2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-17 01:54:01 +08:00
linux-next/fs/kernfs/inode.c
Ian Kent 47b5c64d0a kernfs: use i_lock to protect concurrent inode updates
The inode operations .permission() and .getattr() use the kernfs node
write lock but all that's needed is the read lock to protect against
partial updates of these kernfs node fields which are all done under
the write lock.

And .permission() is called frequently during path walks and can cause
quite a bit of contention between kernfs node operations and path
walks when the number of concurrent walks is high.

To change kernfs_iop_getattr() and kernfs_iop_permission() to take
the rw sem read lock instead of the write lock an additional lock is
needed to protect against multiple processes concurrently updating
the inode attributes and link count in kernfs_refresh_inode().

The inode i_lock seems like the sensible thing to use to protect these
inode attribute updates so use it in kernfs_refresh_inode().

The last hunk in the patch, applied to kernfs_fill_super(), is possibly
not needed but taking the lock was present originally. I prefer to
continue to take it to protect against a partial update of the source
kernfs fields during the call to kernfs_refresh_inode() made by
kernfs_get_inode().

Reviewed-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Ian Kent <raven@themaw.net>
Link: https://lore.kernel.org/r/162642771474.63632.16295959115893904470.stgit@web.messagingengine.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-27 09:29:15 +02:00

441 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/kernfs/inode.c - kernfs inode implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*/
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/security.h>
#include "kernfs-internal.h"
static const struct inode_operations kernfs_iops = {
.permission = kernfs_iop_permission,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.listxattr = kernfs_iop_listxattr,
};
static struct kernfs_iattrs *__kernfs_iattrs(struct kernfs_node *kn, int alloc)
{
static DEFINE_MUTEX(iattr_mutex);
struct kernfs_iattrs *ret;
mutex_lock(&iattr_mutex);
if (kn->iattr || !alloc)
goto out_unlock;
kn->iattr = kmem_cache_zalloc(kernfs_iattrs_cache, GFP_KERNEL);
if (!kn->iattr)
goto out_unlock;
/* assign default attributes */
kn->iattr->ia_uid = GLOBAL_ROOT_UID;
kn->iattr->ia_gid = GLOBAL_ROOT_GID;
ktime_get_real_ts64(&kn->iattr->ia_atime);
kn->iattr->ia_mtime = kn->iattr->ia_atime;
kn->iattr->ia_ctime = kn->iattr->ia_atime;
simple_xattrs_init(&kn->iattr->xattrs);
atomic_set(&kn->iattr->nr_user_xattrs, 0);
atomic_set(&kn->iattr->user_xattr_size, 0);
out_unlock:
ret = kn->iattr;
mutex_unlock(&iattr_mutex);
return ret;
}
static struct kernfs_iattrs *kernfs_iattrs(struct kernfs_node *kn)
{
return __kernfs_iattrs(kn, 1);
}
static struct kernfs_iattrs *kernfs_iattrs_noalloc(struct kernfs_node *kn)
{
return __kernfs_iattrs(kn, 0);
}
int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
struct kernfs_iattrs *attrs;
unsigned int ia_valid = iattr->ia_valid;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (ia_valid & ATTR_UID)
attrs->ia_uid = iattr->ia_uid;
if (ia_valid & ATTR_GID)
attrs->ia_gid = iattr->ia_gid;
if (ia_valid & ATTR_ATIME)
attrs->ia_atime = iattr->ia_atime;
if (ia_valid & ATTR_MTIME)
attrs->ia_mtime = iattr->ia_mtime;
if (ia_valid & ATTR_CTIME)
attrs->ia_ctime = iattr->ia_ctime;
if (ia_valid & ATTR_MODE)
kn->mode = iattr->ia_mode;
return 0;
}
/**
* kernfs_setattr - set iattr on a node
* @kn: target node
* @iattr: iattr to set
*
* Returns 0 on success, -errno on failure.
*/
int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
{
int ret;
down_write(&kernfs_rwsem);
ret = __kernfs_setattr(kn, iattr);
up_write(&kernfs_rwsem);
return ret;
}
int kernfs_iop_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
struct iattr *iattr)
{
struct inode *inode = d_inode(dentry);
struct kernfs_node *kn = inode->i_private;
int error;
if (!kn)
return -EINVAL;
down_write(&kernfs_rwsem);
error = setattr_prepare(&init_user_ns, dentry, iattr);
if (error)
goto out;
error = __kernfs_setattr(kn, iattr);
if (error)
goto out;
/* this ignores size changes */
setattr_copy(&init_user_ns, inode, iattr);
out:
up_write(&kernfs_rwsem);
return error;
}
ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct kernfs_node *kn = kernfs_dentry_node(dentry);
struct kernfs_iattrs *attrs;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_list(d_inode(dentry), &attrs->xattrs, buf, size);
}
static inline void set_default_inode_attr(struct inode *inode, umode_t mode)
{
inode->i_mode = mode;
inode->i_atime = inode->i_mtime =
inode->i_ctime = current_time(inode);
}
static inline void set_inode_attr(struct inode *inode,
struct kernfs_iattrs *attrs)
{
inode->i_uid = attrs->ia_uid;
inode->i_gid = attrs->ia_gid;
inode->i_atime = attrs->ia_atime;
inode->i_mtime = attrs->ia_mtime;
inode->i_ctime = attrs->ia_ctime;
}
static void kernfs_refresh_inode(struct kernfs_node *kn, struct inode *inode)
{
struct kernfs_iattrs *attrs = kn->iattr;
inode->i_mode = kn->mode;
if (attrs)
/*
* kernfs_node has non-default attributes get them from
* persistent copy in kernfs_node.
*/
set_inode_attr(inode, attrs);
if (kernfs_type(kn) == KERNFS_DIR)
set_nlink(inode, kn->dir.subdirs + 2);
}
int kernfs_iop_getattr(struct user_namespace *mnt_userns,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct kernfs_node *kn = inode->i_private;
down_read(&kernfs_rwsem);
spin_lock(&inode->i_lock);
kernfs_refresh_inode(kn, inode);
generic_fillattr(&init_user_ns, inode, stat);
spin_unlock(&inode->i_lock);
up_read(&kernfs_rwsem);
return 0;
}
static void kernfs_init_inode(struct kernfs_node *kn, struct inode *inode)
{
kernfs_get(kn);
inode->i_private = kn;
inode->i_mapping->a_ops = &ram_aops;
inode->i_op = &kernfs_iops;
inode->i_generation = kernfs_gen(kn);
set_default_inode_attr(inode, kn->mode);
kernfs_refresh_inode(kn, inode);
/* initialize inode according to type */
switch (kernfs_type(kn)) {
case KERNFS_DIR:
inode->i_op = &kernfs_dir_iops;
inode->i_fop = &kernfs_dir_fops;
if (kn->flags & KERNFS_EMPTY_DIR)
make_empty_dir_inode(inode);
break;
case KERNFS_FILE:
inode->i_size = kn->attr.size;
inode->i_fop = &kernfs_file_fops;
break;
case KERNFS_LINK:
inode->i_op = &kernfs_symlink_iops;
break;
default:
BUG();
}
unlock_new_inode(inode);
}
/**
* kernfs_get_inode - get inode for kernfs_node
* @sb: super block
* @kn: kernfs_node to allocate inode for
*
* Get inode for @kn. If such inode doesn't exist, a new inode is
* allocated and basics are initialized. New inode is returned
* locked.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* Pointer to allocated inode on success, NULL on failure.
*/
struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
{
struct inode *inode;
inode = iget_locked(sb, kernfs_ino(kn));
if (inode && (inode->i_state & I_NEW))
kernfs_init_inode(kn, inode);
return inode;
}
/*
* The kernfs_node serves as both an inode and a directory entry for
* kernfs. To prevent the kernfs inode numbers from being freed
* prematurely we take a reference to kernfs_node from the kernfs inode. A
* super_operations.evict_inode() implementation is needed to drop that
* reference upon inode destruction.
*/
void kernfs_evict_inode(struct inode *inode)
{
struct kernfs_node *kn = inode->i_private;
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
kernfs_put(kn);
}
int kernfs_iop_permission(struct user_namespace *mnt_userns,
struct inode *inode, int mask)
{
struct kernfs_node *kn;
int ret;
if (mask & MAY_NOT_BLOCK)
return -ECHILD;
kn = inode->i_private;
down_read(&kernfs_rwsem);
spin_lock(&inode->i_lock);
kernfs_refresh_inode(kn, inode);
ret = generic_permission(&init_user_ns, inode, mask);
spin_unlock(&inode->i_lock);
up_read(&kernfs_rwsem);
return ret;
}
int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
void *value, size_t size)
{
struct kernfs_iattrs *attrs = kernfs_iattrs_noalloc(kn);
if (!attrs)
return -ENODATA;
return simple_xattr_get(&attrs->xattrs, name, value, size);
}
int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
const void *value, size_t size, int flags)
{
struct kernfs_iattrs *attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
return simple_xattr_set(&attrs->xattrs, name, value, size, flags, NULL);
}
static int kernfs_vfs_xattr_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *suffix, void *value, size_t size)
{
const char *name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
return kernfs_xattr_get(kn, name, value, size);
}
static int kernfs_vfs_xattr_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
const char *name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
return kernfs_xattr_set(kn, name, value, size, flags);
}
static int kernfs_vfs_user_xattr_add(struct kernfs_node *kn,
const char *full_name,
struct simple_xattrs *xattrs,
const void *value, size_t size, int flags)
{
atomic_t *sz = &kn->iattr->user_xattr_size;
atomic_t *nr = &kn->iattr->nr_user_xattrs;
ssize_t removed_size;
int ret;
if (atomic_inc_return(nr) > KERNFS_MAX_USER_XATTRS) {
ret = -ENOSPC;
goto dec_count_out;
}
if (atomic_add_return(size, sz) > KERNFS_USER_XATTR_SIZE_LIMIT) {
ret = -ENOSPC;
goto dec_size_out;
}
ret = simple_xattr_set(xattrs, full_name, value, size, flags,
&removed_size);
if (!ret && removed_size >= 0)
size = removed_size;
else if (!ret)
return 0;
dec_size_out:
atomic_sub(size, sz);
dec_count_out:
atomic_dec(nr);
return ret;
}
static int kernfs_vfs_user_xattr_rm(struct kernfs_node *kn,
const char *full_name,
struct simple_xattrs *xattrs,
const void *value, size_t size, int flags)
{
atomic_t *sz = &kn->iattr->user_xattr_size;
atomic_t *nr = &kn->iattr->nr_user_xattrs;
ssize_t removed_size;
int ret;
ret = simple_xattr_set(xattrs, full_name, value, size, flags,
&removed_size);
if (removed_size >= 0) {
atomic_sub(removed_size, sz);
atomic_dec(nr);
}
return ret;
}
static int kernfs_vfs_user_xattr_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
const char *full_name = xattr_full_name(handler, suffix);
struct kernfs_node *kn = inode->i_private;
struct kernfs_iattrs *attrs;
if (!(kernfs_root(kn)->flags & KERNFS_ROOT_SUPPORT_USER_XATTR))
return -EOPNOTSUPP;
attrs = kernfs_iattrs(kn);
if (!attrs)
return -ENOMEM;
if (value)
return kernfs_vfs_user_xattr_add(kn, full_name, &attrs->xattrs,
value, size, flags);
else
return kernfs_vfs_user_xattr_rm(kn, full_name, &attrs->xattrs,
value, size, flags);
}
static const struct xattr_handler kernfs_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_xattr_set,
};
static const struct xattr_handler kernfs_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_xattr_set,
};
static const struct xattr_handler kernfs_user_xattr_handler = {
.prefix = XATTR_USER_PREFIX,
.get = kernfs_vfs_xattr_get,
.set = kernfs_vfs_user_xattr_set,
};
const struct xattr_handler *kernfs_xattr_handlers[] = {
&kernfs_trusted_xattr_handler,
&kernfs_security_xattr_handler,
&kernfs_user_xattr_handler,
NULL
};