2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/block/brd.c
Al Viro 2b9ecd0333 [PATCH] switch brd
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-10-21 07:47:44 -04:00

595 lines
14 KiB
C

/*
* Ram backed block device driver.
*
* Copyright (C) 2007 Nick Piggin
* Copyright (C) 2007 Novell Inc.
*
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
* of their respective owners.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/radix-tree.h>
#include <linux/buffer_head.h> /* invalidate_bh_lrus() */
#include <asm/uaccess.h>
#define SECTOR_SHIFT 9
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
/*
* Each block ramdisk device has a radix_tree brd_pages of pages that stores
* the pages containing the block device's contents. A brd page's ->index is
* its offset in PAGE_SIZE units. This is similar to, but in no way connected
* with, the kernel's pagecache or buffer cache (which sit above our block
* device).
*/
struct brd_device {
int brd_number;
int brd_refcnt;
loff_t brd_offset;
loff_t brd_sizelimit;
unsigned brd_blocksize;
struct request_queue *brd_queue;
struct gendisk *brd_disk;
struct list_head brd_list;
/*
* Backing store of pages and lock to protect it. This is the contents
* of the block device.
*/
spinlock_t brd_lock;
struct radix_tree_root brd_pages;
};
/*
* Look up and return a brd's page for a given sector.
*/
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
/*
* The page lifetime is protected by the fact that we have opened the
* device node -- brd pages will never be deleted under us, so we
* don't need any further locking or refcounting.
*
* This is strictly true for the radix-tree nodes as well (ie. we
* don't actually need the rcu_read_lock()), however that is not a
* documented feature of the radix-tree API so it is better to be
* safe here (we don't have total exclusion from radix tree updates
* here, only deletes).
*/
rcu_read_lock();
idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
page = radix_tree_lookup(&brd->brd_pages, idx);
rcu_read_unlock();
BUG_ON(page && page->index != idx);
return page;
}
/*
* Look up and return a brd's page for a given sector.
* If one does not exist, allocate an empty page, and insert that. Then
* return it.
*/
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
gfp_t gfp_flags;
page = brd_lookup_page(brd, sector);
if (page)
return page;
/*
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*
* Cannot support XIP and highmem, because our ->direct_access
* routine for XIP must return memory that is always addressable.
* If XIP was reworked to use pfns and kmap throughout, this
* restriction might be able to be lifted.
*/
gfp_flags = GFP_NOIO | __GFP_ZERO;
#ifndef CONFIG_BLK_DEV_XIP
gfp_flags |= __GFP_HIGHMEM;
#endif
page = alloc_page(gfp_flags);
if (!page)
return NULL;
if (radix_tree_preload(GFP_NOIO)) {
__free_page(page);
return NULL;
}
spin_lock(&brd->brd_lock);
idx = sector >> PAGE_SECTORS_SHIFT;
if (radix_tree_insert(&brd->brd_pages, idx, page)) {
__free_page(page);
page = radix_tree_lookup(&brd->brd_pages, idx);
BUG_ON(!page);
BUG_ON(page->index != idx);
} else
page->index = idx;
spin_unlock(&brd->brd_lock);
radix_tree_preload_end();
return page;
}
/*
* Free all backing store pages and radix tree. This must only be called when
* there are no other users of the device.
*/
#define FREE_BATCH 16
static void brd_free_pages(struct brd_device *brd)
{
unsigned long pos = 0;
struct page *pages[FREE_BATCH];
int nr_pages;
do {
int i;
nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
(void **)pages, pos, FREE_BATCH);
for (i = 0; i < nr_pages; i++) {
void *ret;
BUG_ON(pages[i]->index < pos);
pos = pages[i]->index;
ret = radix_tree_delete(&brd->brd_pages, pos);
BUG_ON(!ret || ret != pages[i]);
__free_page(pages[i]);
}
pos++;
/*
* This assumes radix_tree_gang_lookup always returns as
* many pages as possible. If the radix-tree code changes,
* so will this have to.
*/
} while (nr_pages == FREE_BATCH);
}
/*
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
*/
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
{
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
if (!brd_insert_page(brd, sector))
return -ENOMEM;
if (copy < n) {
sector += copy >> SECTOR_SHIFT;
if (!brd_insert_page(brd, sector))
return -ENOMEM;
}
return 0;
}
/*
* Copy n bytes from src to the brd starting at sector. Does not sleep.
*/
static void copy_to_brd(struct brd_device *brd, const void *src,
sector_t sector, size_t n)
{
struct page *page;
void *dst;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page, KM_USER1);
memcpy(dst + offset, src, copy);
kunmap_atomic(dst, KM_USER1);
if (copy < n) {
src += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page, KM_USER1);
memcpy(dst, src, copy);
kunmap_atomic(dst, KM_USER1);
}
}
/*
* Copy n bytes to dst from the brd starting at sector. Does not sleep.
*/
static void copy_from_brd(void *dst, struct brd_device *brd,
sector_t sector, size_t n)
{
struct page *page;
void *src;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page, KM_USER1);
memcpy(dst, src + offset, copy);
kunmap_atomic(src, KM_USER1);
} else
memset(dst, 0, copy);
if (copy < n) {
dst += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page, KM_USER1);
memcpy(dst, src, copy);
kunmap_atomic(src, KM_USER1);
} else
memset(dst, 0, copy);
}
}
/*
* Process a single bvec of a bio.
*/
static int brd_do_bvec(struct brd_device *brd, struct page *page,
unsigned int len, unsigned int off, int rw,
sector_t sector)
{
void *mem;
int err = 0;
if (rw != READ) {
err = copy_to_brd_setup(brd, sector, len);
if (err)
goto out;
}
mem = kmap_atomic(page, KM_USER0);
if (rw == READ) {
copy_from_brd(mem + off, brd, sector, len);
flush_dcache_page(page);
} else
copy_to_brd(brd, mem + off, sector, len);
kunmap_atomic(mem, KM_USER0);
out:
return err;
}
static int brd_make_request(struct request_queue *q, struct bio *bio)
{
struct block_device *bdev = bio->bi_bdev;
struct brd_device *brd = bdev->bd_disk->private_data;
int rw;
struct bio_vec *bvec;
sector_t sector;
int i;
int err = -EIO;
sector = bio->bi_sector;
if (sector + (bio->bi_size >> SECTOR_SHIFT) >
get_capacity(bdev->bd_disk))
goto out;
rw = bio_rw(bio);
if (rw == READA)
rw = READ;
bio_for_each_segment(bvec, bio, i) {
unsigned int len = bvec->bv_len;
err = brd_do_bvec(brd, bvec->bv_page, len,
bvec->bv_offset, rw, sector);
if (err)
break;
sector += len >> SECTOR_SHIFT;
}
out:
bio_endio(bio, err);
return 0;
}
#ifdef CONFIG_BLK_DEV_XIP
static int brd_direct_access (struct block_device *bdev, sector_t sector,
void **kaddr, unsigned long *pfn)
{
struct brd_device *brd = bdev->bd_disk->private_data;
struct page *page;
if (!brd)
return -ENODEV;
if (sector & (PAGE_SECTORS-1))
return -EINVAL;
if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
return -ERANGE;
page = brd_insert_page(brd, sector);
if (!page)
return -ENOMEM;
*kaddr = page_address(page);
*pfn = page_to_pfn(page);
return 0;
}
#endif
static int brd_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int error;
struct brd_device *brd = bdev->bd_disk->private_data;
if (cmd != BLKFLSBUF)
return -ENOTTY;
/*
* ram device BLKFLSBUF has special semantics, we want to actually
* release and destroy the ramdisk data.
*/
mutex_lock(&bdev->bd_mutex);
error = -EBUSY;
if (bdev->bd_openers <= 1) {
/*
* Invalidate the cache first, so it isn't written
* back to the device.
*
* Another thread might instantiate more buffercache here,
* but there is not much we can do to close that race.
*/
invalidate_bh_lrus();
truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
brd_free_pages(brd);
error = 0;
}
mutex_unlock(&bdev->bd_mutex);
return error;
}
static struct block_device_operations brd_fops = {
.owner = THIS_MODULE,
.locked_ioctl = brd_ioctl,
#ifdef CONFIG_BLK_DEV_XIP
.direct_access = brd_direct_access,
#endif
};
/*
* And now the modules code and kernel interface.
*/
static int rd_nr;
int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
static int max_part;
static int part_shift;
module_param(rd_nr, int, 0);
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
module_param(rd_size, int, 0);
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
module_param(max_part, int, 0);
MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
MODULE_ALIAS("rd");
#ifndef MODULE
/* Legacy boot options - nonmodular */
static int __init ramdisk_size(char *str)
{
rd_size = simple_strtol(str, NULL, 0);
return 1;
}
static int __init ramdisk_size2(char *str)
{
return ramdisk_size(str);
}
__setup("ramdisk=", ramdisk_size);
__setup("ramdisk_size=", ramdisk_size2);
#endif
/*
* The device scheme is derived from loop.c. Keep them in synch where possible
* (should share code eventually).
*/
static LIST_HEAD(brd_devices);
static DEFINE_MUTEX(brd_devices_mutex);
static struct brd_device *brd_alloc(int i)
{
struct brd_device *brd;
struct gendisk *disk;
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
if (!brd)
goto out;
brd->brd_number = i;
spin_lock_init(&brd->brd_lock);
INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
if (!brd->brd_queue)
goto out_free_dev;
blk_queue_make_request(brd->brd_queue, brd_make_request);
blk_queue_max_sectors(brd->brd_queue, 1024);
blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
disk = brd->brd_disk = alloc_disk(1 << part_shift);
if (!disk)
goto out_free_queue;
disk->major = RAMDISK_MAJOR;
disk->first_minor = i << part_shift;
disk->fops = &brd_fops;
disk->private_data = brd;
disk->queue = brd->brd_queue;
disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
sprintf(disk->disk_name, "ram%d", i);
set_capacity(disk, rd_size * 2);
return brd;
out_free_queue:
blk_cleanup_queue(brd->brd_queue);
out_free_dev:
kfree(brd);
out:
return NULL;
}
static void brd_free(struct brd_device *brd)
{
put_disk(brd->brd_disk);
blk_cleanup_queue(brd->brd_queue);
brd_free_pages(brd);
kfree(brd);
}
static struct brd_device *brd_init_one(int i)
{
struct brd_device *brd;
list_for_each_entry(brd, &brd_devices, brd_list) {
if (brd->brd_number == i)
goto out;
}
brd = brd_alloc(i);
if (brd) {
add_disk(brd->brd_disk);
list_add_tail(&brd->brd_list, &brd_devices);
}
out:
return brd;
}
static void brd_del_one(struct brd_device *brd)
{
list_del(&brd->brd_list);
del_gendisk(brd->brd_disk);
brd_free(brd);
}
static struct kobject *brd_probe(dev_t dev, int *part, void *data)
{
struct brd_device *brd;
struct kobject *kobj;
mutex_lock(&brd_devices_mutex);
brd = brd_init_one(dev & MINORMASK);
kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
mutex_unlock(&brd_devices_mutex);
*part = 0;
return kobj;
}
static int __init brd_init(void)
{
int i, nr;
unsigned long range;
struct brd_device *brd, *next;
/*
* brd module now has a feature to instantiate underlying device
* structure on-demand, provided that there is an access dev node.
* However, this will not work well with user space tool that doesn't
* know about such "feature". In order to not break any existing
* tool, we do the following:
*
* (1) if rd_nr is specified, create that many upfront, and this
* also becomes a hard limit.
* (2) if rd_nr is not specified, create 1 rd device on module
* load, user can further extend brd device by create dev node
* themselves and have kernel automatically instantiate actual
* device on-demand.
*/
part_shift = 0;
if (max_part > 0)
part_shift = fls(max_part);
if (rd_nr > 1UL << (MINORBITS - part_shift))
return -EINVAL;
if (rd_nr) {
nr = rd_nr;
range = rd_nr;
} else {
nr = CONFIG_BLK_DEV_RAM_COUNT;
range = 1UL << (MINORBITS - part_shift);
}
if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
return -EIO;
for (i = 0; i < nr; i++) {
brd = brd_alloc(i);
if (!brd)
goto out_free;
list_add_tail(&brd->brd_list, &brd_devices);
}
/* point of no return */
list_for_each_entry(brd, &brd_devices, brd_list)
add_disk(brd->brd_disk);
blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
THIS_MODULE, brd_probe, NULL, NULL);
printk(KERN_INFO "brd: module loaded\n");
return 0;
out_free:
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
list_del(&brd->brd_list);
brd_free(brd);
}
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
return -ENOMEM;
}
static void __exit brd_exit(void)
{
unsigned long range;
struct brd_device *brd, *next;
range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift);
list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
brd_del_one(brd);
blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
}
module_init(brd_init);
module_exit(brd_exit);