of lowmem.
|
|
*/
|
|
end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
|
|
if (end >= lowmem_limit)
|
|
end = lowmem_limit;
|
|
|
|
/*
|
|
* Clear out all the kernel space mappings, except for the first
|
|
* memory bank, up to the end of the vmalloc region.
|
|
*/
|
|
for (addr = __phys_to_virt(end);
|
|
addr < VMALLOC_END; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
}
|
|
|
|
/*
|
|
* Reserve the special regions of memory
|
|
*/
|
|
void __init uc32_mm_memblock_reserve(void)
|
|
{
|
|
/*
|
|
* Reserve the page tables. These are already in use,
|
|
* and can only be in node 0.
|
|
*/
|
|
memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
|
|
}
|
|
|
|
/*
|
|
* Set up device the mappings. Since we clear out the page tables for all
|
|
* mappings above VMALLOC_END, we will remove any debug device mappings.
|
|
* This means you have to be careful how you debug this function, or any
|
|
* called function. This means you can't use any function or debugging
|
|
* method which may touch any device, otherwise the kernel _will_ crash.
|
|
*/
|
|
static void __init devicemaps_init(void)
|
|
{
|
|
struct map_desc map;
|
|
unsigned long addr;
|
|
void *vectors;
|
|
|
|
/*
|
|
* Allocate the vector page early.
|
|
*/
|
|
vectors = early_alloc(PAGE_SIZE);
|
|
|
|
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Create a mapping for the machine vectors at the high-vectors
|
|
* location (0xffff0000). If we aren't using high-vectors, also
|
|
* create a mapping at the low-vectors virtual address.
|
|
*/
|
|
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
|
|
map.virtual = VECTORS_BASE;
|
|
map.length = PAGE_SIZE;
|
|
map.type = MT_HIGH_VECTORS;
|
|
create_mapping(&map);
|
|
|
|
/*
|
|
* Create a mapping for the kuser page at the special
|
|
* location (0xbfff0000) to the same vectors location.
|
|
*/
|
|
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
|
|
map.virtual = KUSER_VECPAGE_BASE;
|
|
map.length = PAGE_SIZE;
|
|
map.type = MT_KUSER;
|
|
create_mapping(&map);
|
|
|
|
/*
|
|
* Finally flush the caches and tlb to ensure that we're in a
|
|
* consistent state wrt the writebuffer. This also ensures that
|
|
* any write-allocated cache lines in the vector page are written
|
|
* back. After this point, we can start to touch devices again.
|
|
*/
|
|
local_flush_tlb_all();
|
|
flush_cache_all();
|
|
}
|
|
|
|
static void __init map_lowmem(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
|
|
/* Map all the lowmem memory banks. */
|
|
for_each_memblock(memory, reg) {
|
|
phys_addr_t start = reg->base;
|
|
phys_addr_t end = start + reg->size;
|
|
struct map_desc map;
|
|
|
|
if (end > lowmem_limit)
|
|
end = lowmem_limit;
|
|
if (start >= end)
|
|
break;
|
|
|
|
map.pfn = __phys_to_pfn(start);
|
|
map.virtual = __phys_to_virt(start);
|
|
map.length = end - start;
|
|
map.type = MT_MEMORY;
|
|
|
|
create_mapping(&map);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps, and sets up the zero page, bad page and bad page tables.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
void *zero_page;
|
|
|
|
build_mem_type_table();
|
|
sanity_check_meminfo();
|
|
prepare_page_table();
|
|
map_lowmem();
|
|
devicemaps_init();
|
|
|
|
top_pmd = pmd_off_k(0xffff0000);
|
|
|
|
/* allocate the zero page. */
|
|
zero_page = early_alloc(PAGE_SIZE);
|
|
|
|
bootmem_init();
|
|
|
|
empty_zero_page = virt_to_page(zero_page);
|
|
__flush_dcache_page(NULL, empty_zero_page);
|
|
}
|
|
|
|
/*
|
|
* In order to soft-boot, we need to insert a 1:1 mapping in place of
|
|
* the user-mode pages. This will then ensure that we have predictable
|
|
* results when turning the mmu off
|
|
*/
|
|
void setup_mm_for_reboot(void)
|
|
{
|
|
unsigned long base_pmdval;
|
|
pgd_t *pgd;
|
|
int i;
|
|
|
|
/*
|
|
* We need to access to user-mode page tables here. For kernel threads
|
|
* we don't have any user-mode mappings so we use the context that we
|
|
* "borrowed".
|
|
*/
|
|
pgd = current->active_mm->pgd;
|
|
|
|
base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
|
|
|
|
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
|
|
unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_off(pgd, i << PGDIR_SHIFT);
|
|
set_pmd(pmd, __pmd(pmdval));
|
|
flush_pmd_entry(pmd);
|
|
}
|
|
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* Take care of architecture specific things when placing a new PTE into
|
|
* a page table, or changing an existing PTE. Basically, there are two
|
|
* things that we need to take care of:
|
|
*
|
|
* 1. If PG_dcache_clean is not set for the page, we need to ensure
|
|
* that any cache entries for the kernels virtual memory
|
|
* range are written back to the page.
|
|
* 2. If we have multiple shared mappings of the same space in
|
|
* an object, we need to deal with the cache aliasing issues.
|
|
*
|
|
* Note that the pte lock will be held.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
unsigned long pfn = pte_pfn(*ptep);
|
|
struct address_space *mapping;
|
|
struct page *page;
|
|
|
|
if (!pfn_valid(pfn))
|
|
return;
|
|
|
|
/*
|
|
* The zero page is never written to, so never has any dirty
|
|
* cache lines, and therefore never needs to be flushed.
|
|
*/
|
|
page = pfn_to_page(pfn);
|
|
if (page == ZERO_PAGE(0))
|
|
return;
|
|
|
|
mapping = page_mapping_file(page);
|
|
if (!test_and_set_bit(PG_dcache_clean, &page->flags))
|
|
__flush_dcache_page(mapping, page);
|
|
if (mapping)
|
|
if (vma->vm_flags & VM_EXEC)
|
|
__flush_icache_all();
|
|
}
|