mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
831b624df1
persistent_ram_vmap() returns the page start vaddr.
persistent_ram_iomap() supports non-page-aligned mapping.
persistent_ram_buffer_map() always adds offset-in-page to the vaddr
returned from these two functions, which causes incorrect mapping of
non-page-aligned persistent ram buffer.
By default ftrace_size is 4096 and max_ftrace_cnt is nr_cpu_ids. Without
this patch, the zone_sz in ramoops_init_przs() is 4096/nr_cpu_ids which
might not be page aligned. If the offset-in-page > 2048, the vaddr will be
in next page. If the next page is not mapped, it will cause kernel panic:
[ 0.074231] BUG: unable to handle kernel paging request at ffffa19e0081b000
...
[ 0.075000] RIP: 0010:persistent_ram_new+0x1f8/0x39f
...
[ 0.075000] Call Trace:
[ 0.075000] ramoops_init_przs.part.10.constprop.15+0x105/0x260
[ 0.075000] ramoops_probe+0x232/0x3a0
[ 0.075000] platform_drv_probe+0x3e/0xa0
[ 0.075000] driver_probe_device+0x2cd/0x400
[ 0.075000] __driver_attach+0xe4/0x110
[ 0.075000] ? driver_probe_device+0x400/0x400
[ 0.075000] bus_for_each_dev+0x70/0xa0
[ 0.075000] driver_attach+0x1e/0x20
[ 0.075000] bus_add_driver+0x159/0x230
[ 0.075000] ? do_early_param+0x95/0x95
[ 0.075000] driver_register+0x70/0xc0
[ 0.075000] ? init_pstore_fs+0x4d/0x4d
[ 0.075000] __platform_driver_register+0x36/0x40
[ 0.075000] ramoops_init+0x12f/0x131
[ 0.075000] do_one_initcall+0x4d/0x12c
[ 0.075000] ? do_early_param+0x95/0x95
[ 0.075000] kernel_init_freeable+0x19b/0x222
[ 0.075000] ? rest_init+0xbb/0xbb
[ 0.075000] kernel_init+0xe/0xfc
[ 0.075000] ret_from_fork+0x3a/0x50
Signed-off-by: Bin Yang <bin.yang@intel.com>
[kees: add comments describing the mapping differences, updated commit log]
Fixes: 24c3d2f342
("staging: android: persistent_ram: Make it possible to use memory outside of bootmem")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
577 lines
14 KiB
C
577 lines
14 KiB
C
/*
|
|
* Copyright (C) 2012 Google, Inc.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "persistent_ram: " fmt
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pstore_ram.h>
|
|
#include <linux/rslib.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/page.h>
|
|
|
|
struct persistent_ram_buffer {
|
|
uint32_t sig;
|
|
atomic_t start;
|
|
atomic_t size;
|
|
uint8_t data[0];
|
|
};
|
|
|
|
#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
|
|
|
|
static inline size_t buffer_size(struct persistent_ram_zone *prz)
|
|
{
|
|
return atomic_read(&prz->buffer->size);
|
|
}
|
|
|
|
static inline size_t buffer_start(struct persistent_ram_zone *prz)
|
|
{
|
|
return atomic_read(&prz->buffer->start);
|
|
}
|
|
|
|
/* increase and wrap the start pointer, returning the old value */
|
|
static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
|
|
{
|
|
int old;
|
|
int new;
|
|
unsigned long flags = 0;
|
|
|
|
if (!(prz->flags & PRZ_FLAG_NO_LOCK))
|
|
raw_spin_lock_irqsave(&prz->buffer_lock, flags);
|
|
|
|
old = atomic_read(&prz->buffer->start);
|
|
new = old + a;
|
|
while (unlikely(new >= prz->buffer_size))
|
|
new -= prz->buffer_size;
|
|
atomic_set(&prz->buffer->start, new);
|
|
|
|
if (!(prz->flags & PRZ_FLAG_NO_LOCK))
|
|
raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
|
|
|
|
return old;
|
|
}
|
|
|
|
/* increase the size counter until it hits the max size */
|
|
static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
|
|
{
|
|
size_t old;
|
|
size_t new;
|
|
unsigned long flags = 0;
|
|
|
|
if (!(prz->flags & PRZ_FLAG_NO_LOCK))
|
|
raw_spin_lock_irqsave(&prz->buffer_lock, flags);
|
|
|
|
old = atomic_read(&prz->buffer->size);
|
|
if (old == prz->buffer_size)
|
|
goto exit;
|
|
|
|
new = old + a;
|
|
if (new > prz->buffer_size)
|
|
new = prz->buffer_size;
|
|
atomic_set(&prz->buffer->size, new);
|
|
|
|
exit:
|
|
if (!(prz->flags & PRZ_FLAG_NO_LOCK))
|
|
raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
|
|
}
|
|
|
|
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
|
|
uint8_t *data, size_t len, uint8_t *ecc)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize the parity buffer */
|
|
memset(prz->ecc_info.par, 0,
|
|
prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
|
|
encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
|
|
for (i = 0; i < prz->ecc_info.ecc_size; i++)
|
|
ecc[i] = prz->ecc_info.par[i];
|
|
}
|
|
|
|
static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
|
|
void *data, size_t len, uint8_t *ecc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < prz->ecc_info.ecc_size; i++)
|
|
prz->ecc_info.par[i] = ecc[i];
|
|
return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
|
|
NULL, 0, NULL, 0, NULL);
|
|
}
|
|
|
|
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
|
|
unsigned int start, unsigned int count)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
uint8_t *buffer_end = buffer->data + prz->buffer_size;
|
|
uint8_t *block;
|
|
uint8_t *par;
|
|
int ecc_block_size = prz->ecc_info.block_size;
|
|
int ecc_size = prz->ecc_info.ecc_size;
|
|
int size = ecc_block_size;
|
|
|
|
if (!ecc_size)
|
|
return;
|
|
|
|
block = buffer->data + (start & ~(ecc_block_size - 1));
|
|
par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
|
|
|
|
do {
|
|
if (block + ecc_block_size > buffer_end)
|
|
size = buffer_end - block;
|
|
persistent_ram_encode_rs8(prz, block, size, par);
|
|
block += ecc_block_size;
|
|
par += ecc_size;
|
|
} while (block < buffer->data + start + count);
|
|
}
|
|
|
|
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
|
|
if (!prz->ecc_info.ecc_size)
|
|
return;
|
|
|
|
persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
|
|
prz->par_header);
|
|
}
|
|
|
|
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
uint8_t *block;
|
|
uint8_t *par;
|
|
|
|
if (!prz->ecc_info.ecc_size)
|
|
return;
|
|
|
|
block = buffer->data;
|
|
par = prz->par_buffer;
|
|
while (block < buffer->data + buffer_size(prz)) {
|
|
int numerr;
|
|
int size = prz->ecc_info.block_size;
|
|
if (block + size > buffer->data + prz->buffer_size)
|
|
size = buffer->data + prz->buffer_size - block;
|
|
numerr = persistent_ram_decode_rs8(prz, block, size, par);
|
|
if (numerr > 0) {
|
|
pr_devel("error in block %p, %d\n", block, numerr);
|
|
prz->corrected_bytes += numerr;
|
|
} else if (numerr < 0) {
|
|
pr_devel("uncorrectable error in block %p\n", block);
|
|
prz->bad_blocks++;
|
|
}
|
|
block += prz->ecc_info.block_size;
|
|
par += prz->ecc_info.ecc_size;
|
|
}
|
|
}
|
|
|
|
static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
|
|
struct persistent_ram_ecc_info *ecc_info)
|
|
{
|
|
int numerr;
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
int ecc_blocks;
|
|
size_t ecc_total;
|
|
|
|
if (!ecc_info || !ecc_info->ecc_size)
|
|
return 0;
|
|
|
|
prz->ecc_info.block_size = ecc_info->block_size ?: 128;
|
|
prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
|
|
prz->ecc_info.symsize = ecc_info->symsize ?: 8;
|
|
prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
|
|
|
|
ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
|
|
prz->ecc_info.block_size +
|
|
prz->ecc_info.ecc_size);
|
|
ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
|
|
if (ecc_total >= prz->buffer_size) {
|
|
pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
|
|
__func__, prz->ecc_info.ecc_size,
|
|
ecc_total, prz->buffer_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
prz->buffer_size -= ecc_total;
|
|
prz->par_buffer = buffer->data + prz->buffer_size;
|
|
prz->par_header = prz->par_buffer +
|
|
ecc_blocks * prz->ecc_info.ecc_size;
|
|
|
|
/*
|
|
* first consecutive root is 0
|
|
* primitive element to generate roots = 1
|
|
*/
|
|
prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
|
|
0, 1, prz->ecc_info.ecc_size);
|
|
if (prz->rs_decoder == NULL) {
|
|
pr_info("init_rs failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate workspace instead of using stack VLA */
|
|
prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
|
|
sizeof(*prz->ecc_info.par),
|
|
GFP_KERNEL);
|
|
if (!prz->ecc_info.par) {
|
|
pr_err("cannot allocate ECC parity workspace\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
prz->corrected_bytes = 0;
|
|
prz->bad_blocks = 0;
|
|
|
|
numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
|
|
prz->par_header);
|
|
if (numerr > 0) {
|
|
pr_info("error in header, %d\n", numerr);
|
|
prz->corrected_bytes += numerr;
|
|
} else if (numerr < 0) {
|
|
pr_info("uncorrectable error in header\n");
|
|
prz->bad_blocks++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
|
|
char *str, size_t len)
|
|
{
|
|
ssize_t ret;
|
|
|
|
if (!prz->ecc_info.ecc_size)
|
|
return 0;
|
|
|
|
if (prz->corrected_bytes || prz->bad_blocks)
|
|
ret = snprintf(str, len, ""
|
|
"\n%d Corrected bytes, %d unrecoverable blocks\n",
|
|
prz->corrected_bytes, prz->bad_blocks);
|
|
else
|
|
ret = snprintf(str, len, "\nNo errors detected\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
|
|
const void *s, unsigned int start, unsigned int count)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
memcpy_toio(buffer->data + start, s, count);
|
|
persistent_ram_update_ecc(prz, start, count);
|
|
}
|
|
|
|
static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
|
|
const void __user *s, unsigned int start, unsigned int count)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
|
|
-EFAULT : 0;
|
|
persistent_ram_update_ecc(prz, start, count);
|
|
return ret;
|
|
}
|
|
|
|
void persistent_ram_save_old(struct persistent_ram_zone *prz)
|
|
{
|
|
struct persistent_ram_buffer *buffer = prz->buffer;
|
|
size_t size = buffer_size(prz);
|
|
size_t start = buffer_start(prz);
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
if (!prz->old_log) {
|
|
persistent_ram_ecc_old(prz);
|
|
prz->old_log = kmalloc(size, GFP_KERNEL);
|
|
}
|
|
if (!prz->old_log) {
|
|
pr_err("failed to allocate buffer\n");
|
|
return;
|
|
}
|
|
|
|
prz->old_log_size = size;
|
|
memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
|
|
memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
|
|
}
|
|
|
|
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
|
|
const void *s, unsigned int count)
|
|
{
|
|
int rem;
|
|
int c = count;
|
|
size_t start;
|
|
|
|
if (unlikely(c > prz->buffer_size)) {
|
|
s += c - prz->buffer_size;
|
|
c = prz->buffer_size;
|
|
}
|
|
|
|
buffer_size_add(prz, c);
|
|
|
|
start = buffer_start_add(prz, c);
|
|
|
|
rem = prz->buffer_size - start;
|
|
if (unlikely(rem < c)) {
|
|
persistent_ram_update(prz, s, start, rem);
|
|
s += rem;
|
|
c -= rem;
|
|
start = 0;
|
|
}
|
|
persistent_ram_update(prz, s, start, c);
|
|
|
|
persistent_ram_update_header_ecc(prz);
|
|
|
|
return count;
|
|
}
|
|
|
|
int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
|
|
const void __user *s, unsigned int count)
|
|
{
|
|
int rem, ret = 0, c = count;
|
|
size_t start;
|
|
|
|
if (unlikely(!access_ok(VERIFY_READ, s, count)))
|
|
return -EFAULT;
|
|
if (unlikely(c > prz->buffer_size)) {
|
|
s += c - prz->buffer_size;
|
|
c = prz->buffer_size;
|
|
}
|
|
|
|
buffer_size_add(prz, c);
|
|
|
|
start = buffer_start_add(prz, c);
|
|
|
|
rem = prz->buffer_size - start;
|
|
if (unlikely(rem < c)) {
|
|
ret = persistent_ram_update_user(prz, s, start, rem);
|
|
s += rem;
|
|
c -= rem;
|
|
start = 0;
|
|
}
|
|
if (likely(!ret))
|
|
ret = persistent_ram_update_user(prz, s, start, c);
|
|
|
|
persistent_ram_update_header_ecc(prz);
|
|
|
|
return unlikely(ret) ? ret : count;
|
|
}
|
|
|
|
size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
|
|
{
|
|
return prz->old_log_size;
|
|
}
|
|
|
|
void *persistent_ram_old(struct persistent_ram_zone *prz)
|
|
{
|
|
return prz->old_log;
|
|
}
|
|
|
|
void persistent_ram_free_old(struct persistent_ram_zone *prz)
|
|
{
|
|
kfree(prz->old_log);
|
|
prz->old_log = NULL;
|
|
prz->old_log_size = 0;
|
|
}
|
|
|
|
void persistent_ram_zap(struct persistent_ram_zone *prz)
|
|
{
|
|
atomic_set(&prz->buffer->start, 0);
|
|
atomic_set(&prz->buffer->size, 0);
|
|
persistent_ram_update_header_ecc(prz);
|
|
}
|
|
|
|
static void *persistent_ram_vmap(phys_addr_t start, size_t size,
|
|
unsigned int memtype)
|
|
{
|
|
struct page **pages;
|
|
phys_addr_t page_start;
|
|
unsigned int page_count;
|
|
pgprot_t prot;
|
|
unsigned int i;
|
|
void *vaddr;
|
|
|
|
page_start = start - offset_in_page(start);
|
|
page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
|
|
|
|
if (memtype)
|
|
prot = pgprot_noncached(PAGE_KERNEL);
|
|
else
|
|
prot = pgprot_writecombine(PAGE_KERNEL);
|
|
|
|
pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages) {
|
|
pr_err("%s: Failed to allocate array for %u pages\n",
|
|
__func__, page_count);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
phys_addr_t addr = page_start + i * PAGE_SIZE;
|
|
pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
|
|
}
|
|
vaddr = vmap(pages, page_count, VM_MAP, prot);
|
|
kfree(pages);
|
|
|
|
/*
|
|
* Since vmap() uses page granularity, we must add the offset
|
|
* into the page here, to get the byte granularity address
|
|
* into the mapping to represent the actual "start" location.
|
|
*/
|
|
return vaddr + offset_in_page(start);
|
|
}
|
|
|
|
static void *persistent_ram_iomap(phys_addr_t start, size_t size,
|
|
unsigned int memtype)
|
|
{
|
|
void *va;
|
|
|
|
if (!request_mem_region(start, size, "persistent_ram")) {
|
|
pr_err("request mem region (0x%llx@0x%llx) failed\n",
|
|
(unsigned long long)size, (unsigned long long)start);
|
|
return NULL;
|
|
}
|
|
|
|
if (memtype)
|
|
va = ioremap(start, size);
|
|
else
|
|
va = ioremap_wc(start, size);
|
|
|
|
/*
|
|
* Since request_mem_region() and ioremap() are byte-granularity
|
|
* there is no need handle anything special like we do when the
|
|
* vmap() case in persistent_ram_vmap() above.
|
|
*/
|
|
return va;
|
|
}
|
|
|
|
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
|
|
struct persistent_ram_zone *prz, int memtype)
|
|
{
|
|
prz->paddr = start;
|
|
prz->size = size;
|
|
|
|
if (pfn_valid(start >> PAGE_SHIFT))
|
|
prz->vaddr = persistent_ram_vmap(start, size, memtype);
|
|
else
|
|
prz->vaddr = persistent_ram_iomap(start, size, memtype);
|
|
|
|
if (!prz->vaddr) {
|
|
pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
|
|
(unsigned long long)size, (unsigned long long)start);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
prz->buffer = prz->vaddr;
|
|
prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
|
|
struct persistent_ram_ecc_info *ecc_info)
|
|
{
|
|
int ret;
|
|
|
|
ret = persistent_ram_init_ecc(prz, ecc_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sig ^= PERSISTENT_RAM_SIG;
|
|
|
|
if (prz->buffer->sig == sig) {
|
|
if (buffer_size(prz) > prz->buffer_size ||
|
|
buffer_start(prz) > buffer_size(prz))
|
|
pr_info("found existing invalid buffer, size %zu, start %zu\n",
|
|
buffer_size(prz), buffer_start(prz));
|
|
else {
|
|
pr_debug("found existing buffer, size %zu, start %zu\n",
|
|
buffer_size(prz), buffer_start(prz));
|
|
persistent_ram_save_old(prz);
|
|
return 0;
|
|
}
|
|
} else {
|
|
pr_debug("no valid data in buffer (sig = 0x%08x)\n",
|
|
prz->buffer->sig);
|
|
}
|
|
|
|
/* Rewind missing or invalid memory area. */
|
|
prz->buffer->sig = sig;
|
|
persistent_ram_zap(prz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void persistent_ram_free(struct persistent_ram_zone *prz)
|
|
{
|
|
if (!prz)
|
|
return;
|
|
|
|
if (prz->vaddr) {
|
|
if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
|
|
/* We must vunmap() at page-granularity. */
|
|
vunmap(prz->vaddr - offset_in_page(prz->paddr));
|
|
} else {
|
|
iounmap(prz->vaddr);
|
|
release_mem_region(prz->paddr, prz->size);
|
|
}
|
|
prz->vaddr = NULL;
|
|
}
|
|
if (prz->rs_decoder) {
|
|
free_rs(prz->rs_decoder);
|
|
prz->rs_decoder = NULL;
|
|
}
|
|
kfree(prz->ecc_info.par);
|
|
prz->ecc_info.par = NULL;
|
|
|
|
persistent_ram_free_old(prz);
|
|
kfree(prz);
|
|
}
|
|
|
|
struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
|
|
u32 sig, struct persistent_ram_ecc_info *ecc_info,
|
|
unsigned int memtype, u32 flags)
|
|
{
|
|
struct persistent_ram_zone *prz;
|
|
int ret = -ENOMEM;
|
|
|
|
prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
|
|
if (!prz) {
|
|
pr_err("failed to allocate persistent ram zone\n");
|
|
goto err;
|
|
}
|
|
|
|
/* Initialize general buffer state. */
|
|
raw_spin_lock_init(&prz->buffer_lock);
|
|
prz->flags = flags;
|
|
|
|
ret = persistent_ram_buffer_map(start, size, prz, memtype);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = persistent_ram_post_init(prz, sig, ecc_info);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return prz;
|
|
err:
|
|
persistent_ram_free(prz);
|
|
return ERR_PTR(ret);
|
|
}
|