2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/drivers/media/platform/omap3isp/ispstat.c
Mauro Carvalho Chehab ab22e77cd3 [media] media framework: rename pads init function to media_entity_pads_init()
With the MC next gen rework, what's left for media_entity_init()
is to just initialize the PADs. However, certain devices, like
a FLASH led/light doesn't have any input or output PAD.

So, there's no reason why calling media_entity_init() would be
mandatory. Also, despite its name, what this function actually
does is to initialize the PADs data. So, rename it to
media_entity_pads_init() in order to reflect that.

The media entity actual init happens during entity register,
at media_device_register_entity(). We should move init of
num_links and num_backlinks to it.

Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2016-01-11 12:19:03 -02:00

1063 lines
29 KiB
C

/*
* ispstat.c
*
* TI OMAP3 ISP - Statistics core
*
* Copyright (C) 2010 Nokia Corporation
* Copyright (C) 2009 Texas Instruments, Inc
*
* Contacts: David Cohen <dacohen@gmail.com>
* Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "isp.h"
#define ISP_STAT_USES_DMAENGINE(stat) ((stat)->dma_ch != NULL)
/*
* MAGIC_SIZE must always be the greatest common divisor of
* AEWB_PACKET_SIZE and AF_PAXEL_SIZE.
*/
#define MAGIC_SIZE 16
#define MAGIC_NUM 0x55
/* HACK: AF module seems to be writing one more paxel data than it should. */
#define AF_EXTRA_DATA OMAP3ISP_AF_PAXEL_SIZE
/*
* HACK: H3A modules go to an invalid state after have a SBL overflow. It makes
* the next buffer to start to be written in the same point where the overflow
* occurred instead of the configured address. The only known way to make it to
* go back to a valid state is having a valid buffer processing. Of course it
* requires at least a doubled buffer size to avoid an access to invalid memory
* region. But it does not fix everything. It may happen more than one
* consecutive SBL overflows. In that case, it might be unpredictable how many
* buffers the allocated memory should fit. For that case, a recover
* configuration was created. It produces the minimum buffer size for each H3A
* module and decrease the change for more SBL overflows. This recover state
* will be enabled every time a SBL overflow occur. As the output buffer size
* isn't big, it's possible to have an extra size able to fit many recover
* buffers making it extreamily unlikely to have an access to invalid memory
* region.
*/
#define NUM_H3A_RECOVER_BUFS 10
/*
* HACK: Because of HW issues the generic layer sometimes need to have
* different behaviour for different statistic modules.
*/
#define IS_H3A_AF(stat) ((stat) == &(stat)->isp->isp_af)
#define IS_H3A_AEWB(stat) ((stat) == &(stat)->isp->isp_aewb)
#define IS_H3A(stat) (IS_H3A_AF(stat) || IS_H3A_AEWB(stat))
static void __isp_stat_buf_sync_magic(struct ispstat *stat,
struct ispstat_buffer *buf,
u32 buf_size, enum dma_data_direction dir,
void (*dma_sync)(struct device *,
dma_addr_t, unsigned long, size_t,
enum dma_data_direction))
{
/* Sync the initial and final magic words. */
dma_sync(stat->isp->dev, buf->dma_addr, 0, MAGIC_SIZE, dir);
dma_sync(stat->isp->dev, buf->dma_addr + (buf_size & PAGE_MASK),
buf_size & ~PAGE_MASK, MAGIC_SIZE, dir);
}
static void isp_stat_buf_sync_magic_for_device(struct ispstat *stat,
struct ispstat_buffer *buf,
u32 buf_size,
enum dma_data_direction dir)
{
if (ISP_STAT_USES_DMAENGINE(stat))
return;
__isp_stat_buf_sync_magic(stat, buf, buf_size, dir,
dma_sync_single_range_for_device);
}
static void isp_stat_buf_sync_magic_for_cpu(struct ispstat *stat,
struct ispstat_buffer *buf,
u32 buf_size,
enum dma_data_direction dir)
{
if (ISP_STAT_USES_DMAENGINE(stat))
return;
__isp_stat_buf_sync_magic(stat, buf, buf_size, dir,
dma_sync_single_range_for_cpu);
}
static int isp_stat_buf_check_magic(struct ispstat *stat,
struct ispstat_buffer *buf)
{
const u32 buf_size = IS_H3A_AF(stat) ?
buf->buf_size + AF_EXTRA_DATA : buf->buf_size;
u8 *w;
u8 *end;
int ret = -EINVAL;
isp_stat_buf_sync_magic_for_cpu(stat, buf, buf_size, DMA_FROM_DEVICE);
/* Checking initial magic numbers. They shouldn't be here anymore. */
for (w = buf->virt_addr, end = w + MAGIC_SIZE; w < end; w++)
if (likely(*w != MAGIC_NUM))
ret = 0;
if (ret) {
dev_dbg(stat->isp->dev, "%s: beginning magic check does not "
"match.\n", stat->subdev.name);
return ret;
}
/* Checking magic numbers at the end. They must be still here. */
for (w = buf->virt_addr + buf_size, end = w + MAGIC_SIZE;
w < end; w++) {
if (unlikely(*w != MAGIC_NUM)) {
dev_dbg(stat->isp->dev, "%s: ending magic check does "
"not match.\n", stat->subdev.name);
return -EINVAL;
}
}
isp_stat_buf_sync_magic_for_device(stat, buf, buf_size,
DMA_FROM_DEVICE);
return 0;
}
static void isp_stat_buf_insert_magic(struct ispstat *stat,
struct ispstat_buffer *buf)
{
const u32 buf_size = IS_H3A_AF(stat) ?
stat->buf_size + AF_EXTRA_DATA : stat->buf_size;
isp_stat_buf_sync_magic_for_cpu(stat, buf, buf_size, DMA_FROM_DEVICE);
/*
* Inserting MAGIC_NUM at the beginning and end of the buffer.
* buf->buf_size is set only after the buffer is queued. For now the
* right buf_size for the current configuration is pointed by
* stat->buf_size.
*/
memset(buf->virt_addr, MAGIC_NUM, MAGIC_SIZE);
memset(buf->virt_addr + buf_size, MAGIC_NUM, MAGIC_SIZE);
isp_stat_buf_sync_magic_for_device(stat, buf, buf_size,
DMA_BIDIRECTIONAL);
}
static void isp_stat_buf_sync_for_device(struct ispstat *stat,
struct ispstat_buffer *buf)
{
if (ISP_STAT_USES_DMAENGINE(stat))
return;
dma_sync_sg_for_device(stat->isp->dev, buf->sgt.sgl,
buf->sgt.nents, DMA_FROM_DEVICE);
}
static void isp_stat_buf_sync_for_cpu(struct ispstat *stat,
struct ispstat_buffer *buf)
{
if (ISP_STAT_USES_DMAENGINE(stat))
return;
dma_sync_sg_for_cpu(stat->isp->dev, buf->sgt.sgl,
buf->sgt.nents, DMA_FROM_DEVICE);
}
static void isp_stat_buf_clear(struct ispstat *stat)
{
int i;
for (i = 0; i < STAT_MAX_BUFS; i++)
stat->buf[i].empty = 1;
}
static struct ispstat_buffer *
__isp_stat_buf_find(struct ispstat *stat, int look_empty)
{
struct ispstat_buffer *found = NULL;
int i;
for (i = 0; i < STAT_MAX_BUFS; i++) {
struct ispstat_buffer *curr = &stat->buf[i];
/*
* Don't select the buffer which is being copied to
* userspace or used by the module.
*/
if (curr == stat->locked_buf || curr == stat->active_buf)
continue;
/* Don't select uninitialised buffers if it's not required */
if (!look_empty && curr->empty)
continue;
/* Pick uninitialised buffer over anything else if look_empty */
if (curr->empty) {
found = curr;
break;
}
/* Choose the oldest buffer */
if (!found ||
(s32)curr->frame_number - (s32)found->frame_number < 0)
found = curr;
}
return found;
}
static inline struct ispstat_buffer *
isp_stat_buf_find_oldest(struct ispstat *stat)
{
return __isp_stat_buf_find(stat, 0);
}
static inline struct ispstat_buffer *
isp_stat_buf_find_oldest_or_empty(struct ispstat *stat)
{
return __isp_stat_buf_find(stat, 1);
}
static int isp_stat_buf_queue(struct ispstat *stat)
{
if (!stat->active_buf)
return STAT_NO_BUF;
v4l2_get_timestamp(&stat->active_buf->ts);
stat->active_buf->buf_size = stat->buf_size;
if (isp_stat_buf_check_magic(stat, stat->active_buf)) {
dev_dbg(stat->isp->dev, "%s: data wasn't properly written.\n",
stat->subdev.name);
return STAT_NO_BUF;
}
stat->active_buf->config_counter = stat->config_counter;
stat->active_buf->frame_number = stat->frame_number;
stat->active_buf->empty = 0;
stat->active_buf = NULL;
return STAT_BUF_DONE;
}
/* Get next free buffer to write the statistics to and mark it active. */
static void isp_stat_buf_next(struct ispstat *stat)
{
if (unlikely(stat->active_buf))
/* Overwriting unused active buffer */
dev_dbg(stat->isp->dev, "%s: new buffer requested without "
"queuing active one.\n",
stat->subdev.name);
else
stat->active_buf = isp_stat_buf_find_oldest_or_empty(stat);
}
static void isp_stat_buf_release(struct ispstat *stat)
{
unsigned long flags;
isp_stat_buf_sync_for_device(stat, stat->locked_buf);
spin_lock_irqsave(&stat->isp->stat_lock, flags);
stat->locked_buf = NULL;
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
}
/* Get buffer to userspace. */
static struct ispstat_buffer *isp_stat_buf_get(struct ispstat *stat,
struct omap3isp_stat_data *data)
{
int rval = 0;
unsigned long flags;
struct ispstat_buffer *buf;
spin_lock_irqsave(&stat->isp->stat_lock, flags);
while (1) {
buf = isp_stat_buf_find_oldest(stat);
if (!buf) {
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
dev_dbg(stat->isp->dev, "%s: cannot find a buffer.\n",
stat->subdev.name);
return ERR_PTR(-EBUSY);
}
if (isp_stat_buf_check_magic(stat, buf)) {
dev_dbg(stat->isp->dev, "%s: current buffer has "
"corrupted data\n.", stat->subdev.name);
/* Mark empty because it doesn't have valid data. */
buf->empty = 1;
} else {
/* Buffer isn't corrupted. */
break;
}
}
stat->locked_buf = buf;
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
if (buf->buf_size > data->buf_size) {
dev_warn(stat->isp->dev, "%s: userspace's buffer size is "
"not enough.\n", stat->subdev.name);
isp_stat_buf_release(stat);
return ERR_PTR(-EINVAL);
}
isp_stat_buf_sync_for_cpu(stat, buf);
rval = copy_to_user(data->buf,
buf->virt_addr,
buf->buf_size);
if (rval) {
dev_info(stat->isp->dev,
"%s: failed copying %d bytes of stat data\n",
stat->subdev.name, rval);
buf = ERR_PTR(-EFAULT);
isp_stat_buf_release(stat);
}
return buf;
}
static void isp_stat_bufs_free(struct ispstat *stat)
{
struct device *dev = ISP_STAT_USES_DMAENGINE(stat)
? NULL : stat->isp->dev;
unsigned int i;
for (i = 0; i < STAT_MAX_BUFS; i++) {
struct ispstat_buffer *buf = &stat->buf[i];
if (!buf->virt_addr)
continue;
sg_free_table(&buf->sgt);
dma_free_coherent(dev, stat->buf_alloc_size, buf->virt_addr,
buf->dma_addr);
buf->dma_addr = 0;
buf->virt_addr = NULL;
buf->empty = 1;
}
dev_dbg(stat->isp->dev, "%s: all buffers were freed.\n",
stat->subdev.name);
stat->buf_alloc_size = 0;
stat->active_buf = NULL;
}
static int isp_stat_bufs_alloc_one(struct device *dev,
struct ispstat_buffer *buf,
unsigned int size)
{
int ret;
buf->virt_addr = dma_alloc_coherent(dev, size, &buf->dma_addr,
GFP_KERNEL | GFP_DMA);
if (!buf->virt_addr)
return -ENOMEM;
ret = dma_get_sgtable(dev, &buf->sgt, buf->virt_addr, buf->dma_addr,
size);
if (ret < 0) {
dma_free_coherent(dev, size, buf->virt_addr, buf->dma_addr);
buf->virt_addr = NULL;
buf->dma_addr = 0;
return ret;
}
return 0;
}
/*
* The device passed to the DMA API depends on whether the statistics block uses
* ISP DMA, external DMA or PIO to transfer data.
*
* The first case (for the AEWB and AF engines) passes the ISP device, resulting
* in the DMA buffers being mapped through the ISP IOMMU.
*
* The second case (for the histogram engine) should pass the DMA engine device.
* As that device isn't accessible through the OMAP DMA engine API the driver
* passes NULL instead, resulting in the buffers being mapped directly as
* physical pages.
*
* The third case (for the histogram engine) doesn't require any mapping. The
* buffers could be allocated with kmalloc/vmalloc, but we still use
* dma_alloc_coherent() for consistency purpose.
*/
static int isp_stat_bufs_alloc(struct ispstat *stat, u32 size)
{
struct device *dev = ISP_STAT_USES_DMAENGINE(stat)
? NULL : stat->isp->dev;
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&stat->isp->stat_lock, flags);
BUG_ON(stat->locked_buf != NULL);
/* Are the old buffers big enough? */
if (stat->buf_alloc_size >= size) {
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
return 0;
}
if (stat->state != ISPSTAT_DISABLED || stat->buf_processing) {
dev_info(stat->isp->dev,
"%s: trying to allocate memory when busy\n",
stat->subdev.name);
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
return -EBUSY;
}
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
isp_stat_bufs_free(stat);
stat->buf_alloc_size = size;
for (i = 0; i < STAT_MAX_BUFS; i++) {
struct ispstat_buffer *buf = &stat->buf[i];
int ret;
ret = isp_stat_bufs_alloc_one(dev, buf, size);
if (ret < 0) {
dev_err(stat->isp->dev,
"%s: Failed to allocate DMA buffer %u\n",
stat->subdev.name, i);
isp_stat_bufs_free(stat);
return ret;
}
buf->empty = 1;
dev_dbg(stat->isp->dev,
"%s: buffer[%u] allocated. dma=0x%08lx virt=0x%08lx",
stat->subdev.name, i,
(unsigned long)buf->dma_addr,
(unsigned long)buf->virt_addr);
}
return 0;
}
static void isp_stat_queue_event(struct ispstat *stat, int err)
{
struct video_device *vdev = stat->subdev.devnode;
struct v4l2_event event;
struct omap3isp_stat_event_status *status = (void *)event.u.data;
memset(&event, 0, sizeof(event));
if (!err) {
status->frame_number = stat->frame_number;
status->config_counter = stat->config_counter;
} else {
status->buf_err = 1;
}
event.type = stat->event_type;
v4l2_event_queue(vdev, &event);
}
/*
* omap3isp_stat_request_statistics - Request statistics.
* @data: Pointer to return statistics data.
*
* Returns 0 if successful.
*/
int omap3isp_stat_request_statistics(struct ispstat *stat,
struct omap3isp_stat_data *data)
{
struct ispstat_buffer *buf;
if (stat->state != ISPSTAT_ENABLED) {
dev_dbg(stat->isp->dev, "%s: engine not enabled.\n",
stat->subdev.name);
return -EINVAL;
}
mutex_lock(&stat->ioctl_lock);
buf = isp_stat_buf_get(stat, data);
if (IS_ERR(buf)) {
mutex_unlock(&stat->ioctl_lock);
return PTR_ERR(buf);
}
data->ts = buf->ts;
data->config_counter = buf->config_counter;
data->frame_number = buf->frame_number;
data->buf_size = buf->buf_size;
buf->empty = 1;
isp_stat_buf_release(stat);
mutex_unlock(&stat->ioctl_lock);
return 0;
}
/*
* omap3isp_stat_config - Receives new statistic engine configuration.
* @new_conf: Pointer to config structure.
*
* Returns 0 if successful, -EINVAL if new_conf pointer is NULL, -ENOMEM if
* was unable to allocate memory for the buffer, or other errors if parameters
* are invalid.
*/
int omap3isp_stat_config(struct ispstat *stat, void *new_conf)
{
int ret;
unsigned long irqflags;
struct ispstat_generic_config *user_cfg = new_conf;
u32 buf_size = user_cfg->buf_size;
if (!new_conf) {
dev_dbg(stat->isp->dev, "%s: configuration is NULL\n",
stat->subdev.name);
return -EINVAL;
}
mutex_lock(&stat->ioctl_lock);
dev_dbg(stat->isp->dev, "%s: configuring module with buffer "
"size=0x%08lx\n", stat->subdev.name, (unsigned long)buf_size);
ret = stat->ops->validate_params(stat, new_conf);
if (ret) {
mutex_unlock(&stat->ioctl_lock);
dev_dbg(stat->isp->dev, "%s: configuration values are "
"invalid.\n", stat->subdev.name);
return ret;
}
if (buf_size != user_cfg->buf_size)
dev_dbg(stat->isp->dev, "%s: driver has corrected buffer size "
"request to 0x%08lx\n", stat->subdev.name,
(unsigned long)user_cfg->buf_size);
/*
* Hack: H3A modules may need a doubled buffer size to avoid access
* to a invalid memory address after a SBL overflow.
* The buffer size is always PAGE_ALIGNED.
* Hack 2: MAGIC_SIZE is added to buf_size so a magic word can be
* inserted at the end to data integrity check purpose.
* Hack 3: AF module writes one paxel data more than it should, so
* the buffer allocation must consider it to avoid invalid memory
* access.
* Hack 4: H3A need to allocate extra space for the recover state.
*/
if (IS_H3A(stat)) {
buf_size = user_cfg->buf_size * 2 + MAGIC_SIZE;
if (IS_H3A_AF(stat))
/*
* Adding one extra paxel data size for each recover
* buffer + 2 regular ones.
*/
buf_size += AF_EXTRA_DATA * (NUM_H3A_RECOVER_BUFS + 2);
if (stat->recover_priv) {
struct ispstat_generic_config *recover_cfg =
stat->recover_priv;
buf_size += recover_cfg->buf_size *
NUM_H3A_RECOVER_BUFS;
}
buf_size = PAGE_ALIGN(buf_size);
} else { /* Histogram */
buf_size = PAGE_ALIGN(user_cfg->buf_size + MAGIC_SIZE);
}
ret = isp_stat_bufs_alloc(stat, buf_size);
if (ret) {
mutex_unlock(&stat->ioctl_lock);
return ret;
}
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
stat->ops->set_params(stat, new_conf);
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
/*
* Returning the right future config_counter for this setup, so
* userspace can *know* when it has been applied.
*/
user_cfg->config_counter = stat->config_counter + stat->inc_config;
/* Module has a valid configuration. */
stat->configured = 1;
dev_dbg(stat->isp->dev, "%s: module has been successfully "
"configured.\n", stat->subdev.name);
mutex_unlock(&stat->ioctl_lock);
return 0;
}
/*
* isp_stat_buf_process - Process statistic buffers.
* @buf_state: points out if buffer is ready to be processed. It's necessary
* because histogram needs to copy the data from internal memory
* before be able to process the buffer.
*/
static int isp_stat_buf_process(struct ispstat *stat, int buf_state)
{
int ret = STAT_NO_BUF;
if (!atomic_add_unless(&stat->buf_err, -1, 0) &&
buf_state == STAT_BUF_DONE && stat->state == ISPSTAT_ENABLED) {
ret = isp_stat_buf_queue(stat);
isp_stat_buf_next(stat);
}
return ret;
}
int omap3isp_stat_pcr_busy(struct ispstat *stat)
{
return stat->ops->busy(stat);
}
int omap3isp_stat_busy(struct ispstat *stat)
{
return omap3isp_stat_pcr_busy(stat) | stat->buf_processing |
(stat->state != ISPSTAT_DISABLED);
}
/*
* isp_stat_pcr_enable - Disables/Enables statistic engines.
* @pcr_enable: 0/1 - Disables/Enables the engine.
*
* Must be called from ISP driver when the module is idle and synchronized
* with CCDC.
*/
static void isp_stat_pcr_enable(struct ispstat *stat, u8 pcr_enable)
{
if ((stat->state != ISPSTAT_ENABLING &&
stat->state != ISPSTAT_ENABLED) && pcr_enable)
/* Userspace has disabled the module. Aborting. */
return;
stat->ops->enable(stat, pcr_enable);
if (stat->state == ISPSTAT_DISABLING && !pcr_enable)
stat->state = ISPSTAT_DISABLED;
else if (stat->state == ISPSTAT_ENABLING && pcr_enable)
stat->state = ISPSTAT_ENABLED;
}
void omap3isp_stat_suspend(struct ispstat *stat)
{
unsigned long flags;
spin_lock_irqsave(&stat->isp->stat_lock, flags);
if (stat->state != ISPSTAT_DISABLED)
stat->ops->enable(stat, 0);
if (stat->state == ISPSTAT_ENABLED)
stat->state = ISPSTAT_SUSPENDED;
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
}
void omap3isp_stat_resume(struct ispstat *stat)
{
/* Module will be re-enabled with its pipeline */
if (stat->state == ISPSTAT_SUSPENDED)
stat->state = ISPSTAT_ENABLING;
}
static void isp_stat_try_enable(struct ispstat *stat)
{
unsigned long irqflags;
if (stat->priv == NULL)
/* driver wasn't initialised */
return;
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
if (stat->state == ISPSTAT_ENABLING && !stat->buf_processing &&
stat->buf_alloc_size) {
/*
* Userspace's requested to enable the engine but it wasn't yet.
* Let's do that now.
*/
stat->update = 1;
isp_stat_buf_next(stat);
stat->ops->setup_regs(stat, stat->priv);
isp_stat_buf_insert_magic(stat, stat->active_buf);
/*
* H3A module has some hw issues which forces the driver to
* ignore next buffers even if it was disabled in the meantime.
* On the other hand, Histogram shouldn't ignore buffers anymore
* if it's being enabled.
*/
if (!IS_H3A(stat))
atomic_set(&stat->buf_err, 0);
isp_stat_pcr_enable(stat, 1);
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
dev_dbg(stat->isp->dev, "%s: module is enabled.\n",
stat->subdev.name);
} else {
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
}
}
void omap3isp_stat_isr_frame_sync(struct ispstat *stat)
{
isp_stat_try_enable(stat);
}
void omap3isp_stat_sbl_overflow(struct ispstat *stat)
{
unsigned long irqflags;
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
/*
* Due to a H3A hw issue which prevents the next buffer to start from
* the correct memory address, 2 buffers must be ignored.
*/
atomic_set(&stat->buf_err, 2);
/*
* If more than one SBL overflow happen in a row, H3A module may access
* invalid memory region.
* stat->sbl_ovl_recover is set to tell to the driver to temporarily use
* a soft configuration which helps to avoid consecutive overflows.
*/
if (stat->recover_priv)
stat->sbl_ovl_recover = 1;
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
}
/*
* omap3isp_stat_enable - Disable/Enable statistic engine as soon as possible
* @enable: 0/1 - Disables/Enables the engine.
*
* Client should configure all the module registers before this.
* This function can be called from a userspace request.
*/
int omap3isp_stat_enable(struct ispstat *stat, u8 enable)
{
unsigned long irqflags;
dev_dbg(stat->isp->dev, "%s: user wants to %s module.\n",
stat->subdev.name, enable ? "enable" : "disable");
/* Prevent enabling while configuring */
mutex_lock(&stat->ioctl_lock);
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
if (!stat->configured && enable) {
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
mutex_unlock(&stat->ioctl_lock);
dev_dbg(stat->isp->dev, "%s: cannot enable module as it's "
"never been successfully configured so far.\n",
stat->subdev.name);
return -EINVAL;
}
if (enable) {
if (stat->state == ISPSTAT_DISABLING)
/* Previous disabling request wasn't done yet */
stat->state = ISPSTAT_ENABLED;
else if (stat->state == ISPSTAT_DISABLED)
/* Module is now being enabled */
stat->state = ISPSTAT_ENABLING;
} else {
if (stat->state == ISPSTAT_ENABLING) {
/* Previous enabling request wasn't done yet */
stat->state = ISPSTAT_DISABLED;
} else if (stat->state == ISPSTAT_ENABLED) {
/* Module is now being disabled */
stat->state = ISPSTAT_DISABLING;
isp_stat_buf_clear(stat);
}
}
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
mutex_unlock(&stat->ioctl_lock);
return 0;
}
int omap3isp_stat_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct ispstat *stat = v4l2_get_subdevdata(subdev);
if (enable) {
/*
* Only set enable PCR bit if the module was previously
* enabled through ioctl.
*/
isp_stat_try_enable(stat);
} else {
unsigned long flags;
/* Disable PCR bit and config enable field */
omap3isp_stat_enable(stat, 0);
spin_lock_irqsave(&stat->isp->stat_lock, flags);
stat->ops->enable(stat, 0);
spin_unlock_irqrestore(&stat->isp->stat_lock, flags);
/*
* If module isn't busy, a new interrupt may come or not to
* set the state to DISABLED. As Histogram needs to read its
* internal memory to clear it, let interrupt handler
* responsible of changing state to DISABLED. If the last
* interrupt is coming, it's still safe as the handler will
* ignore the second time when state is already set to DISABLED.
* It's necessary to synchronize Histogram with streamoff, once
* the module may be considered idle before last SDMA transfer
* starts if we return here.
*/
if (!omap3isp_stat_pcr_busy(stat))
omap3isp_stat_isr(stat);
dev_dbg(stat->isp->dev, "%s: module is being disabled\n",
stat->subdev.name);
}
return 0;
}
/*
* __stat_isr - Interrupt handler for statistic drivers
*/
static void __stat_isr(struct ispstat *stat, int from_dma)
{
int ret = STAT_BUF_DONE;
int buf_processing;
unsigned long irqflags;
struct isp_pipeline *pipe;
/*
* stat->buf_processing must be set before disable module. It's
* necessary to not inform too early the buffers aren't busy in case
* of SDMA is going to be used.
*/
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
if (stat->state == ISPSTAT_DISABLED) {
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
return;
}
buf_processing = stat->buf_processing;
stat->buf_processing = 1;
stat->ops->enable(stat, 0);
if (buf_processing && !from_dma) {
if (stat->state == ISPSTAT_ENABLED) {
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
dev_err(stat->isp->dev,
"%s: interrupt occurred when module was still "
"processing a buffer.\n", stat->subdev.name);
ret = STAT_NO_BUF;
goto out;
} else {
/*
* Interrupt handler was called from streamoff when
* the module wasn't busy anymore to ensure it is being
* disabled after process last buffer. If such buffer
* processing has already started, no need to do
* anything else.
*/
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
return;
}
}
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
/* If it's busy we can't process this buffer anymore */
if (!omap3isp_stat_pcr_busy(stat)) {
if (!from_dma && stat->ops->buf_process)
/* Module still need to copy data to buffer. */
ret = stat->ops->buf_process(stat);
if (ret == STAT_BUF_WAITING_DMA)
/* Buffer is not ready yet */
return;
spin_lock_irqsave(&stat->isp->stat_lock, irqflags);
/*
* Histogram needs to read its internal memory to clear it
* before be disabled. For that reason, common statistic layer
* can return only after call stat's buf_process() operator.
*/
if (stat->state == ISPSTAT_DISABLING) {
stat->state = ISPSTAT_DISABLED;
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
stat->buf_processing = 0;
return;
}
pipe = to_isp_pipeline(&stat->subdev.entity);
stat->frame_number = atomic_read(&pipe->frame_number);
/*
* Before this point, 'ret' stores the buffer's status if it's
* ready to be processed. Afterwards, it holds the status if
* it was processed successfully.
*/
ret = isp_stat_buf_process(stat, ret);
if (likely(!stat->sbl_ovl_recover)) {
stat->ops->setup_regs(stat, stat->priv);
} else {
/*
* Using recover config to increase the chance to have
* a good buffer processing and make the H3A module to
* go back to a valid state.
*/
stat->update = 1;
stat->ops->setup_regs(stat, stat->recover_priv);
stat->sbl_ovl_recover = 0;
/*
* Set 'update' in case of the module needs to use
* regular configuration after next buffer.
*/
stat->update = 1;
}
isp_stat_buf_insert_magic(stat, stat->active_buf);
/*
* Hack: H3A modules may access invalid memory address or send
* corrupted data to userspace if more than 1 SBL overflow
* happens in a row without re-writing its buffer's start memory
* address in the meantime. Such situation is avoided if the
* module is not immediately re-enabled when the ISR misses the
* timing to process the buffer and to setup the registers.
* Because of that, pcr_enable(1) was moved to inside this 'if'
* block. But the next interruption will still happen as during
* pcr_enable(0) the module was busy.
*/
isp_stat_pcr_enable(stat, 1);
spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags);
} else {
/*
* If a SBL overflow occurs and the H3A driver misses the timing
* to process the buffer, stat->buf_err is set and won't be
* cleared now. So the next buffer will be correctly ignored.
* It's necessary due to a hw issue which makes the next H3A
* buffer to start from the memory address where the previous
* one stopped, instead of start where it was configured to.
* Do not "stat->buf_err = 0" here.
*/
if (stat->ops->buf_process)
/*
* Driver may need to erase current data prior to
* process a new buffer. If it misses the timing, the
* next buffer might be wrong. So should be ignored.
* It happens only for Histogram.
*/
atomic_set(&stat->buf_err, 1);
ret = STAT_NO_BUF;
dev_dbg(stat->isp->dev, "%s: cannot process buffer, "
"device is busy.\n", stat->subdev.name);
}
out:
stat->buf_processing = 0;
isp_stat_queue_event(stat, ret != STAT_BUF_DONE);
}
void omap3isp_stat_isr(struct ispstat *stat)
{
__stat_isr(stat, 0);
}
void omap3isp_stat_dma_isr(struct ispstat *stat)
{
__stat_isr(stat, 1);
}
int omap3isp_stat_subscribe_event(struct v4l2_subdev *subdev,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
struct ispstat *stat = v4l2_get_subdevdata(subdev);
if (sub->type != stat->event_type)
return -EINVAL;
return v4l2_event_subscribe(fh, sub, STAT_NEVENTS, NULL);
}
int omap3isp_stat_unsubscribe_event(struct v4l2_subdev *subdev,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
return v4l2_event_unsubscribe(fh, sub);
}
void omap3isp_stat_unregister_entities(struct ispstat *stat)
{
v4l2_device_unregister_subdev(&stat->subdev);
}
int omap3isp_stat_register_entities(struct ispstat *stat,
struct v4l2_device *vdev)
{
return v4l2_device_register_subdev(vdev, &stat->subdev);
}
static int isp_stat_init_entities(struct ispstat *stat, const char *name,
const struct v4l2_subdev_ops *sd_ops)
{
struct v4l2_subdev *subdev = &stat->subdev;
struct media_entity *me = &subdev->entity;
v4l2_subdev_init(subdev, sd_ops);
snprintf(subdev->name, V4L2_SUBDEV_NAME_SIZE, "OMAP3 ISP %s", name);
subdev->grp_id = 1 << 16; /* group ID for isp subdevs */
subdev->flags |= V4L2_SUBDEV_FL_HAS_EVENTS | V4L2_SUBDEV_FL_HAS_DEVNODE;
v4l2_set_subdevdata(subdev, stat);
stat->pad.flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT;
me->ops = NULL;
return media_entity_pads_init(me, 1, &stat->pad);
}
int omap3isp_stat_init(struct ispstat *stat, const char *name,
const struct v4l2_subdev_ops *sd_ops)
{
int ret;
stat->buf = kcalloc(STAT_MAX_BUFS, sizeof(*stat->buf), GFP_KERNEL);
if (!stat->buf)
return -ENOMEM;
isp_stat_buf_clear(stat);
mutex_init(&stat->ioctl_lock);
atomic_set(&stat->buf_err, 0);
ret = isp_stat_init_entities(stat, name, sd_ops);
if (ret < 0) {
mutex_destroy(&stat->ioctl_lock);
kfree(stat->buf);
}
return ret;
}
void omap3isp_stat_cleanup(struct ispstat *stat)
{
media_entity_cleanup(&stat->subdev.entity);
mutex_destroy(&stat->ioctl_lock);
isp_stat_bufs_free(stat);
kfree(stat->buf);
}