2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/drivers/phy/phy-miphy28lp.c
Julia Lawall 7fd7fa43f4 phy: miphy28lp: add missing of_node_put
for_each_child_of_node performs an of_node_get on each iteration,
so a return from the middle of the loop requires an of_node_put.

A simplified version of the semantic patch that finds this problem is as
follows (http://coccinelle.lip6.fr):

// <smpl>
@@
expression root,e;
local idexpression child;
@@

 for_each_child_of_node(root, child) {
   ... when != of_node_put(child)
       when != e = child
(
   return child;
|
*  return ...;
)
   ...
 }
// </smpl>

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2015-12-03 12:28:23 +05:30

1286 lines
33 KiB
C

/*
* Copyright (C) 2014 STMicroelectronics
*
* STMicroelectronics PHY driver MiPHY28lp (for SoC STiH407).
*
* Author: Alexandre Torgue <alexandre.torgue@st.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/clk.h>
#include <linux/phy/phy.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <dt-bindings/phy/phy.h>
/* MiPHY registers */
#define MIPHY_CONF_RESET 0x00
#define RST_APPLI_SW BIT(0)
#define RST_CONF_SW BIT(1)
#define RST_MACRO_SW BIT(2)
#define MIPHY_RESET 0x01
#define RST_PLL_SW BIT(0)
#define RST_COMP_SW BIT(2)
#define MIPHY_STATUS_1 0x02
#define PHY_RDY BIT(0)
#define HFC_RDY BIT(1)
#define HFC_PLL BIT(2)
#define MIPHY_CONTROL 0x04
#define TERM_EN_SW BIT(2)
#define DIS_LINK_RST BIT(3)
#define AUTO_RST_RX BIT(4)
#define PX_RX_POL BIT(5)
#define MIPHY_BOUNDARY_SEL 0x0a
#define TX_SEL BIT(6)
#define SSC_SEL BIT(4)
#define GENSEL_SEL BIT(0)
#define MIPHY_BOUNDARY_1 0x0b
#define MIPHY_BOUNDARY_2 0x0c
#define SSC_EN_SW BIT(2)
#define MIPHY_PLL_CLKREF_FREQ 0x0d
#define MIPHY_SPEED 0x0e
#define TX_SPDSEL_80DEC 0
#define TX_SPDSEL_40DEC 1
#define TX_SPDSEL_20DEC 2
#define RX_SPDSEL_80DEC 0
#define RX_SPDSEL_40DEC (1 << 2)
#define RX_SPDSEL_20DEC (2 << 2)
#define MIPHY_CONF 0x0f
#define MIPHY_CTRL_TEST_SEL 0x20
#define MIPHY_CTRL_TEST_1 0x21
#define MIPHY_CTRL_TEST_2 0x22
#define MIPHY_CTRL_TEST_3 0x23
#define MIPHY_CTRL_TEST_4 0x24
#define MIPHY_FEEDBACK_TEST 0x25
#define MIPHY_DEBUG_BUS 0x26
#define MIPHY_DEBUG_STATUS_MSB 0x27
#define MIPHY_DEBUG_STATUS_LSB 0x28
#define MIPHY_PWR_RAIL_1 0x29
#define MIPHY_PWR_RAIL_2 0x2a
#define MIPHY_SYNCHAR_CONTROL 0x30
#define MIPHY_COMP_FSM_1 0x3a
#define COMP_START BIT(6)
#define MIPHY_COMP_FSM_6 0x3f
#define COMP_DONE BIT(7)
#define MIPHY_COMP_POSTP 0x42
#define MIPHY_TX_CTRL_1 0x49
#define TX_REG_STEP_0V 0
#define TX_REG_STEP_P_25MV 1
#define TX_REG_STEP_P_50MV 2
#define TX_REG_STEP_N_25MV 7
#define TX_REG_STEP_N_50MV 6
#define TX_REG_STEP_N_75MV 5
#define MIPHY_TX_CTRL_2 0x4a
#define TX_SLEW_SW_40_PS 0
#define TX_SLEW_SW_80_PS 1
#define TX_SLEW_SW_120_PS 2
#define MIPHY_TX_CTRL_3 0x4b
#define MIPHY_TX_CAL_MAN 0x4e
#define TX_SLEW_CAL_MAN_EN BIT(0)
#define MIPHY_TST_BIAS_BOOST_2 0x62
#define MIPHY_BIAS_BOOST_1 0x63
#define MIPHY_BIAS_BOOST_2 0x64
#define MIPHY_RX_DESBUFF_FDB_2 0x67
#define MIPHY_RX_DESBUFF_FDB_3 0x68
#define MIPHY_SIGDET_COMPENS1 0x69
#define MIPHY_SIGDET_COMPENS2 0x6a
#define MIPHY_JITTER_PERIOD 0x6b
#define MIPHY_JITTER_AMPLITUDE_1 0x6c
#define MIPHY_JITTER_AMPLITUDE_2 0x6d
#define MIPHY_JITTER_AMPLITUDE_3 0x6e
#define MIPHY_RX_K_GAIN 0x78
#define MIPHY_RX_BUFFER_CTRL 0x7a
#define VGA_GAIN BIT(0)
#define EQ_DC_GAIN BIT(2)
#define EQ_BOOST_GAIN BIT(3)
#define MIPHY_RX_VGA_GAIN 0x7b
#define MIPHY_RX_EQU_GAIN_1 0x7f
#define MIPHY_RX_EQU_GAIN_2 0x80
#define MIPHY_RX_EQU_GAIN_3 0x81
#define MIPHY_RX_CAL_CTRL_1 0x97
#define MIPHY_RX_CAL_CTRL_2 0x98
#define MIPHY_RX_CAL_OFFSET_CTRL 0x99
#define CAL_OFFSET_VGA_64 (0x03 << 0)
#define CAL_OFFSET_THRESHOLD_64 (0x03 << 2)
#define VGA_OFFSET_POLARITY BIT(4)
#define OFFSET_COMPENSATION_EN BIT(6)
#define MIPHY_RX_CAL_VGA_STEP 0x9a
#define MIPHY_RX_CAL_EYE_MIN 0x9d
#define MIPHY_RX_CAL_OPT_LENGTH 0x9f
#define MIPHY_RX_LOCK_CTRL_1 0xc1
#define MIPHY_RX_LOCK_SETTINGS_OPT 0xc2
#define MIPHY_RX_LOCK_STEP 0xc4
#define MIPHY_RX_SIGDET_SLEEP_OA 0xc9
#define MIPHY_RX_SIGDET_SLEEP_SEL 0xca
#define MIPHY_RX_SIGDET_WAIT_SEL 0xcb
#define MIPHY_RX_SIGDET_DATA_SEL 0xcc
#define EN_ULTRA_LOW_POWER BIT(0)
#define EN_FIRST_HALF BIT(1)
#define EN_SECOND_HALF BIT(2)
#define EN_DIGIT_SIGNAL_CHECK BIT(3)
#define MIPHY_RX_POWER_CTRL_1 0xcd
#define MIPHY_RX_POWER_CTRL_2 0xce
#define MIPHY_PLL_CALSET_CTRL 0xd3
#define MIPHY_PLL_CALSET_1 0xd4
#define MIPHY_PLL_CALSET_2 0xd5
#define MIPHY_PLL_CALSET_3 0xd6
#define MIPHY_PLL_CALSET_4 0xd7
#define MIPHY_PLL_SBR_1 0xe3
#define SET_NEW_CHANGE BIT(1)
#define MIPHY_PLL_SBR_2 0xe4
#define MIPHY_PLL_SBR_3 0xe5
#define MIPHY_PLL_SBR_4 0xe6
#define MIPHY_PLL_COMMON_MISC_2 0xe9
#define START_ACT_FILT BIT(6)
#define MIPHY_PLL_SPAREIN 0xeb
/*
* On STiH407 the glue logic can be different among MiPHY devices; for example:
* MiPHY0: OSC_FORCE_EXT means:
* 0: 30MHz crystal clk - 1: 100MHz ext clk routed through MiPHY1
* MiPHY1: OSC_FORCE_EXT means:
* 1: 30MHz crystal clk - 0: 100MHz ext clk routed through MiPHY1
* Some devices have not the possibility to check if the osc is ready.
*/
#define MIPHY_OSC_FORCE_EXT BIT(3)
#define MIPHY_OSC_RDY BIT(5)
#define MIPHY_CTRL_MASK 0x0f
#define MIPHY_CTRL_DEFAULT 0
#define MIPHY_CTRL_SYNC_D_EN BIT(2)
/* SATA / PCIe defines */
#define SATA_CTRL_MASK 0x07
#define PCIE_CTRL_MASK 0xff
#define SATA_CTRL_SELECT_SATA 1
#define SATA_CTRL_SELECT_PCIE 0
#define SYSCFG_PCIE_PCIE_VAL 0x80
#define SATA_SPDMODE 1
#define MIPHY_SATA_BANK_NB 3
#define MIPHY_PCIE_BANK_NB 2
enum {
SYSCFG_CTRL,
SYSCFG_STATUS,
SYSCFG_PCI,
SYSCFG_SATA,
SYSCFG_REG_MAX,
};
struct miphy28lp_phy {
struct phy *phy;
struct miphy28lp_dev *phydev;
void __iomem *base;
void __iomem *pipebase;
bool osc_force_ext;
bool osc_rdy;
bool px_rx_pol_inv;
bool ssc;
bool tx_impedance;
struct reset_control *miphy_rst;
u32 sata_gen;
/* Sysconfig registers offsets needed to configure the device */
u32 syscfg_reg[SYSCFG_REG_MAX];
u8 type;
};
struct miphy28lp_dev {
struct device *dev;
struct regmap *regmap;
struct mutex miphy_mutex;
struct miphy28lp_phy **phys;
int nphys;
};
struct miphy_initval {
u16 reg;
u16 val;
};
enum miphy_sata_gen { SATA_GEN1, SATA_GEN2, SATA_GEN3 };
static char *PHY_TYPE_name[] = { "sata-up", "pcie-up", "", "usb3-up" };
struct pll_ratio {
int clk_ref;
int calset_1;
int calset_2;
int calset_3;
int calset_4;
int cal_ctrl;
};
static struct pll_ratio sata_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xc8,
.calset_2 = 0x00,
.calset_3 = 0x00,
.calset_4 = 0x00,
.cal_ctrl = 0x00,
};
static struct pll_ratio pcie_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xa6,
.calset_2 = 0xaa,
.calset_3 = 0xaa,
.calset_4 = 0x00,
.cal_ctrl = 0x00,
};
static struct pll_ratio usb3_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xa6,
.calset_2 = 0xaa,
.calset_3 = 0xaa,
.calset_4 = 0x04,
.cal_ctrl = 0x00,
};
struct miphy28lp_pll_gen {
int bank;
int speed;
int bias_boost_1;
int bias_boost_2;
int tx_ctrl_1;
int tx_ctrl_2;
int tx_ctrl_3;
int rx_k_gain;
int rx_vga_gain;
int rx_equ_gain_1;
int rx_equ_gain_2;
int rx_equ_gain_3;
int rx_buff_ctrl;
};
static struct miphy28lp_pll_gen sata_pll_gen[] = {
{
.bank = 0x00,
.speed = TX_SPDSEL_80DEC | RX_SPDSEL_80DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0x53,
.tx_ctrl_3 = 0x00,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
{
.bank = 0x01,
.speed = TX_SPDSEL_40DEC | RX_SPDSEL_40DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0x72,
.tx_ctrl_3 = 0x20,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
{
.bank = 0x02,
.speed = TX_SPDSEL_20DEC | RX_SPDSEL_20DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0xc0,
.tx_ctrl_3 = 0x20,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
};
static struct miphy28lp_pll_gen pcie_pll_gen[] = {
{
.bank = 0x00,
.speed = TX_SPDSEL_40DEC | RX_SPDSEL_40DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xa5,
.tx_ctrl_1 = TX_REG_STEP_N_25MV,
.tx_ctrl_2 = 0x71,
.tx_ctrl_3 = 0x60,
.rx_k_gain = 0x98,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x79,
.rx_equ_gain_2 = 0x56,
},
{
.bank = 0x01,
.speed = TX_SPDSEL_20DEC | RX_SPDSEL_20DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xa5,
.tx_ctrl_1 = TX_REG_STEP_N_25MV,
.tx_ctrl_2 = 0x70,
.tx_ctrl_3 = 0x60,
.rx_k_gain = 0xcc,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x78,
.rx_equ_gain_2 = 0x07,
},
};
static inline void miphy28lp_set_reset(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Putting Macro in reset */
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
val = RST_APPLI_SW | RST_CONF_SW;
writeb_relaxed(val, base + MIPHY_CONF_RESET);
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
/* Bringing the MIPHY-CPU registers out of reset */
if (miphy_phy->type == PHY_TYPE_PCIE) {
val = AUTO_RST_RX | TERM_EN_SW;
writeb_relaxed(val, base + MIPHY_CONTROL);
} else {
val = AUTO_RST_RX | TERM_EN_SW | DIS_LINK_RST;
writeb_relaxed(val, base + MIPHY_CONTROL);
}
}
static inline void miphy28lp_pll_calibration(struct miphy28lp_phy *miphy_phy,
struct pll_ratio *pll_ratio)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Applying PLL Settings */
writeb_relaxed(0x1d, base + MIPHY_PLL_SPAREIN);
writeb_relaxed(pll_ratio->clk_ref, base + MIPHY_PLL_CLKREF_FREQ);
/* PLL Ratio */
writeb_relaxed(pll_ratio->calset_1, base + MIPHY_PLL_CALSET_1);
writeb_relaxed(pll_ratio->calset_2, base + MIPHY_PLL_CALSET_2);
writeb_relaxed(pll_ratio->calset_3, base + MIPHY_PLL_CALSET_3);
writeb_relaxed(pll_ratio->calset_4, base + MIPHY_PLL_CALSET_4);
writeb_relaxed(pll_ratio->cal_ctrl, base + MIPHY_PLL_CALSET_CTRL);
writeb_relaxed(TX_SEL, base + MIPHY_BOUNDARY_SEL);
val = (0x68 << 1) | TX_SLEW_CAL_MAN_EN;
writeb_relaxed(val, base + MIPHY_TX_CAL_MAN);
val = VGA_OFFSET_POLARITY | CAL_OFFSET_THRESHOLD_64 | CAL_OFFSET_VGA_64;
if (miphy_phy->type != PHY_TYPE_SATA)
val |= OFFSET_COMPENSATION_EN;
writeb_relaxed(val, base + MIPHY_RX_CAL_OFFSET_CTRL);
if (miphy_phy->type == PHY_TYPE_USB3) {
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(0x70, base + MIPHY_RX_LOCK_STEP);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_SLEEP_OA);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_SLEEP_SEL);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_WAIT_SEL);
val = EN_DIGIT_SIGNAL_CHECK | EN_FIRST_HALF;
writeb_relaxed(val, base + MIPHY_RX_SIGDET_DATA_SEL);
}
}
static inline void miphy28lp_sata_config_gen(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int i;
for (i = 0; i < ARRAY_SIZE(sata_pll_gen); i++) {
struct miphy28lp_pll_gen *gen = &sata_pll_gen[i];
/* Banked settings */
writeb_relaxed(gen->bank, base + MIPHY_CONF);
writeb_relaxed(gen->speed, base + MIPHY_SPEED);
writeb_relaxed(gen->bias_boost_1, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(gen->bias_boost_2, base + MIPHY_BIAS_BOOST_2);
/* TX buffer Settings */
writeb_relaxed(gen->tx_ctrl_2, base + MIPHY_TX_CTRL_2);
writeb_relaxed(gen->tx_ctrl_3, base + MIPHY_TX_CTRL_3);
/* RX Buffer Settings */
writeb_relaxed(gen->rx_buff_ctrl, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(gen->rx_vga_gain, base + MIPHY_RX_VGA_GAIN);
writeb_relaxed(gen->rx_equ_gain_1, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(gen->rx_equ_gain_2, base + MIPHY_RX_EQU_GAIN_2);
writeb_relaxed(gen->rx_equ_gain_3, base + MIPHY_RX_EQU_GAIN_3);
}
}
static inline void miphy28lp_pcie_config_gen(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int i;
for (i = 0; i < ARRAY_SIZE(pcie_pll_gen); i++) {
struct miphy28lp_pll_gen *gen = &pcie_pll_gen[i];
/* Banked settings */
writeb_relaxed(gen->bank, base + MIPHY_CONF);
writeb_relaxed(gen->speed, base + MIPHY_SPEED);
writeb_relaxed(gen->bias_boost_1, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(gen->bias_boost_2, base + MIPHY_BIAS_BOOST_2);
/* TX buffer Settings */
writeb_relaxed(gen->tx_ctrl_1, base + MIPHY_TX_CTRL_1);
writeb_relaxed(gen->tx_ctrl_2, base + MIPHY_TX_CTRL_2);
writeb_relaxed(gen->tx_ctrl_3, base + MIPHY_TX_CTRL_3);
writeb_relaxed(gen->rx_k_gain, base + MIPHY_RX_K_GAIN);
/* RX Buffer Settings */
writeb_relaxed(gen->rx_buff_ctrl, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(gen->rx_vga_gain, base + MIPHY_RX_VGA_GAIN);
writeb_relaxed(gen->rx_equ_gain_1, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(gen->rx_equ_gain_2, base + MIPHY_RX_EQU_GAIN_2);
}
}
static inline int miphy28lp_wait_compensation(struct miphy28lp_phy *miphy_phy)
{
unsigned long finish = jiffies + 5 * HZ;
u8 val;
/* Waiting for Compensation to complete */
do {
val = readb_relaxed(miphy_phy->base + MIPHY_COMP_FSM_6);
if (time_after_eq(jiffies, finish))
return -EBUSY;
cpu_relax();
} while (!(val & COMP_DONE));
return 0;
}
static inline int miphy28lp_compensation(struct miphy28lp_phy *miphy_phy,
struct pll_ratio *pll_ratio)
{
void __iomem *base = miphy_phy->base;
/* Poll for HFC ready after reset release */
/* Compensation measurement */
writeb_relaxed(RST_PLL_SW | RST_COMP_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(pll_ratio->clk_ref, base + MIPHY_PLL_CLKREF_FREQ);
writeb_relaxed(COMP_START, base + MIPHY_COMP_FSM_1);
if (miphy_phy->type == PHY_TYPE_PCIE)
writeb_relaxed(RST_PLL_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_RESET);
writeb_relaxed(START_ACT_FILT, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* TX compensation offset to re-center TX impedance */
writeb_relaxed(0x00, base + MIPHY_COMP_POSTP);
if (miphy_phy->type == PHY_TYPE_PCIE)
return miphy28lp_wait_compensation(miphy_phy);
return 0;
}
static inline void miphy28_usb3_miphy_reset(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* MIPHY Reset */
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
writeb_relaxed(RST_COMP_SW, base + MIPHY_RESET);
val = RST_COMP_SW | RST_PLL_SW;
writeb_relaxed(val, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(0x1e, base + MIPHY_PLL_CLKREF_FREQ);
writeb_relaxed(COMP_START, base + MIPHY_COMP_FSM_1);
writeb_relaxed(RST_PLL_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_RESET);
writeb_relaxed(START_ACT_FILT, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(0x00, base + MIPHY_BOUNDARY_1);
writeb_relaxed(0x00, base + MIPHY_TST_BIAS_BOOST_2);
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
writeb_relaxed(0xa5, base + MIPHY_DEBUG_BUS);
writeb_relaxed(0x00, base + MIPHY_CONF);
}
static void miphy_sata_tune_ssc(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Compensate Tx impedance to avoid out of range values */
/*
* Enable the SSC on PLL for all banks
* SSC Modulation @ 31 KHz and 4000 ppm modulation amp
*/
val = readb_relaxed(base + MIPHY_BOUNDARY_2);
val |= SSC_EN_SW;
writeb_relaxed(val, base + MIPHY_BOUNDARY_2);
val = readb_relaxed(base + MIPHY_BOUNDARY_SEL);
val |= SSC_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
for (val = 0; val < MIPHY_SATA_BANK_NB; val++) {
writeb_relaxed(val, base + MIPHY_CONF);
/* Add value to each reference clock cycle */
/* and define the period length of the SSC */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0x6c, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0x81, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
}
}
static void miphy_pcie_tune_ssc(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Compensate Tx impedance to avoid out of range values */
/*
* Enable the SSC on PLL for all banks
* SSC Modulation @ 31 KHz and 4000 ppm modulation amp
*/
val = readb_relaxed(base + MIPHY_BOUNDARY_2);
val |= SSC_EN_SW;
writeb_relaxed(val, base + MIPHY_BOUNDARY_2);
val = readb_relaxed(base + MIPHY_BOUNDARY_SEL);
val |= SSC_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
for (val = 0; val < MIPHY_PCIE_BANK_NB; val++) {
writeb_relaxed(val, base + MIPHY_CONF);
/* Validate Step component */
writeb_relaxed(0x69, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0x21, base + MIPHY_PLL_SBR_4);
/* Validate Period component */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0x21, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
}
}
static inline void miphy_tune_tx_impedance(struct miphy28lp_phy *miphy_phy)
{
/* Compensate Tx impedance to avoid out of range values */
writeb_relaxed(0x02, miphy_phy->base + MIPHY_COMP_POSTP);
}
static inline int miphy28lp_configure_sata(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int err;
u8 val;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &sata_pll_ratio);
/* Banked settings Gen1/Gen2/Gen3 */
miphy28lp_sata_config_gen(miphy_phy);
/* Power control */
/* Input bridge enable, manual input bridge control */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
/* Macro out of reset */
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
/* Poll for HFC ready after reset release */
/* Compensation measurement */
err = miphy28lp_compensation(miphy_phy, &sata_pll_ratio);
if (err)
return err;
if (miphy_phy->px_rx_pol_inv) {
/* Invert Rx polarity */
val = readb_relaxed(miphy_phy->base + MIPHY_CONTROL);
val |= PX_RX_POL;
writeb_relaxed(val, miphy_phy->base + MIPHY_CONTROL);
}
if (miphy_phy->ssc)
miphy_sata_tune_ssc(miphy_phy);
if (miphy_phy->tx_impedance)
miphy_tune_tx_impedance(miphy_phy);
return 0;
}
static inline int miphy28lp_configure_pcie(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int err;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &pcie_pll_ratio);
/* Banked settings Gen1/Gen2 */
miphy28lp_pcie_config_gen(miphy_phy);
/* Power control */
/* Input bridge enable, manual input bridge control */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
/* Macro out of reset */
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
/* Poll for HFC ready after reset release */
/* Compensation measurement */
err = miphy28lp_compensation(miphy_phy, &pcie_pll_ratio);
if (err)
return err;
if (miphy_phy->ssc)
miphy_pcie_tune_ssc(miphy_phy);
if (miphy_phy->tx_impedance)
miphy_tune_tx_impedance(miphy_phy);
return 0;
}
static inline void miphy28lp_configure_usb3(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &usb3_pll_ratio);
/* Writing The Speed Rate */
writeb_relaxed(0x00, base + MIPHY_CONF);
val = RX_SPDSEL_20DEC | TX_SPDSEL_20DEC;
writeb_relaxed(val, base + MIPHY_SPEED);
/* RX Channel compensation and calibration */
writeb_relaxed(0x1c, base + MIPHY_RX_LOCK_SETTINGS_OPT);
writeb_relaxed(0x51, base + MIPHY_RX_CAL_CTRL_1);
writeb_relaxed(0x70, base + MIPHY_RX_CAL_CTRL_2);
val = OFFSET_COMPENSATION_EN | VGA_OFFSET_POLARITY |
CAL_OFFSET_THRESHOLD_64 | CAL_OFFSET_VGA_64;
writeb_relaxed(val, base + MIPHY_RX_CAL_OFFSET_CTRL);
writeb_relaxed(0x22, base + MIPHY_RX_CAL_VGA_STEP);
writeb_relaxed(0x0e, base + MIPHY_RX_CAL_OPT_LENGTH);
val = EQ_DC_GAIN | VGA_GAIN;
writeb_relaxed(val, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(0x78, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(0x1b, base + MIPHY_SYNCHAR_CONTROL);
/* TX compensation offset to re-center TX impedance */
writeb_relaxed(0x02, base + MIPHY_COMP_POSTP);
/* Enable GENSEL_SEL and SSC */
/* TX_SEL=0 swing preemp forced by pipe registres */
val = SSC_SEL | GENSEL_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
/* MIPHY Bias boost */
writeb_relaxed(0x00, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(0xa7, base + MIPHY_BIAS_BOOST_2);
/* SSC modulation */
writeb_relaxed(SSC_EN_SW, base + MIPHY_BOUNDARY_2);
/* MIPHY TX control */
writeb_relaxed(0x00, base + MIPHY_CONF);
/* Validate Step component */
writeb_relaxed(0x5a, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0xa0, base + MIPHY_PLL_SBR_4);
/* Validate Period component */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0xa1, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(0x02, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* Rx PI controller settings */
writeb_relaxed(0xca, base + MIPHY_RX_K_GAIN);
/* MIPHY RX input bridge control */
/* INPUT_BRIDGE_EN_SW=1, manual input bridge control[0]=1 */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
writeb_relaxed(0x29, base + MIPHY_RX_POWER_CTRL_1);
writeb_relaxed(0x1a, base + MIPHY_RX_POWER_CTRL_2);
/* MIPHY Reset for usb3 */
miphy28_usb3_miphy_reset(miphy_phy);
}
static inline int miphy_is_ready(struct miphy28lp_phy *miphy_phy)
{
unsigned long finish = jiffies + 5 * HZ;
u8 mask = HFC_PLL | HFC_RDY;
u8 val;
/*
* For PCIe and USB3 check only that PLL and HFC are ready
* For SATA check also that phy is ready!
*/
if (miphy_phy->type == PHY_TYPE_SATA)
mask |= PHY_RDY;
do {
val = readb_relaxed(miphy_phy->base + MIPHY_STATUS_1);
if ((val & mask) != mask)
cpu_relax();
else
return 0;
} while (!time_after_eq(jiffies, finish));
return -EBUSY;
}
static int miphy_osc_is_ready(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
unsigned long finish = jiffies + 5 * HZ;
u32 val;
if (!miphy_phy->osc_rdy)
return 0;
if (!miphy_phy->syscfg_reg[SYSCFG_STATUS])
return -EINVAL;
do {
regmap_read(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_STATUS], &val);
if ((val & MIPHY_OSC_RDY) != MIPHY_OSC_RDY)
cpu_relax();
else
return 0;
} while (!time_after_eq(jiffies, finish));
return -EBUSY;
}
static int miphy28lp_get_resource_byname(struct device_node *child,
char *rname, struct resource *res)
{
int index;
index = of_property_match_string(child, "reg-names", rname);
if (index < 0)
return -ENODEV;
return of_address_to_resource(child, index, res);
}
static int miphy28lp_get_one_addr(struct device *dev,
struct device_node *child, char *rname,
void __iomem **base)
{
struct resource res;
int ret;
ret = miphy28lp_get_resource_byname(child, rname, &res);
if (!ret) {
*base = devm_ioremap(dev, res.start, resource_size(&res));
if (!*base) {
dev_err(dev, "failed to ioremap %s address region\n"
, rname);
return -ENOENT;
}
}
return 0;
}
/* MiPHY reset and sysconf setup */
static int miphy28lp_setup(struct miphy28lp_phy *miphy_phy, u32 miphy_val)
{
int err;
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
if (!miphy_phy->syscfg_reg[SYSCFG_CTRL])
return -EINVAL;
err = reset_control_assert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
if (miphy_phy->osc_force_ext)
miphy_val |= MIPHY_OSC_FORCE_EXT;
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_CTRL],
MIPHY_CTRL_MASK, miphy_val);
err = reset_control_deassert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
return miphy_osc_is_ready(miphy_phy);
}
static int miphy28lp_init_sata(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err, sata_conf = SATA_CTRL_SELECT_SATA;
if ((!miphy_phy->syscfg_reg[SYSCFG_SATA]) ||
(!miphy_phy->syscfg_reg[SYSCFG_PCI]) ||
(!miphy_phy->base))
return -EINVAL;
dev_info(miphy_dev->dev, "sata-up mode, addr 0x%p\n", miphy_phy->base);
/* Configure the glue-logic */
sata_conf |= ((miphy_phy->sata_gen - SATA_GEN1) << SATA_SPDMODE);
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_SATA],
SATA_CTRL_MASK, sata_conf);
regmap_update_bits(miphy_dev->regmap, miphy_phy->syscfg_reg[SYSCFG_PCI],
PCIE_CTRL_MASK, SATA_CTRL_SELECT_PCIE);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_DEFAULT);
if (err) {
dev_err(miphy_dev->dev, "SATA phy setup failed\n");
return err;
}
/* initialize miphy */
miphy28lp_configure_sata(miphy_phy);
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init_pcie(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
if ((!miphy_phy->syscfg_reg[SYSCFG_SATA]) ||
(!miphy_phy->syscfg_reg[SYSCFG_PCI])
|| (!miphy_phy->base) || (!miphy_phy->pipebase))
return -EINVAL;
dev_info(miphy_dev->dev, "pcie-up mode, addr 0x%p\n", miphy_phy->base);
/* Configure the glue-logic */
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_SATA],
SATA_CTRL_MASK, SATA_CTRL_SELECT_PCIE);
regmap_update_bits(miphy_dev->regmap, miphy_phy->syscfg_reg[SYSCFG_PCI],
PCIE_CTRL_MASK, SYSCFG_PCIE_PCIE_VAL);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_DEFAULT);
if (err) {
dev_err(miphy_dev->dev, "PCIe phy setup failed\n");
return err;
}
/* initialize miphy */
err = miphy28lp_configure_pcie(miphy_phy);
if (err)
return err;
/* PIPE Wrapper Configuration */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x104); /* Rise_0 */
writeb_relaxed(0x61, miphy_phy->pipebase + 0x105); /* Rise_1 */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x108); /* Fall_0 */
writeb_relaxed(0x61, miphy_phy->pipebase + 0x109); /* Fall-1 */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x10c); /* Threshold_0 */
writeb_relaxed(0x60, miphy_phy->pipebase + 0x10d); /* Threshold_1 */
/* Wait for phy_ready */
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init_usb3(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
if ((!miphy_phy->base) || (!miphy_phy->pipebase))
return -EINVAL;
dev_info(miphy_dev->dev, "usb3-up mode, addr 0x%p\n", miphy_phy->base);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_SYNC_D_EN);
if (err) {
dev_err(miphy_dev->dev, "USB3 phy setup failed\n");
return err;
}
/* initialize miphy */
miphy28lp_configure_usb3(miphy_phy);
/* PIPE Wrapper Configuration */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x23);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x24);
writeb_relaxed(0x68, miphy_phy->pipebase + 0x26);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x27);
writeb_relaxed(0x18, miphy_phy->pipebase + 0x29);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x2a);
/* pipe Wrapper usb3 TX swing de-emph margin PREEMPH[7:4], SWING[3:0] */
writeb_relaxed(0X67, miphy_phy->pipebase + 0x68);
writeb_relaxed(0x0d, miphy_phy->pipebase + 0x69);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6a);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6b);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6c);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6d);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6e);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6f);
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init(struct phy *phy)
{
struct miphy28lp_phy *miphy_phy = phy_get_drvdata(phy);
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int ret;
mutex_lock(&miphy_dev->miphy_mutex);
switch (miphy_phy->type) {
case PHY_TYPE_SATA:
ret = miphy28lp_init_sata(miphy_phy);
break;
case PHY_TYPE_PCIE:
ret = miphy28lp_init_pcie(miphy_phy);
break;
case PHY_TYPE_USB3:
ret = miphy28lp_init_usb3(miphy_phy);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&miphy_dev->miphy_mutex);
return ret;
}
static int miphy28lp_get_addr(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
struct device_node *phynode = miphy_phy->phy->dev.of_node;
int err;
if ((miphy_phy->type != PHY_TYPE_SATA) &&
(miphy_phy->type != PHY_TYPE_PCIE) &&
(miphy_phy->type != PHY_TYPE_USB3)) {
return -EINVAL;
}
err = miphy28lp_get_one_addr(miphy_dev->dev, phynode,
PHY_TYPE_name[miphy_phy->type - PHY_TYPE_SATA],
&miphy_phy->base);
if (err)
return err;
if ((miphy_phy->type == PHY_TYPE_PCIE) ||
(miphy_phy->type == PHY_TYPE_USB3)) {
err = miphy28lp_get_one_addr(miphy_dev->dev, phynode, "pipew",
&miphy_phy->pipebase);
if (err)
return err;
}
return 0;
}
static struct phy *miphy28lp_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct miphy28lp_dev *miphy_dev = dev_get_drvdata(dev);
struct miphy28lp_phy *miphy_phy = NULL;
struct device_node *phynode = args->np;
int ret, index = 0;
if (args->args_count != 1) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
for (index = 0; index < miphy_dev->nphys; index++)
if (phynode == miphy_dev->phys[index]->phy->dev.of_node) {
miphy_phy = miphy_dev->phys[index];
break;
}
if (!miphy_phy) {
dev_err(dev, "Failed to find appropriate phy\n");
return ERR_PTR(-EINVAL);
}
miphy_phy->type = args->args[0];
ret = miphy28lp_get_addr(miphy_phy);
if (ret < 0)
return ERR_PTR(ret);
return miphy_phy->phy;
}
static const struct phy_ops miphy28lp_ops = {
.init = miphy28lp_init,
.owner = THIS_MODULE,
};
static int miphy28lp_probe_resets(struct device_node *node,
struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
miphy_phy->miphy_rst = of_reset_control_get(node, "miphy-sw-rst");
if (IS_ERR(miphy_phy->miphy_rst)) {
dev_err(miphy_dev->dev,
"miphy soft reset control not defined\n");
return PTR_ERR(miphy_phy->miphy_rst);
}
err = reset_control_deassert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
return 0;
}
static int miphy28lp_of_probe(struct device_node *np,
struct miphy28lp_phy *miphy_phy)
{
int i;
u32 ctrlreg;
miphy_phy->osc_force_ext =
of_property_read_bool(np, "st,osc-force-ext");
miphy_phy->osc_rdy = of_property_read_bool(np, "st,osc-rdy");
miphy_phy->px_rx_pol_inv =
of_property_read_bool(np, "st,px_rx_pol_inv");
miphy_phy->ssc = of_property_read_bool(np, "st,ssc-on");
miphy_phy->tx_impedance =
of_property_read_bool(np, "st,tx-impedance-comp");
of_property_read_u32(np, "st,sata-gen", &miphy_phy->sata_gen);
if (!miphy_phy->sata_gen)
miphy_phy->sata_gen = SATA_GEN1;
for (i = 0; i < SYSCFG_REG_MAX; i++) {
if (!of_property_read_u32_index(np, "st,syscfg", i, &ctrlreg))
miphy_phy->syscfg_reg[i] = ctrlreg;
}
return 0;
}
static int miphy28lp_probe(struct platform_device *pdev)
{
struct device_node *child, *np = pdev->dev.of_node;
struct miphy28lp_dev *miphy_dev;
struct phy_provider *provider;
struct phy *phy;
int ret, port = 0;
miphy_dev = devm_kzalloc(&pdev->dev, sizeof(*miphy_dev), GFP_KERNEL);
if (!miphy_dev)
return -ENOMEM;
miphy_dev->nphys = of_get_child_count(np);
miphy_dev->phys = devm_kcalloc(&pdev->dev, miphy_dev->nphys,
sizeof(*miphy_dev->phys), GFP_KERNEL);
if (!miphy_dev->phys)
return -ENOMEM;
miphy_dev->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(miphy_dev->regmap)) {
dev_err(miphy_dev->dev, "No syscfg phandle specified\n");
return PTR_ERR(miphy_dev->regmap);
}
miphy_dev->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, miphy_dev);
mutex_init(&miphy_dev->miphy_mutex);
for_each_child_of_node(np, child) {
struct miphy28lp_phy *miphy_phy;
miphy_phy = devm_kzalloc(&pdev->dev, sizeof(*miphy_phy),
GFP_KERNEL);
if (!miphy_phy) {
ret = -ENOMEM;
goto put_child;
}
miphy_dev->phys[port] = miphy_phy;
phy = devm_phy_create(&pdev->dev, child, &miphy28lp_ops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
ret = PTR_ERR(phy);
goto put_child;
}
miphy_dev->phys[port]->phy = phy;
miphy_dev->phys[port]->phydev = miphy_dev;
ret = miphy28lp_of_probe(child, miphy_phy);
if (ret)
goto put_child;
ret = miphy28lp_probe_resets(child, miphy_dev->phys[port]);
if (ret)
goto put_child;
phy_set_drvdata(phy, miphy_dev->phys[port]);
port++;
}
provider = devm_of_phy_provider_register(&pdev->dev, miphy28lp_xlate);
return PTR_ERR_OR_ZERO(provider);
put_child:
of_node_put(child);
return ret;
}
static const struct of_device_id miphy28lp_of_match[] = {
{.compatible = "st,miphy28lp-phy", },
{},
};
MODULE_DEVICE_TABLE(of, miphy28lp_of_match);
static struct platform_driver miphy28lp_driver = {
.probe = miphy28lp_probe,
.driver = {
.name = "miphy28lp-phy",
.of_match_table = miphy28lp_of_match,
}
};
module_platform_driver(miphy28lp_driver);
MODULE_AUTHOR("Alexandre Torgue <alexandre.torgue@st.com>");
MODULE_DESCRIPTION("STMicroelectronics miphy28lp driver");
MODULE_LICENSE("GPL v2");