2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/sound/soc/intel/haswell/sst-haswell-dsp.c
Jie Yang ba57f68235 ASoC: Intel: create haswell folder and move haswell platform files in
Restructure the sound/soc/intel/ directory: create haswell folder, and
move haswell platform files here.

Signed-off-by: Jie Yang <yang.jie@intel.com>
Reviewed-by: Liam Girdwood <liam.r.girdwood@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2015-04-06 17:49:45 +01:00

710 lines
19 KiB
C

/*
* Intel Haswell SST DSP driver
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/pm_runtime.h>
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
#include "../haswell/sst-haswell-ipc.h"
#include <trace/events/hswadsp.h>
#define SST_HSW_FW_SIGNATURE_SIZE 4
#define SST_HSW_FW_SIGN "$SST"
#define SST_HSW_FW_LIB_SIGN "$LIB"
#define SST_WPT_SHIM_OFFSET 0xFB000
#define SST_LP_SHIM_OFFSET 0xE7000
#define SST_WPT_IRAM_OFFSET 0xA0000
#define SST_LP_IRAM_OFFSET 0x80000
#define SST_WPT_DSP_DRAM_OFFSET 0x400000
#define SST_WPT_DSP_IRAM_OFFSET 0x00000
#define SST_LPT_DSP_DRAM_OFFSET 0x400000
#define SST_LPT_DSP_IRAM_OFFSET 0x00000
#define SST_SHIM_PM_REG 0x84
#define SST_HSW_IRAM 1
#define SST_HSW_DRAM 2
#define SST_HSW_REGS 3
struct dma_block_info {
__le32 type; /* IRAM/DRAM */
__le32 size; /* Bytes */
__le32 ram_offset; /* Offset in I/DRAM */
__le32 rsvd; /* Reserved field */
} __attribute__((packed));
struct fw_module_info {
__le32 persistent_size;
__le32 scratch_size;
} __attribute__((packed));
struct fw_header {
unsigned char signature[SST_HSW_FW_SIGNATURE_SIZE]; /* FW signature */
__le32 file_size; /* size of fw minus this header */
__le32 modules; /* # of modules */
__le32 file_format; /* version of header format */
__le32 reserved[4];
} __attribute__((packed));
struct fw_module_header {
unsigned char signature[SST_HSW_FW_SIGNATURE_SIZE]; /* module signature */
__le32 mod_size; /* size of module */
__le32 blocks; /* # of blocks */
__le16 padding;
__le16 type; /* codec type, pp lib */
__le32 entry_point;
struct fw_module_info info;
} __attribute__((packed));
static void hsw_free(struct sst_dsp *sst);
static int hsw_parse_module(struct sst_dsp *dsp, struct sst_fw *fw,
struct fw_module_header *module)
{
struct dma_block_info *block;
struct sst_module *mod;
struct sst_module_template template;
int count, ret;
void __iomem *ram;
/* TODO: allowed module types need to be configurable */
if (module->type != SST_HSW_MODULE_BASE_FW
&& module->type != SST_HSW_MODULE_PCM_SYSTEM
&& module->type != SST_HSW_MODULE_PCM
&& module->type != SST_HSW_MODULE_PCM_REFERENCE
&& module->type != SST_HSW_MODULE_PCM_CAPTURE
&& module->type != SST_HSW_MODULE_WAVES
&& module->type != SST_HSW_MODULE_LPAL)
return 0;
dev_dbg(dsp->dev, "new module sign 0x%s size 0x%x blocks 0x%x type 0x%x\n",
module->signature, module->mod_size,
module->blocks, module->type);
dev_dbg(dsp->dev, " entrypoint 0x%x\n", module->entry_point);
dev_dbg(dsp->dev, " persistent 0x%x scratch 0x%x\n",
module->info.persistent_size, module->info.scratch_size);
memset(&template, 0, sizeof(template));
template.id = module->type;
template.entry = module->entry_point - 4;
template.persistent_size = module->info.persistent_size;
template.scratch_size = module->info.scratch_size;
mod = sst_module_new(fw, &template, NULL);
if (mod == NULL)
return -ENOMEM;
block = (void *)module + sizeof(*module);
for (count = 0; count < module->blocks; count++) {
if (block->size <= 0) {
dev_err(dsp->dev,
"error: block %d size invalid\n", count);
sst_module_free(mod);
return -EINVAL;
}
switch (block->type) {
case SST_HSW_IRAM:
ram = dsp->addr.lpe;
mod->offset =
block->ram_offset + dsp->addr.iram_offset;
mod->type = SST_MEM_IRAM;
break;
case SST_HSW_DRAM:
case SST_HSW_REGS:
ram = dsp->addr.lpe;
mod->offset = block->ram_offset;
mod->type = SST_MEM_DRAM;
break;
default:
dev_err(dsp->dev, "error: bad type 0x%x for block 0x%x\n",
block->type, count);
sst_module_free(mod);
return -EINVAL;
}
mod->size = block->size;
mod->data = (void *)block + sizeof(*block);
mod->data_offset = mod->data - fw->dma_buf;
dev_dbg(dsp->dev, "module block %d type 0x%x "
"size 0x%x ==> ram %p offset 0x%x\n",
count, mod->type, block->size, ram,
block->ram_offset);
ret = sst_module_alloc_blocks(mod);
if (ret < 0) {
dev_err(dsp->dev, "error: could not allocate blocks for module %d\n",
count);
sst_module_free(mod);
return ret;
}
block = (void *)block + sizeof(*block) + block->size;
}
mod->state = SST_MODULE_STATE_LOADED;
return 0;
}
static int hsw_parse_fw_image(struct sst_fw *sst_fw)
{
struct fw_header *header;
struct fw_module_header *module;
struct sst_dsp *dsp = sst_fw->dsp;
int ret, count;
/* Read the header information from the data pointer */
header = (struct fw_header *)sst_fw->dma_buf;
/* verify FW */
if ((strncmp(header->signature, SST_HSW_FW_SIGN, 4) != 0) ||
(sst_fw->size != header->file_size + sizeof(*header))) {
dev_err(dsp->dev, "error: invalid fw sign/filesize mismatch\n");
return -EINVAL;
}
dev_dbg(dsp->dev, "header size=0x%x modules=0x%x fmt=0x%x size=%zu\n",
header->file_size, header->modules,
header->file_format, sizeof(*header));
/* parse each module */
module = (void *)sst_fw->dma_buf + sizeof(*header);
for (count = 0; count < header->modules; count++) {
/* module */
ret = hsw_parse_module(dsp, sst_fw, module);
if (ret < 0) {
dev_err(dsp->dev, "error: invalid module %d\n", count);
return ret;
}
module = (void *)module + sizeof(*module) + module->mod_size;
}
return 0;
}
static irqreturn_t hsw_irq(int irq, void *context)
{
struct sst_dsp *sst = (struct sst_dsp *) context;
u32 isr;
int ret = IRQ_NONE;
spin_lock(&sst->spinlock);
/* Interrupt arrived, check src */
isr = sst_dsp_shim_read_unlocked(sst, SST_ISRX);
if (isr & SST_ISRX_DONE) {
trace_sst_irq_done(isr,
sst_dsp_shim_read_unlocked(sst, SST_IMRX));
/* Mask Done interrupt before return */
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRX,
SST_IMRX_DONE, SST_IMRX_DONE);
ret = IRQ_WAKE_THREAD;
}
if (isr & SST_ISRX_BUSY) {
trace_sst_irq_busy(isr,
sst_dsp_shim_read_unlocked(sst, SST_IMRX));
/* Mask Busy interrupt before return */
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRX,
SST_IMRX_BUSY, SST_IMRX_BUSY);
ret = IRQ_WAKE_THREAD;
}
spin_unlock(&sst->spinlock);
return ret;
}
static void hsw_set_dsp_D3(struct sst_dsp *sst)
{
u32 val;
u32 reg;
/* Disable core clock gating (VDRTCTL2.DCLCGE = 0) */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
reg &= ~(SST_VDRTCL2_DCLCGE | SST_VDRTCL2_DTCGE);
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL2);
/* enable power gating and switch off DRAM & IRAM blocks */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
val |= SST_VDRTCL0_DSRAMPGE_MASK |
SST_VDRTCL0_ISRAMPGE_MASK;
val &= ~(SST_VDRTCL0_D3PGD | SST_VDRTCL0_D3SRAMPGD);
writel(val, sst->addr.pci_cfg + SST_VDRTCTL0);
/* switch off audio PLL */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
val |= SST_VDRTCL2_APLLSE_MASK;
writel(val, sst->addr.pci_cfg + SST_VDRTCTL2);
/* disable MCLK(clkctl.smos = 0) */
sst_dsp_shim_update_bits_unlocked(sst, SST_CLKCTL,
SST_CLKCTL_MASK, 0);
/* Set D3 state, delay 50 us */
val = readl(sst->addr.pci_cfg + SST_PMCS);
val |= SST_PMCS_PS_MASK;
writel(val, sst->addr.pci_cfg + SST_PMCS);
udelay(50);
/* Enable core clock gating (VDRTCTL2.DCLCGE = 1), delay 50 us */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
reg |= SST_VDRTCL2_DCLCGE | SST_VDRTCL2_DTCGE;
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL2);
udelay(50);
}
static void hsw_reset(struct sst_dsp *sst)
{
/* put DSP into reset and stall */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_RST | SST_CSR_STALL,
SST_CSR_RST | SST_CSR_STALL);
/* keep in reset for 10ms */
mdelay(10);
/* take DSP out of reset and keep stalled for FW loading */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_RST | SST_CSR_STALL, SST_CSR_STALL);
}
static int hsw_set_dsp_D0(struct sst_dsp *sst)
{
int tries = 10;
u32 reg, fw_dump_bit;
/* Disable core clock gating (VDRTCTL2.DCLCGE = 0) */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
reg &= ~(SST_VDRTCL2_DCLCGE | SST_VDRTCL2_DTCGE);
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL2);
/* Disable D3PG (VDRTCTL0.D3PGD = 1) */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
reg |= SST_VDRTCL0_D3PGD;
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL0);
/* Set D0 state */
reg = readl(sst->addr.pci_cfg + SST_PMCS);
reg &= ~SST_PMCS_PS_MASK;
writel(reg, sst->addr.pci_cfg + SST_PMCS);
/* check that ADSP shim is enabled */
while (tries--) {
reg = readl(sst->addr.pci_cfg + SST_PMCS) & SST_PMCS_PS_MASK;
if (reg == 0)
goto finish;
msleep(1);
}
return -ENODEV;
finish:
/* select SSP1 19.2MHz base clock, SSP clock 0, turn off Low Power Clock */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_S1IOCS | SST_CSR_SBCS1 | SST_CSR_LPCS, 0x0);
/* stall DSP core, set clk to 192/96Mhz */
sst_dsp_shim_update_bits_unlocked(sst,
SST_CSR, SST_CSR_STALL | SST_CSR_DCS_MASK,
SST_CSR_STALL | SST_CSR_DCS(4));
/* Set 24MHz MCLK, prevent local clock gating, enable SSP0 clock */
sst_dsp_shim_update_bits_unlocked(sst, SST_CLKCTL,
SST_CLKCTL_MASK | SST_CLKCTL_DCPLCG | SST_CLKCTL_SCOE0,
SST_CLKCTL_MASK | SST_CLKCTL_DCPLCG | SST_CLKCTL_SCOE0);
/* Stall and reset core, set CSR */
hsw_reset(sst);
/* Enable core clock gating (VDRTCTL2.DCLCGE = 1), delay 50 us */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
reg |= SST_VDRTCL2_DCLCGE | SST_VDRTCL2_DTCGE;
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL2);
udelay(50);
/* switch on audio PLL */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
reg &= ~SST_VDRTCL2_APLLSE_MASK;
writel(reg, sst->addr.pci_cfg + SST_VDRTCTL2);
/* set default power gating control, enable power gating control for all blocks. that is,
can't be accessed, please enable each block before accessing. */
reg = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
reg |= SST_VDRTCL0_DSRAMPGE_MASK | SST_VDRTCL0_ISRAMPGE_MASK;
/* for D0, always enable the block(DSRAM[0]) used for FW dump */
fw_dump_bit = 1 << SST_VDRTCL0_DSRAMPGE_SHIFT;
writel(reg & ~fw_dump_bit, sst->addr.pci_cfg + SST_VDRTCTL0);
/* disable DMA finish function for SSP0 & SSP1 */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR2, SST_CSR2_SDFD_SSP1,
SST_CSR2_SDFD_SSP1);
/* set on-demond mode on engine 0,1 for all channels */
sst_dsp_shim_update_bits(sst, SST_HMDC,
SST_HMDC_HDDA_E0_ALLCH | SST_HMDC_HDDA_E1_ALLCH,
SST_HMDC_HDDA_E0_ALLCH | SST_HMDC_HDDA_E1_ALLCH);
/* Enable Interrupt from both sides */
sst_dsp_shim_update_bits(sst, SST_IMRX, (SST_IMRX_BUSY | SST_IMRX_DONE),
0x0);
sst_dsp_shim_update_bits(sst, SST_IMRD, (SST_IMRD_DONE | SST_IMRD_BUSY |
SST_IMRD_SSP0 | SST_IMRD_DMAC), 0x0);
/* clear IPC registers */
sst_dsp_shim_write(sst, SST_IPCX, 0x0);
sst_dsp_shim_write(sst, SST_IPCD, 0x0);
sst_dsp_shim_write(sst, 0x80, 0x6);
sst_dsp_shim_write(sst, 0xe0, 0x300a);
return 0;
}
static void hsw_boot(struct sst_dsp *sst)
{
/* set oportunistic mode on engine 0,1 for all channels */
sst_dsp_shim_update_bits(sst, SST_HMDC,
SST_HMDC_HDDA_E0_ALLCH | SST_HMDC_HDDA_E1_ALLCH, 0);
/* set DSP to RUN */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR, SST_CSR_STALL, 0x0);
}
static void hsw_stall(struct sst_dsp *sst)
{
/* stall DSP */
sst_dsp_shim_update_bits(sst, SST_CSR,
SST_CSR_24MHZ_LPCS | SST_CSR_STALL,
SST_CSR_STALL | SST_CSR_24MHZ_LPCS);
}
static void hsw_sleep(struct sst_dsp *sst)
{
dev_dbg(sst->dev, "HSW_PM dsp runtime suspend\n");
/* put DSP into reset and stall */
sst_dsp_shim_update_bits(sst, SST_CSR,
SST_CSR_24MHZ_LPCS | SST_CSR_RST | SST_CSR_STALL,
SST_CSR_RST | SST_CSR_STALL | SST_CSR_24MHZ_LPCS);
hsw_set_dsp_D3(sst);
dev_dbg(sst->dev, "HSW_PM dsp runtime suspend exit\n");
}
static int hsw_wake(struct sst_dsp *sst)
{
int ret;
dev_dbg(sst->dev, "HSW_PM dsp runtime resume\n");
ret = hsw_set_dsp_D0(sst);
if (ret < 0)
return ret;
dev_dbg(sst->dev, "HSW_PM dsp runtime resume exit\n");
return 0;
}
struct sst_adsp_memregion {
u32 start;
u32 end;
int blocks;
enum sst_mem_type type;
};
/* lynx point ADSP mem regions */
static const struct sst_adsp_memregion lp_region[] = {
{0x00000, 0x40000, 8, SST_MEM_DRAM}, /* D-SRAM0 - 8 * 32kB */
{0x40000, 0x80000, 8, SST_MEM_DRAM}, /* D-SRAM1 - 8 * 32kB */
{0x80000, 0xE0000, 12, SST_MEM_IRAM}, /* I-SRAM - 12 * 32kB */
};
/* wild cat point ADSP mem regions */
static const struct sst_adsp_memregion wpt_region[] = {
{0x00000, 0xA0000, 20, SST_MEM_DRAM}, /* D-SRAM0,D-SRAM1,D-SRAM2 - 20 * 32kB */
{0xA0000, 0xF0000, 10, SST_MEM_IRAM}, /* I-SRAM - 10 * 32kB */
};
static int hsw_acpi_resource_map(struct sst_dsp *sst, struct sst_pdata *pdata)
{
/* ADSP DRAM & IRAM */
sst->addr.lpe_base = pdata->lpe_base;
sst->addr.lpe = ioremap(pdata->lpe_base, pdata->lpe_size);
if (!sst->addr.lpe)
return -ENODEV;
/* ADSP PCI MMIO config space */
sst->addr.pci_cfg = ioremap(pdata->pcicfg_base, pdata->pcicfg_size);
if (!sst->addr.pci_cfg) {
iounmap(sst->addr.lpe);
return -ENODEV;
}
/* SST Shim */
sst->addr.shim = sst->addr.lpe + sst->addr.shim_offset;
return 0;
}
struct sst_sram_shift {
u32 dev_id; /* SST Device IDs */
u32 iram_shift;
u32 dram_shift;
};
static const struct sst_sram_shift sram_shift[] = {
{SST_DEV_ID_LYNX_POINT, 6, 16}, /* lp */
{SST_DEV_ID_WILDCAT_POINT, 2, 12}, /* wpt */
};
static u32 hsw_block_get_bit(struct sst_mem_block *block)
{
u32 bit = 0, shift = 0, index;
struct sst_dsp *sst = block->dsp;
for (index = 0; index < ARRAY_SIZE(sram_shift); index++) {
if (sram_shift[index].dev_id == sst->id)
break;
}
if (index < ARRAY_SIZE(sram_shift)) {
switch (block->type) {
case SST_MEM_DRAM:
shift = sram_shift[index].dram_shift;
break;
case SST_MEM_IRAM:
shift = sram_shift[index].iram_shift;
break;
default:
shift = 0;
}
} else
shift = 0;
bit = 1 << (block->index + shift);
return bit;
}
/*dummy read a SRAM block.*/
static void sst_mem_block_dummy_read(struct sst_mem_block *block)
{
u32 size;
u8 tmp_buf[4];
struct sst_dsp *sst = block->dsp;
size = block->size > 4 ? 4 : block->size;
memcpy_fromio(tmp_buf, sst->addr.lpe + block->offset, size);
}
/* enable 32kB memory block - locks held by caller */
static int hsw_block_enable(struct sst_mem_block *block)
{
struct sst_dsp *sst = block->dsp;
u32 bit, val;
if (block->users++ > 0)
return 0;
dev_dbg(block->dsp->dev, " enabled block %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
/* Disable core clock gating (VDRTCTL2.DCLCGE = 0) */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
val &= ~SST_VDRTCL2_DCLCGE;
writel(val, sst->addr.pci_cfg + SST_VDRTCTL2);
val = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
bit = hsw_block_get_bit(block);
writel(val & ~bit, sst->addr.pci_cfg + SST_VDRTCTL0);
/* wait 18 DSP clock ticks */
udelay(10);
/* Enable core clock gating (VDRTCTL2.DCLCGE = 1), delay 50 us */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
val |= SST_VDRTCL2_DCLCGE;
writel(val, sst->addr.pci_cfg + SST_VDRTCTL2);
udelay(50);
/*add a dummy read before the SRAM block is written, otherwise the writing may miss bytes sometimes.*/
sst_mem_block_dummy_read(block);
return 0;
}
/* disable 32kB memory block - locks held by caller */
static int hsw_block_disable(struct sst_mem_block *block)
{
struct sst_dsp *sst = block->dsp;
u32 bit, val;
if (--block->users > 0)
return 0;
dev_dbg(block->dsp->dev, " disabled block %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
/* Disable core clock gating (VDRTCTL2.DCLCGE = 0) */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
val &= ~SST_VDRTCL2_DCLCGE;
writel(val, sst->addr.pci_cfg + SST_VDRTCTL2);
val = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
bit = hsw_block_get_bit(block);
/* don't disable DSRAM[0], keep it always enable for FW dump*/
if (bit != (1 << SST_VDRTCL0_DSRAMPGE_SHIFT))
writel(val | bit, sst->addr.pci_cfg + SST_VDRTCTL0);
/* wait 18 DSP clock ticks */
udelay(10);
/* Enable core clock gating (VDRTCTL2.DCLCGE = 1), delay 50 us */
val = readl(sst->addr.pci_cfg + SST_VDRTCTL2);
val |= SST_VDRTCL2_DCLCGE;
writel(val, sst->addr.pci_cfg + SST_VDRTCTL2);
udelay(50);
return 0;
}
static struct sst_block_ops sst_hsw_ops = {
.enable = hsw_block_enable,
.disable = hsw_block_disable,
};
static int hsw_init(struct sst_dsp *sst, struct sst_pdata *pdata)
{
const struct sst_adsp_memregion *region;
struct device *dev;
int ret = -ENODEV, i, j, region_count;
u32 offset, size, fw_dump_bit;
dev = sst->dma_dev;
switch (sst->id) {
case SST_DEV_ID_LYNX_POINT:
region = lp_region;
region_count = ARRAY_SIZE(lp_region);
sst->addr.iram_offset = SST_LP_IRAM_OFFSET;
sst->addr.dsp_iram_offset = SST_LPT_DSP_IRAM_OFFSET;
sst->addr.dsp_dram_offset = SST_LPT_DSP_DRAM_OFFSET;
sst->addr.shim_offset = SST_LP_SHIM_OFFSET;
break;
case SST_DEV_ID_WILDCAT_POINT:
region = wpt_region;
region_count = ARRAY_SIZE(wpt_region);
sst->addr.iram_offset = SST_WPT_IRAM_OFFSET;
sst->addr.dsp_iram_offset = SST_WPT_DSP_IRAM_OFFSET;
sst->addr.dsp_dram_offset = SST_WPT_DSP_DRAM_OFFSET;
sst->addr.shim_offset = SST_WPT_SHIM_OFFSET;
break;
default:
dev_err(dev, "error: failed to get mem resources\n");
return ret;
}
ret = hsw_acpi_resource_map(sst, pdata);
if (ret < 0) {
dev_err(dev, "error: failed to map resources\n");
return ret;
}
/* enable the DSP SHIM */
ret = hsw_set_dsp_D0(sst);
if (ret < 0) {
dev_err(dev, "error: failed to set DSP D0 and reset SHIM\n");
return ret;
}
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(31));
if (ret)
return ret;
/* register DSP memory blocks - ideally we should get this from ACPI */
for (i = 0; i < region_count; i++) {
offset = region[i].start;
size = (region[i].end - region[i].start) / region[i].blocks;
/* register individual memory blocks */
for (j = 0; j < region[i].blocks; j++) {
sst_mem_block_register(sst, offset, size,
region[i].type, &sst_hsw_ops, j, sst);
offset += size;
}
}
/* always enable the block(DSRAM[0]) used for FW dump */
fw_dump_bit = 1 << SST_VDRTCL0_DSRAMPGE_SHIFT;
/* set default power gating control, enable power gating control for all blocks. that is,
can't be accessed, please enable each block before accessing. */
writel(0xffffffff & ~fw_dump_bit, sst->addr.pci_cfg + SST_VDRTCTL0);
return 0;
}
static void hsw_free(struct sst_dsp *sst)
{
sst_mem_block_unregister_all(sst);
iounmap(sst->addr.lpe);
iounmap(sst->addr.pci_cfg);
}
struct sst_ops haswell_ops = {
.reset = hsw_reset,
.boot = hsw_boot,
.stall = hsw_stall,
.wake = hsw_wake,
.sleep = hsw_sleep,
.write = sst_shim32_write,
.read = sst_shim32_read,
.write64 = sst_shim32_write64,
.read64 = sst_shim32_read64,
.ram_read = sst_memcpy_fromio_32,
.ram_write = sst_memcpy_toio_32,
.irq_handler = hsw_irq,
.init = hsw_init,
.free = hsw_free,
.parse_fw = hsw_parse_fw_image,
};