2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/arch/x86/kernel/machine_kexec_64.c
Lianbo Jiang 65f750e545 x86/kdump: Export the SME mask to vmcoreinfo
On AMD SME machines, makedumpfile tools need to know whether the crashed
kernel was encrypted.

If SME is enabled in the first kernel, the crashed kernel's page table
entries (pgd/pud/pmd/pte) contain the memory encryption mask which
makedumpfile needs to remove in order to obtain the true physical
address.

Export that mask in a vmcoreinfo variable.

 [ bp: Massage commit message and move define at the end of the
   function. ]

Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: anderson@redhat.com
Cc: k-hagio@ab.jp.nec.com
Cc: kexec@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190110121944.6050-3-lijiang@redhat.com
2019-01-11 16:09:25 +01:00

580 lines
14 KiB
C

/*
* handle transition of Linux booting another kernel
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <linux/ftrace.h>
#include <linux/io.h>
#include <linux/suspend.h>
#include <linux/vmalloc.h>
#include <asm/init.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/io_apic.h>
#include <asm/debugreg.h>
#include <asm/kexec-bzimage64.h>
#include <asm/setup.h>
#include <asm/set_memory.h>
#ifdef CONFIG_KEXEC_FILE
const struct kexec_file_ops * const kexec_file_loaders[] = {
&kexec_bzImage64_ops,
NULL
};
#endif
static void free_transition_pgtable(struct kimage *image)
{
free_page((unsigned long)image->arch.p4d);
image->arch.p4d = NULL;
free_page((unsigned long)image->arch.pud);
image->arch.pud = NULL;
free_page((unsigned long)image->arch.pmd);
image->arch.pmd = NULL;
free_page((unsigned long)image->arch.pte);
image->arch.pte = NULL;
}
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long vaddr, paddr;
int result = -ENOMEM;
vaddr = (unsigned long)relocate_kernel;
paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
pgd += pgd_index(vaddr);
if (!pgd_present(*pgd)) {
p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
if (!p4d)
goto err;
image->arch.p4d = p4d;
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
}
p4d = p4d_offset(pgd, vaddr);
if (!p4d_present(*p4d)) {
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
if (!pud)
goto err;
image->arch.pud = pud;
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
}
pud = pud_offset(p4d, vaddr);
if (!pud_present(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
if (!pmd)
goto err;
image->arch.pmd = pmd;
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
}
pmd = pmd_offset(pud, vaddr);
if (!pmd_present(*pmd)) {
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
if (!pte)
goto err;
image->arch.pte = pte;
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
}
pte = pte_offset_kernel(pmd, vaddr);
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
return 0;
err:
return result;
}
static void *alloc_pgt_page(void *data)
{
struct kimage *image = (struct kimage *)data;
struct page *page;
void *p = NULL;
page = kimage_alloc_control_pages(image, 0);
if (page) {
p = page_address(page);
clear_page(p);
}
return p;
}
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
struct x86_mapping_info info = {
.alloc_pgt_page = alloc_pgt_page,
.context = image,
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
.kernpg_flag = _KERNPG_TABLE_NOENC,
};
unsigned long mstart, mend;
pgd_t *level4p;
int result;
int i;
level4p = (pgd_t *)__va(start_pgtable);
clear_page(level4p);
if (direct_gbpages)
info.direct_gbpages = true;
for (i = 0; i < nr_pfn_mapped; i++) {
mstart = pfn_mapped[i].start << PAGE_SHIFT;
mend = pfn_mapped[i].end << PAGE_SHIFT;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
/*
* segments's mem ranges could be outside 0 ~ max_pfn,
* for example when jump back to original kernel from kexeced kernel.
* or first kernel is booted with user mem map, and second kernel
* could be loaded out of that range.
*/
for (i = 0; i < image->nr_segments; i++) {
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
return init_transition_pgtable(image, level4p);
}
static void set_idt(void *newidt, u16 limit)
{
struct desc_ptr curidt;
/* x86-64 supports unaliged loads & stores */
curidt.size = limit;
curidt.address = (unsigned long)newidt;
__asm__ __volatile__ (
"lidtq %0\n"
: : "m" (curidt)
);
};
static void set_gdt(void *newgdt, u16 limit)
{
struct desc_ptr curgdt;
/* x86-64 supports unaligned loads & stores */
curgdt.size = limit;
curgdt.address = (unsigned long)newgdt;
__asm__ __volatile__ (
"lgdtq %0\n"
: : "m" (curgdt)
);
};
static void load_segments(void)
{
__asm__ __volatile__ (
"\tmovl %0,%%ds\n"
"\tmovl %0,%%es\n"
"\tmovl %0,%%ss\n"
"\tmovl %0,%%fs\n"
"\tmovl %0,%%gs\n"
: : "a" (__KERNEL_DS) : "memory"
);
}
#ifdef CONFIG_KEXEC_FILE
/* Update purgatory as needed after various image segments have been prepared */
static int arch_update_purgatory(struct kimage *image)
{
int ret = 0;
if (!image->file_mode)
return 0;
/* Setup copying of backup region */
if (image->type == KEXEC_TYPE_CRASH) {
ret = kexec_purgatory_get_set_symbol(image,
"purgatory_backup_dest",
&image->arch.backup_load_addr,
sizeof(image->arch.backup_load_addr), 0);
if (ret)
return ret;
ret = kexec_purgatory_get_set_symbol(image,
"purgatory_backup_src",
&image->arch.backup_src_start,
sizeof(image->arch.backup_src_start), 0);
if (ret)
return ret;
ret = kexec_purgatory_get_set_symbol(image,
"purgatory_backup_sz",
&image->arch.backup_src_sz,
sizeof(image->arch.backup_src_sz), 0);
if (ret)
return ret;
}
return ret;
}
#else /* !CONFIG_KEXEC_FILE */
static inline int arch_update_purgatory(struct kimage *image)
{
return 0;
}
#endif /* CONFIG_KEXEC_FILE */
int machine_kexec_prepare(struct kimage *image)
{
unsigned long start_pgtable;
int result;
/* Calculate the offsets */
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
/* Setup the identity mapped 64bit page table */
result = init_pgtable(image, start_pgtable);
if (result)
return result;
/* update purgatory as needed */
result = arch_update_purgatory(image);
if (result)
return result;
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
free_transition_pgtable(image);
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
void machine_kexec(struct kimage *image)
{
unsigned long page_list[PAGES_NR];
void *control_page;
int save_ftrace_enabled;
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
save_processor_state();
#endif
save_ftrace_enabled = __ftrace_enabled_save();
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
hw_breakpoint_disable();
if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
/*
* We need to put APICs in legacy mode so that we can
* get timer interrupts in second kernel. kexec/kdump
* paths already have calls to restore_boot_irq_mode()
* in one form or other. kexec jump path also need one.
*/
clear_IO_APIC();
restore_boot_irq_mode();
#endif
}
control_page = page_address(image->control_code_page) + PAGE_SIZE;
memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
page_list[PA_TABLE_PAGE] =
(unsigned long)__pa(page_address(image->control_code_page));
if (image->type == KEXEC_TYPE_DEFAULT)
page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
<< PAGE_SHIFT);
/*
* The segment registers are funny things, they have both a
* visible and an invisible part. Whenever the visible part is
* set to a specific selector, the invisible part is loaded
* with from a table in memory. At no other time is the
* descriptor table in memory accessed.
*
* I take advantage of this here by force loading the
* segments, before I zap the gdt with an invalid value.
*/
load_segments();
/*
* The gdt & idt are now invalid.
* If you want to load them you must set up your own idt & gdt.
*/
set_gdt(phys_to_virt(0), 0);
set_idt(phys_to_virt(0), 0);
/* now call it */
image->start = relocate_kernel((unsigned long)image->head,
(unsigned long)page_list,
image->start,
image->preserve_context,
sme_active());
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
restore_processor_state();
#endif
__ftrace_enabled_restore(save_ftrace_enabled);
}
void arch_crash_save_vmcoreinfo(void)
{
u64 sme_mask = sme_me_mask;
VMCOREINFO_NUMBER(phys_base);
VMCOREINFO_SYMBOL(init_top_pgt);
vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
pgtable_l5_enabled());
#ifdef CONFIG_NUMA
VMCOREINFO_SYMBOL(node_data);
VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
kaslr_offset());
VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
VMCOREINFO_NUMBER(sme_mask);
}
/* arch-dependent functionality related to kexec file-based syscall */
#ifdef CONFIG_KEXEC_FILE
void *arch_kexec_kernel_image_load(struct kimage *image)
{
vfree(image->arch.elf_headers);
image->arch.elf_headers = NULL;
if (!image->fops || !image->fops->load)
return ERR_PTR(-ENOEXEC);
return image->fops->load(image, image->kernel_buf,
image->kernel_buf_len, image->initrd_buf,
image->initrd_buf_len, image->cmdline_buf,
image->cmdline_buf_len);
}
/*
* Apply purgatory relocations.
*
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELAs.
* @symtabsec: Corresponding symtab.
*
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
*/
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
Elf_Shdr *section, const Elf_Shdr *relsec,
const Elf_Shdr *symtabsec)
{
unsigned int i;
Elf64_Rela *rel;
Elf64_Sym *sym;
void *location;
unsigned long address, sec_base, value;
const char *strtab, *name, *shstrtab;
const Elf_Shdr *sechdrs;
/* String & section header string table */
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
rel = (void *)pi->ehdr + relsec->sh_offset;
pr_debug("Applying relocate section %s to %u\n",
shstrtab + relsec->sh_name, relsec->sh_info);
for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
/*
* rel[i].r_offset contains byte offset from beginning
* of section to the storage unit affected.
*
* This is location to update. This is temporary buffer
* where section is currently loaded. This will finally be
* loaded to a different address later, pointed to by
* ->sh_addr. kexec takes care of moving it
* (kexec_load_segment()).
*/
location = pi->purgatory_buf;
location += section->sh_offset;
location += rel[i].r_offset;
/* Final address of the location */
address = section->sh_addr + rel[i].r_offset;
/*
* rel[i].r_info contains information about symbol table index
* w.r.t which relocation must be made and type of relocation
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
* these respectively.
*/
sym = (void *)pi->ehdr + symtabsec->sh_offset;
sym += ELF64_R_SYM(rel[i].r_info);
if (sym->st_name)
name = strtab + sym->st_name;
else
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
name, sym->st_info, sym->st_shndx, sym->st_value,
sym->st_size);
if (sym->st_shndx == SHN_UNDEF) {
pr_err("Undefined symbol: %s\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_COMMON) {
pr_err("symbol '%s' in common section\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_ABS)
sec_base = 0;
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
pr_err("Invalid section %d for symbol %s\n",
sym->st_shndx, name);
return -ENOEXEC;
} else
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
value = sym->st_value;
value += sec_base;
value += rel[i].r_addend;
switch (ELF64_R_TYPE(rel[i].r_info)) {
case R_X86_64_NONE:
break;
case R_X86_64_64:
*(u64 *)location = value;
break;
case R_X86_64_32:
*(u32 *)location = value;
if (value != *(u32 *)location)
goto overflow;
break;
case R_X86_64_32S:
*(s32 *)location = value;
if ((s64)value != *(s32 *)location)
goto overflow;
break;
case R_X86_64_PC32:
case R_X86_64_PLT32:
value -= (u64)address;
*(u32 *)location = value;
break;
default:
pr_err("Unknown rela relocation: %llu\n",
ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
overflow:
pr_err("Overflow in relocation type %d value 0x%lx\n",
(int)ELF64_R_TYPE(rel[i].r_info), value);
return -ENOEXEC;
}
#endif /* CONFIG_KEXEC_FILE */
static int
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
{
struct page *page;
unsigned int nr_pages;
/*
* For physical range: [start, end]. We must skip the unassigned
* crashk resource with zero-valued "end" member.
*/
if (!end || start > end)
return 0;
page = pfn_to_page(start >> PAGE_SHIFT);
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
if (protect)
return set_pages_ro(page, nr_pages);
else
return set_pages_rw(page, nr_pages);
}
static void kexec_mark_crashkres(bool protect)
{
unsigned long control;
kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
/* Don't touch the control code page used in crash_kexec().*/
control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
/* Control code page is located in the 2nd page. */
kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
control += KEXEC_CONTROL_PAGE_SIZE;
kexec_mark_range(control, crashk_res.end, protect);
}
void arch_kexec_protect_crashkres(void)
{
kexec_mark_crashkres(true);
}
void arch_kexec_unprotect_crashkres(void)
{
kexec_mark_crashkres(false);
}
int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
{
/*
* If SME is active we need to be sure that kexec pages are
* not encrypted because when we boot to the new kernel the
* pages won't be accessed encrypted (initially).
*/
return set_memory_decrypted((unsigned long)vaddr, pages);
}
void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
{
/*
* If SME is active we need to reset the pages back to being
* an encrypted mapping before freeing them.
*/
set_memory_encrypted((unsigned long)vaddr, pages);
}