2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/fpga/fpga-mgr.c
Jason Gunthorpe baa6d39663 fpga: Add scatterlist based programming
Requiring contiguous kernel memory is not a good idea, this is a limited
resource and allocation can fail under normal work loads.

This introduces a .write_sg op that supporting drivers can provide
to DMA directly from dis-contiguous memory and a new entry point
fpga_mgr_buf_load_sg that users can call to directly provide page
lists.

The full matrix of compatibility is provided, either the linear or sg
interface can be used by the user with a driver supporting either
interface.

A notable change for drivers is that the .write op can now be called
multiple times.

Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Acked-by: Alan Tull <atull@opensource.altera.com>
Acked-by: Moritz Fischer <moritz.fischer@ettus.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-02-10 15:20:44 +01:00

587 lines
15 KiB
C

/*
* FPGA Manager Core
*
* Copyright (C) 2013-2015 Altera Corporation
*
* With code from the mailing list:
* Copyright (C) 2013 Xilinx, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/firmware.h>
#include <linux/fpga/fpga-mgr.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
static DEFINE_IDA(fpga_mgr_ida);
static struct class *fpga_mgr_class;
/*
* Call the low level driver's write_init function. This will do the
* device-specific things to get the FPGA into the state where it is ready to
* receive an FPGA image. The low level driver only gets to see the first
* initial_header_size bytes in the buffer.
*/
static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
mgr->state = FPGA_MGR_STATE_WRITE_INIT;
if (!mgr->mops->initial_header_size)
ret = mgr->mops->write_init(mgr, info, NULL, 0);
else
ret = mgr->mops->write_init(
mgr, info, buf, min(mgr->mops->initial_header_size, count));
if (ret) {
dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
return ret;
}
return 0;
}
static int fpga_mgr_write_init_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
struct sg_mapping_iter miter;
size_t len;
char *buf;
int ret;
if (!mgr->mops->initial_header_size)
return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
/*
* First try to use miter to map the first fragment to access the
* header, this is the typical path.
*/
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (sg_miter_next(&miter) &&
miter.length >= mgr->mops->initial_header_size) {
ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
miter.length);
sg_miter_stop(&miter);
return ret;
}
sg_miter_stop(&miter);
/* Otherwise copy the fragments into temporary memory. */
buf = kmalloc(mgr->mops->initial_header_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len = sg_copy_to_buffer(sgt->sgl, sgt->nents, buf,
mgr->mops->initial_header_size);
ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
kfree(buf);
return ret;
}
/*
* After all the FPGA image has been written, do the device specific steps to
* finish and set the FPGA into operating mode.
*/
static int fpga_mgr_write_complete(struct fpga_manager *mgr,
struct fpga_image_info *info)
{
int ret;
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
ret = mgr->mops->write_complete(mgr, info);
if (ret) {
dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
return ret;
}
mgr->state = FPGA_MGR_STATE_OPERATING;
return 0;
}
/**
* fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
* @mgr: fpga manager
* @info: fpga image specific information
* @sgt: scatterlist table
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
* not an error code.
*
* This is the preferred entry point for FPGA programming, it does not require
* any contiguous kernel memory.
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_buf_load_sg(struct fpga_manager *mgr, struct fpga_image_info *info,
struct sg_table *sgt)
{
int ret;
ret = fpga_mgr_write_init_sg(mgr, info, sgt);
if (ret)
return ret;
/* Write the FPGA image to the FPGA. */
mgr->state = FPGA_MGR_STATE_WRITE;
if (mgr->mops->write_sg) {
ret = mgr->mops->write_sg(mgr, sgt);
} else {
struct sg_mapping_iter miter;
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
while (sg_miter_next(&miter)) {
ret = mgr->mops->write(mgr, miter.addr, miter.length);
if (ret)
break;
}
sg_miter_stop(&miter);
}
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
EXPORT_SYMBOL_GPL(fpga_mgr_buf_load_sg);
static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
if (ret)
return ret;
/*
* Write the FPGA image to the FPGA.
*/
mgr->state = FPGA_MGR_STATE_WRITE;
ret = mgr->mops->write(mgr, buf, count);
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
/**
* fpga_mgr_buf_load - load fpga from image in buffer
* @mgr: fpga manager
* @flags: flags setting fpga confuration modes
* @buf: buffer contain fpga image
* @count: byte count of buf
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_buf_load(struct fpga_manager *mgr, struct fpga_image_info *info,
const char *buf, size_t count)
{
struct page **pages;
struct sg_table sgt;
const void *p;
int nr_pages;
int index;
int rc;
/*
* This is just a fast path if the caller has already created a
* contiguous kernel buffer and the driver doesn't require SG, non-SG
* drivers will still work on the slow path.
*/
if (mgr->mops->write)
return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
/*
* Convert the linear kernel pointer into a sg_table of pages for use
* by the driver.
*/
nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
(unsigned long)buf / PAGE_SIZE;
pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
p = buf - offset_in_page(buf);
for (index = 0; index < nr_pages; index++) {
if (is_vmalloc_addr(p))
pages[index] = vmalloc_to_page(p);
else
pages[index] = kmap_to_page((void *)p);
if (!pages[index]) {
kfree(pages);
return -EFAULT;
}
p += PAGE_SIZE;
}
/*
* The temporary pages list is used to code share the merging algorithm
* in sg_alloc_table_from_pages
*/
rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
count, GFP_KERNEL);
kfree(pages);
if (rc)
return rc;
rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
sg_free_table(&sgt);
return rc;
}
EXPORT_SYMBOL_GPL(fpga_mgr_buf_load);
/**
* fpga_mgr_firmware_load - request firmware and load to fpga
* @mgr: fpga manager
* @info: fpga image specific information
* @image_name: name of image file on the firmware search path
*
* Request an FPGA image using the firmware class, then write out to the FPGA.
* Update the state before each step to provide info on what step failed if
* there is a failure. This code assumes the caller got the mgr pointer
* from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error
* code.
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_firmware_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *image_name)
{
struct device *dev = &mgr->dev;
const struct firmware *fw;
int ret;
dev_info(dev, "writing %s to %s\n", image_name, mgr->name);
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ;
ret = request_firmware(&fw, image_name, dev);
if (ret) {
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR;
dev_err(dev, "Error requesting firmware %s\n", image_name);
return ret;
}
ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size);
release_firmware(fw);
return ret;
}
EXPORT_SYMBOL_GPL(fpga_mgr_firmware_load);
static const char * const state_str[] = {
[FPGA_MGR_STATE_UNKNOWN] = "unknown",
[FPGA_MGR_STATE_POWER_OFF] = "power off",
[FPGA_MGR_STATE_POWER_UP] = "power up",
[FPGA_MGR_STATE_RESET] = "reset",
/* requesting FPGA image from firmware */
[FPGA_MGR_STATE_FIRMWARE_REQ] = "firmware request",
[FPGA_MGR_STATE_FIRMWARE_REQ_ERR] = "firmware request error",
/* Preparing FPGA to receive image */
[FPGA_MGR_STATE_WRITE_INIT] = "write init",
[FPGA_MGR_STATE_WRITE_INIT_ERR] = "write init error",
/* Writing image to FPGA */
[FPGA_MGR_STATE_WRITE] = "write",
[FPGA_MGR_STATE_WRITE_ERR] = "write error",
/* Finishing configuration after image has been written */
[FPGA_MGR_STATE_WRITE_COMPLETE] = "write complete",
[FPGA_MGR_STATE_WRITE_COMPLETE_ERR] = "write complete error",
/* FPGA reports to be in normal operating mode */
[FPGA_MGR_STATE_OPERATING] = "operating",
};
static ssize_t name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", mgr->name);
}
static ssize_t state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", state_str[mgr->state]);
}
static DEVICE_ATTR_RO(name);
static DEVICE_ATTR_RO(state);
static struct attribute *fpga_mgr_attrs[] = {
&dev_attr_name.attr,
&dev_attr_state.attr,
NULL,
};
ATTRIBUTE_GROUPS(fpga_mgr);
struct fpga_manager *__fpga_mgr_get(struct device *dev)
{
struct fpga_manager *mgr;
int ret = -ENODEV;
mgr = to_fpga_manager(dev);
if (!mgr)
goto err_dev;
/* Get exclusive use of fpga manager */
if (!mutex_trylock(&mgr->ref_mutex)) {
ret = -EBUSY;
goto err_dev;
}
if (!try_module_get(dev->parent->driver->owner))
goto err_ll_mod;
return mgr;
err_ll_mod:
mutex_unlock(&mgr->ref_mutex);
err_dev:
put_device(dev);
return ERR_PTR(ret);
}
static int fpga_mgr_dev_match(struct device *dev, const void *data)
{
return dev->parent == data;
}
/**
* fpga_mgr_get - get an exclusive reference to a fpga mgr
* @dev: parent device that fpga mgr was registered with
*
* Given a device, get an exclusive reference to a fpga mgr.
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *fpga_mgr_get(struct device *dev)
{
struct device *mgr_dev = class_find_device(fpga_mgr_class, NULL, dev,
fpga_mgr_dev_match);
if (!mgr_dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(mgr_dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_get);
static int fpga_mgr_of_node_match(struct device *dev, const void *data)
{
return dev->of_node == data;
}
/**
* of_fpga_mgr_get - get an exclusive reference to a fpga mgr
* @node: device node
*
* Given a device node, get an exclusive reference to a fpga mgr.
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *of_fpga_mgr_get(struct device_node *node)
{
struct device *dev;
dev = class_find_device(fpga_mgr_class, NULL, node,
fpga_mgr_of_node_match);
if (!dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(dev);
}
EXPORT_SYMBOL_GPL(of_fpga_mgr_get);
/**
* fpga_mgr_put - release a reference to a fpga manager
* @mgr: fpga manager structure
*/
void fpga_mgr_put(struct fpga_manager *mgr)
{
module_put(mgr->dev.parent->driver->owner);
mutex_unlock(&mgr->ref_mutex);
put_device(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_put);
/**
* fpga_mgr_register - register a low level fpga manager driver
* @dev: fpga manager device from pdev
* @name: fpga manager name
* @mops: pointer to structure of fpga manager ops
* @priv: fpga manager private data
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_register(struct device *dev, const char *name,
const struct fpga_manager_ops *mops,
void *priv)
{
struct fpga_manager *mgr;
int id, ret;
if (!mops || !mops->write_complete || !mops->state ||
!mops->write_init || (!mops->write && !mops->write_sg) ||
(mops->write && mops->write_sg)) {
dev_err(dev, "Attempt to register without fpga_manager_ops\n");
return -EINVAL;
}
if (!name || !strlen(name)) {
dev_err(dev, "Attempt to register with no name!\n");
return -EINVAL;
}
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
if (!mgr)
return -ENOMEM;
id = ida_simple_get(&fpga_mgr_ida, 0, 0, GFP_KERNEL);
if (id < 0) {
ret = id;
goto error_kfree;
}
mutex_init(&mgr->ref_mutex);
mgr->name = name;
mgr->mops = mops;
mgr->priv = priv;
/*
* Initialize framework state by requesting low level driver read state
* from device. FPGA may be in reset mode or may have been programmed
* by bootloader or EEPROM.
*/
mgr->state = mgr->mops->state(mgr);
device_initialize(&mgr->dev);
mgr->dev.class = fpga_mgr_class;
mgr->dev.parent = dev;
mgr->dev.of_node = dev->of_node;
mgr->dev.id = id;
dev_set_drvdata(dev, mgr);
ret = dev_set_name(&mgr->dev, "fpga%d", id);
if (ret)
goto error_device;
ret = device_add(&mgr->dev);
if (ret)
goto error_device;
dev_info(&mgr->dev, "%s registered\n", mgr->name);
return 0;
error_device:
ida_simple_remove(&fpga_mgr_ida, id);
error_kfree:
kfree(mgr);
return ret;
}
EXPORT_SYMBOL_GPL(fpga_mgr_register);
/**
* fpga_mgr_unregister - unregister a low level fpga manager driver
* @dev: fpga manager device from pdev
*/
void fpga_mgr_unregister(struct device *dev)
{
struct fpga_manager *mgr = dev_get_drvdata(dev);
dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name);
/*
* If the low level driver provides a method for putting fpga into
* a desired state upon unregister, do it.
*/
if (mgr->mops->fpga_remove)
mgr->mops->fpga_remove(mgr);
device_unregister(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_unregister);
static void fpga_mgr_dev_release(struct device *dev)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
ida_simple_remove(&fpga_mgr_ida, mgr->dev.id);
kfree(mgr);
}
static int __init fpga_mgr_class_init(void)
{
pr_info("FPGA manager framework\n");
fpga_mgr_class = class_create(THIS_MODULE, "fpga_manager");
if (IS_ERR(fpga_mgr_class))
return PTR_ERR(fpga_mgr_class);
fpga_mgr_class->dev_groups = fpga_mgr_groups;
fpga_mgr_class->dev_release = fpga_mgr_dev_release;
return 0;
}
static void __exit fpga_mgr_class_exit(void)
{
class_destroy(fpga_mgr_class);
ida_destroy(&fpga_mgr_ida);
}
MODULE_AUTHOR("Alan Tull <atull@opensource.altera.com>");
MODULE_DESCRIPTION("FPGA manager framework");
MODULE_LICENSE("GPL v2");
subsys_initcall(fpga_mgr_class_init);
module_exit(fpga_mgr_class_exit);