2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/arch/powerpc/include/asm/cputime.h
Stanislaw Gruszka a42548a188 cputime: Optimize jiffies_to_cputime(1)
For powerpc with CONFIG_VIRT_CPU_ACCOUNTING
jiffies_to_cputime(1) is not compile time constant and run time
calculations are quite expensive. To optimize we use
precomputed value. For all other architectures is is
preprocessor definition.

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
LKML-Reference: <1248862529-6063-5-git-send-email-sgruszka@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-03 14:48:36 +02:00

249 lines
5.6 KiB
C

/*
* Definitions for measuring cputime on powerpc machines.
*
* Copyright (C) 2006 Paul Mackerras, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* If we have CONFIG_VIRT_CPU_ACCOUNTING, we measure cpu time in
* the same units as the timebase. Otherwise we measure cpu time
* in jiffies using the generic definitions.
*/
#ifndef __POWERPC_CPUTIME_H
#define __POWERPC_CPUTIME_H
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
#include <asm-generic/cputime.h>
#ifdef __KERNEL__
static inline void setup_cputime_one_jiffy(void) { }
#endif
#else
#include <linux/types.h>
#include <linux/time.h>
#include <asm/div64.h>
#include <asm/time.h>
#include <asm/param.h>
typedef u64 cputime_t;
typedef u64 cputime64_t;
#define cputime_zero ((cputime_t)0)
#define cputime_max ((~((cputime_t)0) >> 1) - 1)
#define cputime_add(__a, __b) ((__a) + (__b))
#define cputime_sub(__a, __b) ((__a) - (__b))
#define cputime_div(__a, __n) ((__a) / (__n))
#define cputime_halve(__a) ((__a) >> 1)
#define cputime_eq(__a, __b) ((__a) == (__b))
#define cputime_gt(__a, __b) ((__a) > (__b))
#define cputime_ge(__a, __b) ((__a) >= (__b))
#define cputime_lt(__a, __b) ((__a) < (__b))
#define cputime_le(__a, __b) ((__a) <= (__b))
#define cputime64_zero ((cputime64_t)0)
#define cputime64_add(__a, __b) ((__a) + (__b))
#define cputime64_sub(__a, __b) ((__a) - (__b))
#define cputime_to_cputime64(__ct) (__ct)
#ifdef __KERNEL__
/*
* One jiffy in timebase units computed during initialization
*/
extern cputime_t cputime_one_jiffy;
/*
* Convert cputime <-> jiffies
*/
extern u64 __cputime_jiffies_factor;
DECLARE_PER_CPU(unsigned long, cputime_last_delta);
DECLARE_PER_CPU(unsigned long, cputime_scaled_last_delta);
static inline unsigned long cputime_to_jiffies(const cputime_t ct)
{
return mulhdu(ct, __cputime_jiffies_factor);
}
/* Estimate the scaled cputime by scaling the real cputime based on
* the last scaled to real ratio */
static inline cputime_t cputime_to_scaled(const cputime_t ct)
{
if (cpu_has_feature(CPU_FTR_SPURR) &&
per_cpu(cputime_last_delta, smp_processor_id()))
return ct *
per_cpu(cputime_scaled_last_delta, smp_processor_id())/
per_cpu(cputime_last_delta, smp_processor_id());
return ct;
}
static inline cputime_t jiffies_to_cputime(const unsigned long jif)
{
cputime_t ct;
unsigned long sec;
/* have to be a little careful about overflow */
ct = jif % HZ;
sec = jif / HZ;
if (ct) {
ct *= tb_ticks_per_sec;
do_div(ct, HZ);
}
if (sec)
ct += (cputime_t) sec * tb_ticks_per_sec;
return ct;
}
static inline void setup_cputime_one_jiffy(void)
{
cputime_one_jiffy = jiffies_to_cputime(1);
}
static inline cputime64_t jiffies64_to_cputime64(const u64 jif)
{
cputime_t ct;
u64 sec;
/* have to be a little careful about overflow */
ct = jif % HZ;
sec = jif / HZ;
if (ct) {
ct *= tb_ticks_per_sec;
do_div(ct, HZ);
}
if (sec)
ct += (cputime_t) sec * tb_ticks_per_sec;
return ct;
}
static inline u64 cputime64_to_jiffies64(const cputime_t ct)
{
return mulhdu(ct, __cputime_jiffies_factor);
}
/*
* Convert cputime <-> milliseconds
*/
extern u64 __cputime_msec_factor;
static inline unsigned long cputime_to_msecs(const cputime_t ct)
{
return mulhdu(ct, __cputime_msec_factor);
}
static inline cputime_t msecs_to_cputime(const unsigned long ms)
{
cputime_t ct;
unsigned long sec;
/* have to be a little careful about overflow */
ct = ms % 1000;
sec = ms / 1000;
if (ct) {
ct *= tb_ticks_per_sec;
do_div(ct, 1000);
}
if (sec)
ct += (cputime_t) sec * tb_ticks_per_sec;
return ct;
}
/*
* Convert cputime <-> seconds
*/
extern u64 __cputime_sec_factor;
static inline unsigned long cputime_to_secs(const cputime_t ct)
{
return mulhdu(ct, __cputime_sec_factor);
}
static inline cputime_t secs_to_cputime(const unsigned long sec)
{
return (cputime_t) sec * tb_ticks_per_sec;
}
/*
* Convert cputime <-> timespec
*/
static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p)
{
u64 x = ct;
unsigned int frac;
frac = do_div(x, tb_ticks_per_sec);
p->tv_sec = x;
x = (u64) frac * 1000000000;
do_div(x, tb_ticks_per_sec);
p->tv_nsec = x;
}
static inline cputime_t timespec_to_cputime(const struct timespec *p)
{
cputime_t ct;
ct = (u64) p->tv_nsec * tb_ticks_per_sec;
do_div(ct, 1000000000);
return ct + (u64) p->tv_sec * tb_ticks_per_sec;
}
/*
* Convert cputime <-> timeval
*/
static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p)
{
u64 x = ct;
unsigned int frac;
frac = do_div(x, tb_ticks_per_sec);
p->tv_sec = x;
x = (u64) frac * 1000000;
do_div(x, tb_ticks_per_sec);
p->tv_usec = x;
}
static inline cputime_t timeval_to_cputime(const struct timeval *p)
{
cputime_t ct;
ct = (u64) p->tv_usec * tb_ticks_per_sec;
do_div(ct, 1000000);
return ct + (u64) p->tv_sec * tb_ticks_per_sec;
}
/*
* Convert cputime <-> clock_t (units of 1/USER_HZ seconds)
*/
extern u64 __cputime_clockt_factor;
static inline unsigned long cputime_to_clock_t(const cputime_t ct)
{
return mulhdu(ct, __cputime_clockt_factor);
}
static inline cputime_t clock_t_to_cputime(const unsigned long clk)
{
cputime_t ct;
unsigned long sec;
/* have to be a little careful about overflow */
ct = clk % USER_HZ;
sec = clk / USER_HZ;
if (ct) {
ct *= tb_ticks_per_sec;
do_div(ct, USER_HZ);
}
if (sec)
ct += (cputime_t) sec * tb_ticks_per_sec;
return ct;
}
#define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct))
#endif /* __KERNEL__ */
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
#endif /* __POWERPC_CPUTIME_H */